CEUR-WS.org/Vol-2952/paper_294a.pdf

ChorChain: A Model-Driven Framework for
Choreography-Based Systems Using Blockchain*

Flavio Corradini', Alessandro Marcelletti!, Andrea Morichetta!, Andrea
Polini', Barbara Re!, and Francesco Tiezzi'

University of Camerino, Camerino 62032, IT
{name.surname}@unicam.it

Abstract. The complexity in the development of distributed systems
has increased the necessity to consider new model-driven methodologies
for their implementation. This complexity is higher when combined with
the lack of a trusted execution environment necessary to guarantee the
correct behaviour of all the involved participants. In such context, the
BPMN standard, in particular the choreography diagram, is one of the
advocated modelling languages able to represent the interactions that
should occur among distributed components. This modelling language,
combined with the immutable and trusted nature of the blockchain tech-
nology, provides a promising solution to master complexity in develop-
ing and executing trusted distributed systems. This paper describes a
model-driven methodology based on blockchain technology and the re-
lated framework named ChorChain. Starting from a BPMN choreogra-
phy model, ChorChain generates the corresponding smart contract and
the respective infrastructure for the choreography execution. To show
the ChorChain feasibility, we have been tested it on a Room Booking
scenario.

Keywords: Distributed systems - BPMN - Choreography - Blockchain

1 Introduction

In the last years, model-driven engineering methodologies are used to master the
complexity of coordination in distributed systems involving multi-party organisa-
tions. These methodologies allow the passage from abstract modelling languages,
describing the interaction logic, to code executable on a targeted run-time en-
vironment. In such a direction, the BPMN standard ! nowadays has become a
prominent modelling language to describe collaborative systems in distributed
environments [4, 5, 10]. In this paper, we rely on choreography diagrams, which
permit us to describe system interactions in terms of the exchange of messages
from a global perspective, without exposing the internal behaviour of each com-
ponent.

* Copyright (© 2021 for this paper by its authors. Use permitted under Creative

Commons License Attribution 4.0 International (CC BY 4.0).
! https://www.omg.org/spec/BPMN/2.0/PDF

2 F. Corradini et al.

In addition to coordination complexity, distributed systems may lack of trust
among the involved parties. This trustelessness issue [9] can be mitigated by the
inclusion of blockchain technology, as envisioned in [6]. The blockchain, indeed,
guarantees the integrity and the immutability of data, without relying on a
central authority or any particular participant [1,7,8]. This allows choreography
participants to have a clear view of the ongoing system execution and tangible
proofs of the actions performed by the counterparts [3,2].

In this paper, we focus on the use of the model-driven methodology and
the ChorChain framework, introduced in [3], for the development of trustable
choreography-based systems. In doing this, we focus on a case study related to
a room booking system. The proposed approach supports the full life-cycle of
choreographies, from their modelling to their publishing and instantiation, until
their deployment and execution in the Ethereum blockchain. In particular, the
deployment phase is supported by ChorChain thanks to the automatic genera-
tion of Solidity smart contracts. These contracts indeed are specifically generated
to implement the choreography workflow, thus forcing the correct behaviour of
each participant.

The rest of the paper is organised as follow. Section 2 describes the pro-
posed methodology, while Section 3 shows the ChorChain framework in practice
applied to a case study. Finally, Section 4 concludes the paper.

2 ChorChain Methodology

In this section, we describe the methodological aspects of the proposed approach
that is divided into three main phases in Fig. 1 (i) system modelling, (ii) instan-
tiation and (iii) execution.

Existing Instances

‘Smart Contract

=S>BLOCK <

2 J Deploy

4
>

7 CHAIN

.

4%
5 By

2

o8
Contract

Subscribe nstance ID:1
Generation

Publish

Modelling

Repository

Modelling

Create

ﬂ
b ||bo b Iolo

lew
Instance

2

e A

Instance ID:3

R

Role B

Tedo Do | Done

New Instance

Instantiation Execution

Fig. 1. ChorChain methodology.

The first phase consists of the modelling of a distributed system by means
of a choreography specification. This permits focusing on the interactions, ab-
stracting from low-level implementation details and reducing the development
effort. The created model is published in a choreography repository making it
publicly available as a blueprint.

A model can be used to generate multiple instances with the same structure
but with different participants. When a choreography instance is created, in
order to be executed it has to be subscribed by the participants that are willing
to play a specific role.

ChorChain: A model-driven framework 3

Once all the required roles are filled, the corresponding smart contract is
generated and then deployed, automatically, on the blockchain. At this point,
the execution starts, and the participants can cooperate following the message
protocol established by the choreography specification, and implemented in the
smart contract.

3 ChorChain on Room Booking Case Study

In this section, we show how the proposed methodology was concretely applied
on a realistic example. For this purpose, we demonstrate the ChorChain func-
tionalities, with the Room Booking case study. The interested reader can visit
http://pros.unicam.it/chorchain/ for more details about the tool and its usage.
The model shown in Fig. 2 describes the interactions between a Client and a

bookingID(string booking id)

Hotel

Bookin,
paymento() confirmation
7

T Client
Client

Accept payment

check_room(string date, uint people) room_quotation(uint quotation) receiptiD(string receiptiD)

Hotel

Hotel

Ciient Hotel

cancel_order(string motivation) Give receipt

Availability check Confirmation

Client

Hotel Client

Client

Reject order —>O

Hotel

give availability(bool confirm, book_room(bool confirmation)

uint rooms_number)

confirm==false

Fig. 2. Room booking case study.

Hotel for the booking of a room. In particular, the process starts with the request
of availability for a room on a specific date and a given number of guests. In
absence of a free room, the client iterates making new requests. In the positive
case, instead, the hotel replies with the room number and its quotation. This
open two possible subsequent actions for the client: (i) the rejection of the order
that makes the process ends or (ii) the payment activity of the booked room.
After the payment, the hotel provides in parallel the booking ID and the receipt
ID.

Here below we show the steps that the parties need to accomplish to collabo-
rate on such a scenario using the ChorChain framework. The first required step
is the authentication. The parties need to sign-up in the system by registering
their Ethereum accounts. This is necessary to associate all the operations per-
formed in the blockchain with a participant. Once this step is completed, the
sign-in can be done through the Metamask plugin that facilitates the user in
managing the Ethereum account.

Then, the participant can start the definition of the room booking model
through the integrated modelling environment exploiting the choreography el-
ements. Additional information related to (i) messages and (ii) guards is also
necessary. These annotations are facilitated by a dedicated interface accessible

4 F. Corradini et al.

for each choreography task. Fig. 3 shows the ChorChain interface for the defi-
nition of the messages and parameters in the Awvailability check task. The result
of this procedure is a list of parameters included between brackets after the
message name; e.g. check_room(string date, uint people) defines the first message
sent by the client. This format is necessary for performing the underlying func-
tion call in the generated smart contract. Similarly, the guards annotation in the
outgoing sequence flows of exclusive gateways is used to enforce the control flow
of the smart contract. This will be translated later as conditions automatically
verified in the contract, guaranteeing a proper execution of the choreography
model when deployed in the blockchain.

& | chorChain o . g 1
Message top
check_room
string 4 | date

uint ¢ | people

Add param

Check this box if the message is a payment function
Participant top

Client

Task name

Availability check

Participant bottom

Hotel
Message bottom
give_availability
boolean + | confim

uint + | rooms_number

Add param

Check this box if the message is a payment function

Fig. 3. ChorChain modeller panel.

Once the Room Booking model is completed, it is saved in the ChorChain
repository, and it is shown in the model file list on the home page (Fig. 4)
accessible by every logged-in user.

Selecting the RoomBooking.bpmn file, ChorChain shows the owner of the
model, the maximum number of involved participants and the required roles.
Furthermore, the graphical preview and the instantiation functionalities are ac-
cessible by clicking on the related buttons (Create instance and See model pre-
view). In the specific case of Fig. 4, the Room Booking instance contains the
address of the creator, and the two roles defined in the model: the Hotel and
the Client. The created instance will remain in a “suspended” state until all the
mandatory roles are subscribed. To fill these roles, participants that are inter-
ested to participate as client or hotel can subscribe and associate their Ethereum
accounts to the role. When all roles are fulfilled and no more vacant roles exist,
ChorChain considers the partnership complete and starts the generation and
deployment of the Solidity smart contract.

The code generation is completely automatic and transparent to the involved
participants that have no knowledge about low-level implementation details.
In the generated smart contract, messages are represented by public functions
that can be invoked only by a specific participant. For gateways, instead, the

ChorChain: A model-driven framework 5

(‘ChorCham Home Page Modeler Execution Page

2 Upload model Qsearch ReomBooking.bpmn Create instance
Uploaded by: Ox7A224d367EB99eB49dCB0F3dTbIFACIEO3Fe8Be0 .
See model preview

All roles: Client - Hotel -
Model File List

i RoomBooking.bpmn

n° 60e9be29f50f742f24€03747 - created By: 0x7A224d367EBI9e849dCBOF3d7bIFACIEO3FeBBe0

Hotel % | Subscribe ‘
Fig. 4. ChorChain instance and subscription view.

related functions are automatically triggered internally by the smart contract.
The interested reader can refer to hitp://pros.unicam.it/RoomBooking.sol for
more details about the generated Room Booking smart contract.

Once the smart contract of the Room Booking scenario is deployed, it is ac-
cessible by the parties in the ChorChain execution page (Fig. 5). Here both the
hotel and the client can interact with each other following the deployed choreog-
raphy specification. In particular, the left-hand side of the interface reports a list

{ ChorChain HomePage Modeler Execution Page

Model File List RoomBooking.bpmn

RoomBooking.bpmn

60ed4bb1f50{74302403892

Contract deployed: 0x2 208 46502ac visible at: etherscan.io

check_room(string date, uint
people)

give_availability(bool confirm, uint rooms_number) Hotel Status: Enabled stiing date: 15/07/2021

true, 2
bt check_room(string date, uint

people)
Gonferma i ‘Submit.

uint people : 4

Fig. 5. ChorChain execution page with hotel role sending the confirmation transaction.

of all the deployed contracts, to which the participant is subscribed. In the centre,
it is shown a preview of the model with its current execution state highlighted
by green messages. For the active messages, a form is dynamically constructed
below the model, to insert the parameters and executing it (give_availability).
Notably, the submission form is shown only to the participant subscribed and in
charge to play that role. The counterpart (client in the give_availability message)
has only knowledge of the active message, without the possibility of submitting
it. For each message submission, ChorChain produces a blockchain transaction
that has to be confirmed through the Metamask pop-up. As soon as the trans-
action is stored in the blockchain, an event is emitted and is used for notifying

6 F. Corradini et al.

all the other participants about the advancement of the system status until an
end event is reached. To log the current value of variables, on the bottom-right
side of Fig. 5 a panel is shown. In particular it contains the check room message
with its two parameters (date and people) with the respective values retrieved
from the blockchain.

Considering costs for executing the Room Booking scenario we have 4,510,860
units of gas used for the deployment of the contract and 817,389 for its execution.
On average each transaction uses around 116,769 units of gas. The execution time
instead is strictly related to the technology used and we registered on average
15 seconds for the inclusion of each transaction in the Rinkeby network.

4 Conclusions

In this work, we faced the problem of the trustworthy implementation of dis-
tributed systems through the use of multi-party choreographies. The concrete
realisations of such systems suffer from the lack of a concrete implementation
that guarantees also trust to the participants. To address such a challenge we
proposed in [3] a novel model-driven methodology for managing the whole chore-
ography life-cycle, relying on a blockchain infrastructure. The methodology is
concretely supported by the ChorChain framework, which implements all the
functionalities from the diagram specification to its execution on the blockchain.
We demonstrate here the feasibility of the solution and its effectiveness by ap-
plying the ChorChain approach to a Room Booking case study.

References

1. Almeida, S., Albuquerque, A., Silva, A.: An approach to develop software that uses
blockchain. In: Computer Science Conference. pp. 346-355. Springer (2018)

2. Corradini, F., Marcelletti, A., Morichetta, A., Polini, A., Re, B., Scala, E.,
et al.: Model-driven engineering for multi-party business processes on multiple
blockchains. Blockchain: Research and Applications p. 100018 (2021)

3. Corradini, F., Marcelletti, A., Morichetta, A., Polini, A., Re, B., Tiezzi, F.: Engi-
neering trustable choreography-based systems using blockchain. In: 35th Annual
ACM SAC. pp. 1470-1479 (2020)

4. Di Ciccio, C., Cecconi, A., Dumas, M., Garcia-Bafiuelos, L., Lépez-Pintado, O.,
Lu, Q., Mendling, J., Ponomarev, A., Tran, A.B., Weber, 1.: Blockchain support
for collaborative business processes. Informatik Spektrum 42(3), 182-190 (2019)

5. Lépez-Pintado, O., Garcia-Bafuelos, L., Dumas, M., Weber, 1., Ponomarev, A.:
Caterpillar: a business process execution engine on the ethereum blockchain. Soft-
ware: Practice and Experience 49(7), 1162-1193 (2019)

6. Mendling, J., Weber, 1., Aalst, W.V.D., Brocke, J.V., Cabanillas, C., Daniel, F.,
Debois, S., Ciccio, C.D., Dumas, M., Dustdar, S., et al.: Blockchains for business
process management-challenges and opportunities. TMIS 9(1), 1-16 (2018)

7. Porru, S., Pinna, A., Marchesi, M., Tonelli, R.: Blockchain-oriented software engi-
neering: challenges and new directions. In: ICSE-C. pp. 169-171. IEEE (2017)

8. Rocha, H., Ducasse, S.: Preliminary steps towards modeling blockchain oriented
software. In: WETSEB. pp. 52-57. IEEE (2018)

ChorChain: A model-driven framework 7

9. Tai, S.: Continuous, trustless, and fair: Changing priorities in services computing.
In: Conf. on Service-Oriented and Cloud Computing. pp. 205-210. Springer (2016)

10. Tran, A.B., Lu, Q., Weber, I.: Lorikeet: A model-driven engineering tool for
blockchain-based business process execution and asset management. In: BPM. pp.
56-60 (2018)

