
Towards Automated Schema Optimization?

André Conrad1, Sebastian Gärtner2, and Uta Störl1[0000−0003−2771−142X]

1 University of Hagen, Germany
andre.conrad|uta.stoerl@fernuni-hagen.de

2 Accso Accelerated Solutions GmbH, Darmstadt
sebastian.gaertner@accso.de

Abstract. Non-relational systems are essential to manage large amounts
of semi- and/or unstructured data. To use the optimal data storage
at a given time, it may be necessary to change the data model during
the lifetime of an application. This paper offers a visionary approach
providing an automated schema migration and optimization between
different NoSQL data stores. By means of data and query analyses,
optimizations of all existing cardinalities can be achieved with respect to
good query performances with minimal redundancy. First performance
measurements prove the increase in performance.

Keywords: Schema Migration · Schema Optimization · Data Migration

1 Introduction

Due to the steady development and appearance of new database technologies as
well as the further development of existing applications and the consequential
changed requirements to a database system used at a given time, it can be
necessary to migrate data between different, heterogeneous database systems. If
the data of the source system are migrated without optimizing the schema with
respect to the target system, performance may be affected.

For example, missing or restricted join operations in NoSQL systems lead to
performance losses. Otherwise changes in the database schema (e.g. embedding)
can help to improve the performance.

This paper introduces the concept of a flexible migration architecture between
different database systems with various data models. Our approach includes an
automated optimization process based on data metrics and query analysis that
allows the identification of the best way to embed or reference the data.

At first a migration from relational to document stores is presented. This
approach uses an automatic optimization process where the transformation rules
can be modified and extended. The contributions of the paper are:

? This work has been funded by Deutsche Forschungsgemeinschaft (German Research
Foundation) - 385808805
Copyright © 2021 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).



38 A. Conrad et al.

– A comparison of existing approaches to migrate schema and data between
different database models.

– The proof of concept of a flexible migration architecture with an automated
optimization of the schema transformation.

– First performance analyses to investigate the increase in performance through
optimization.

This paper is organized as follows: Section 2 presents related work on migration
and optimization processes between different database systems. Section 3 de-
scribes first approaches to a concept on the way to an automated and flexible
migration process. Section 4 shows performance improvements based on first mea-
surements regarding a migration from the relational database system MariaDB
to the document-oriented system of MongoDB. Finally, Section 5 provides the
conclusions as well as an outlook on our further work.

2 Related Work

This chapter presents the state of the art on migration and optimization pro-
cesses between different database systems. After a short introduction of the
different approaches a summarizing comparison is given at the end of the chapter
(cf. Table 1).

[10] describes an algorithm that outputs the order in which related tables can
be aggregated into one large “NoSQL-table” with regard to the optimization of
read queries in a migration from relational to document stores. [1] presents a
process that takes conceptual UML class diagrams and transforms them into phys-
ical models of different NoSQL stores using transformation rules and a platform
independent meta model. [2] describes a semi-autonomous rule-based process
by which a conceptional UML class diagram can be transformed into various
platform specific models. The class diagram can be edited manually in order to
divide it into multiple regions which describe several physically separated models.
[6] shows a concept of data and schema migration from relational to document
and column-oriented NoSQL stores that has flexible optimization possibilities.
The core is a platform independent meta model that additionally describes data
and query characteristics of the source system. Different strategies are provided
to optimize the model with respect to different target systems. [3] describes
the migration of data from relational systems to the document-oriented model
of MongoDB in detail. This includes a semi-autonomous optimization process
against the target model. Note that many-to-many relationships are always refer-
enced. In [8] an optimization process is described where several target models
based on transformation heuristics are generated.

Finally, Table 1 summarizes the works considered and offers a comparison
between different properties regarding automated data and schema migration
including optimization processes.

[3] is one of the few works that offers a detailed description of the migration
process including schema optimizations. However, they do not provide optimiza-
tions for many-to-many relationships. Therefore, our approach provides flexible



Towards Automated Schema Optimization 39

Table 1. Comparison of different approaches to schema and data migration between
heterogeneous database systems (3*: Not described in detail, (3): not fully automated).

[10] [1] [2] [6] [3] [8]

Schema optimization (3) (3) - (3) (3) (3)
Data/query analysis - - - 3* 3 -
Meta model - 3 - 3* - 3
SOURCE MODELS:

Relational 3 - - 3 3 -
UML - 3 3 - - 3

TARGET MODELS:
Relational - - 3 - - 3
Document 3 3 3 3 3 3
Graph - 3 3 - - 3
Column - 3 - 3 - 3
Multi storage - - 3 - - -

and extensible transformation rules regarding different target models. We perform
an in-depth analysis of performance critical queries by using multiple quantitative
metrics of existing data. One-into-many and many-into-many embeddings are
also considered.

3 Concept

Our concept is based on the use of a platform independent meta model. We offer
a flexible and extensible process for an automated schema and data migration
between all kinds of data stores. A further important goal is the automated
optimization of the schema with respect to the target system using different
strategy rules as presented in [6] as well as the previously collected data metrics
and analysis of the queries in the form of a so-called dependency graph. Fig. 1
shows an overview of the design described.

At first an automatic migration and schema optimization, from relational
to document-oriented stores is considered. The optimization of the schema is
achieved through de-normalization, i.e. embedding certain relationships. In order
to determine the best direction of embedding among many-to-many relationships
as well as the rule-based decision process whether to embed or reference, further
data metrics must be considered, compared to [3]. Based on these metrics as well
as the cardinalities of concerning relationships, the dependency graph is generated
from the queries. This has the advantage that all previously analyzed queries can
be involved in a later optimization step concerning target system specific rules.

To provide a high degree of flexibility and extensibility, the strategy rules can
be described on two levels following the concept from [6]. On the one hand, those
that are applicable to certain data models, such as the document model and –
on the other hand rules – for specific systems like MongoDB.
Schema extraction and meta model: The step of extracting the physical
data structure from the source database to a platform independent meta model
is an important base for the migration architecture [4, 5, 8]. The description or



40 A. Conrad et al.

src
DB

Queries

target
DB

Meta Model
(Schema)

Dependency 
Graph

Data 
Metrics

Optimized 
Schema

Strategy 
Rules

QueriesQueries

Fig. 1. Simplified overview of the migration and optimization process.

development of a suitable meta model would, however, go beyond the scope of
this paper.

Data metrics and query analysis: An important point of the schema opti-
mization are the metrics that are collected in the form of a data analysis, referred
to the source database. The following metrics are used here:

– avgEntitySize: Average size of entities within an entity type.
– entityCount: Number of entities within an entity type.
– rCount{Min,Max,Avg}: Concerning the relationships between two entity

types, the minimal, maximal and average number of “connections”.

The goal of the analysis of queries is to generate the dependency graph to show
the dependencies between the entity types involved in the queries. Algorithm 1
illustrates the process for generating this graph. Note that currently no queries
can be optimized that have joins over more than two entity types while at the
same time more than one entity type is affected by filter operations.

Algorithm 1: Generation of the dependency graph.
Input : Set of queries Q; Data metrics M ; Schema S
0utput : Set of digraphs G; dependency graph DG

for qi in Q:
gquery ← convertToUndirectedGraph(qi) // entity types to vertices and

joins to edges
removeUnconnectedV ertices(gquery)
v ← None // start node
if only one vertex in gquery:

v ← vertex
elif only one vertex affected by filter operations:

v ← affected vertex
elif gquery has exactly two vertices:

if one-to-many:
v ← one-side vertex

elif many-to-many:
v ← higher redundance vertex // calculated by

GET REDUNDANCE SIZE()

if v 6= None:
align all edges in gquery to v
add qquery to G

merge all g ∈ G into DG

def GET REDUNDANCE SIZE(v1, v2):
return ((M.entityCount(v1) ∗M.rCountAvg(v2))−M.entityCount(v1)) ∗
M.avgEntitySize(v1)



Towards Automated Schema Optimization 41

Strategy rules: The structure of the physically target model is finally defined
by rules related to specific target systems. These make use of the data metrics,
user defined thresholds of those metrics, the cardinalities of the relationships,
and the dependency graph to describe the transformations of the schema for an
optimal performance. In the following the early approaches of transformation
rules for a migration to the document-oriented model of MongoDB are shown:
– R1 (doc): ∀ relationships r ∈ S : r /∈ DG→ REF
– R2 (doc): ∀ relationships r ∈ S : r ∈ DG→ EMBED
– R3 (mongo): ∀ edges ∈ DG : direction is one-into-x → EMBED
– R4 (mongo): ∀ edges ∈ DG : direction is many-into-x →

if mCond = true EMBED else → REF
with mCond : (rCountMax(ej) < rCountMaxthold) ∧
(rCountMax(ej) ∗ avgEntitySize(ej) < rCountMaxthold ∗ avgEntitySizethold)

Note that the database system specific rules R3 and R4 are preferred to the
general rule R2.

4 First Evaluations

First measurements were performed to prove an increase in performance with
the example of a migration from MariaDB to MongoDB. Therefore, a part of the
data model of the multi-model benchmark UniBench [9] and the three provided
data sets1 with different scale factors (SF1, SF10 and SF30 ) were used. As a
first example, optimizations have been made for following SQL query:

SELECT c.firstName, c.lastName, f.feedback FROM customer c, feedback f, product p
WHERE c.id = f.customerId AND f.asin = p.asin AND p.title = 'Katadyn TRK Drip Ceradyn...';

Fig. 2 shows the data model used as well as the “relationship structure” after
the automatic optimization process using Algorithm 1 and the strategy rules
regarding MongoDB (see Section 3). Fig. 3 shows that first approaches of a simple
optimization process have already led to performance improvements compared
to a non-optimized migration.

1 0..* 0..* 1 1 0..*

Feedback
id: string (PK)
asin: string (FK)
customerId: string (FK)
feedback: string

Customer
asin: string (PK)
firstName: string
lastName: string

Product
asin: string (PK)
title: string
price: double

Post
id: string (PK)
customerId: string (FK)
creationDate: string
content: string

Product
Feedback

Customer
Customer Post<REF> <REF>

Before
optimization

Embedding
structure after
optimizations
for MongoDB

Fig. 2. The data model used and the optimized MongoDB “relationship structure” after
the optimization process.

1 https://github.com/HY-UDBMS/UniBench/releases



42 A. Conrad et al.

a b
SF1

c a b
SF10

c a b
SF30

c
100

101

102

Ti
m

e 
(m

s, 
lo

g)
(a) MariaDB (source DB)
(b) MongoDB
(c) MongoDB (optimized)

Fig. 3. Query performance with and without optimizations on MongoDB compared to
the source database (Indices on all primary keys, foreign keys and Product titles).

5 Conclusion and Outlook

This paper presents a visionary approach to a flexible and extensible concept
towards schema and data migration between different heterogeneous database
systems, including automated optimization processes. We first describe strategy
rules using an example for a migration from relational to document-oriented
stores. In contrast to previous work like [3], the optimization process presented
in this paper considers one-into-many and many-into-many embeddings.

The first measurements taken show a performance improvement in comparison
to a non-optimized migration.

Our future work aims at the extension and in-depth evaluation of our au-
tomated schema optimization approach to all NoSQL data models, including
multi-model systems [7].

References

1. Abdelhedi, F., et al.: UMLtoNoSQL: Automatic transformation of conceptual
schema to NoSQL databases. In: AICCSA’17. IEEE (2017)

2. Daniel, G., Gómez, A., Cabot, J.: UMLto[no] SQL: Mapping conceptual schemas
to heterogeneous datastores. In: RCIS’19. IEEE (2019)

3. Jia, T., Zhao, X., Wang, Z., Gong, D., Ding, G.: Model Transformation and Data
Migration from Relational Database to MongoDB. In: Big Data’16. IEEE (2016)

4. Klettke, M., Störl, U., Scherzinger, S.: Schema Extraction and Structural Outlier
Detection for JSON-based NoSQL Data Stores. In: BTW’15. GI (2015)

5. Klettke, M., Störl, U., Shenavai, M., Scherzinger, S.: NoSQL schema evolution and
big data migration at scale. In: SCDM’16. IEEE (2016)

6. Liang, D., Lin, Y., Ding, G.: Mid-model Design Used in Model Transition and Data
Migration between Relational Databases and NoSQL Databases. In: SmartCity’15.
IEEE (2015)

7. Lu, J., Holubová, I.: Multi-model Databases: A New Journey to Handle the Variety
of Data. ACM Comput. Surv. (2019)

8. Mali, J., Atigui, F., Azough, A., Travers, N.: ModelDrivenGuide: An Approach for
Implementing NoSQL Schemas. In: DEXA’20. Springer (2020)

9. Zhang, C., Lu, J.: Holistic evaluation in multi-model databases benchmarking.
Distributed and Parallel Databases (2019)

10. Zhao, G., Lin, Q., Li, L., Li, Z.: Schema Conversion Model of SQL Database to
NoSQL. In: P2P, Parallel, Grid, Cloud and Internet Computing’14. IEEE (2014)


