
A block coordinate descent optimizer for classification problems exploiting
convexity

Ravi G. Patel, Nathaniel A. Trask, Mamikon A. Gulian, Eric C. Cyr
Center for Computing Research, Sandia National Laboratories

Albuquerque, New Mexico, 87123
{rgpatel, natrask, mgulian, eccyr}@sandia.gov

Abstract
Second-order optimizers hold intriguing potential for deep
learning, but suffer from increased cost and sensitivity to the
non-convexity of the loss surface as compared to gradient-
based approaches. We introduce a coordinate descent method
to train deep neural networks for classification tasks that ex-
ploits global convexity of the cross-entropy loss in the weights
of the linear layer. Our hybrid Newton/Gradient Descent
(NGD) method is consistent with the interpretation of hid-
den layers as providing an adaptive basis and the linear layer
as providing an optimal fit of the basis to data. By alternating
between a second-order method to find globally optimal pa-
rameters for the linear layer and gradient descent to train the
hidden layers, we ensure an optimal fit of the adaptive basis to
data throughout training. The size of the Hessian in the second-
order step scales only with the number weights in the linear
layer and not the depth and width of the hidden layers; fur-
thermore, the approach is applicable to arbitrary hidden layer
architecture. Previous work applying this adaptive basis per-
spective to regression problems demonstrated significant im-
provements in accuracy at reduced training cost, and this work
can be viewed as an extension of this approach to classification
problems. We first prove that the resulting Hessian matrix is
symmetric semi-definite, and that the Newton step realizes a
global minimizer. By studying classification of manufactured
two-dimensional point cloud data, we demonstrate both an
improvement in validation error and a striking qualitative dif-
ference in the basis functions encoded in the hidden layer when
trained using NGD. Application to image classification bench-
marks for both dense and convolutional architectures reveals
improved training accuracy, suggesting gains of second-order
methods over gradient descent. A Tensorflow implementation
of the algorithm is available at github.com/rgp62/.

A Newton/gradient coordinate descent
optimizer for classification

Denote by D = {(xi,yi)}Ndata
i=1 data/label pairs, and consider

the following class of deep learning architectures:

L(W, ξ,D) =∑
(xi,yi)∈D

LCE(·;yi) ◦ FSM ◦ FLL(·;W) ◦ FHL(xi; ξ), (1)

Copyright © 2021for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY
4.0)

where LCE,FSM,FLL and FHL denote a cross-entropy loss,
softmax layer, linear layer, and hidden layer, respectively,
and ◦ is composition. We denote linear layer weights by W,
and consider a general class of hidden layers (e.g. dense
networks, convolutional networks, etc.), denoting associated
weights and biases by the parameter ξ. The final three layers
are expressed as

LCE(x;y) = −
Nc∑
i=1

yi log xi,

F iSM(x) =
exp(xi)∑Nc

j=1 exp(xj)
,

F iLL(x) = Wx,

(2)

and map FHL : RNin → RNbasis ; FLL : RNbasis → RNclasses ;
FSM : RNclasses → RNclasses ; and LCE : RNclasses → R. Here,
Nbasis is the dimension of the output of the hidden layer; this
notation is explained in the next paragraph. The standard
classification problem is to solve

(W∗, ξ∗) = argmin
W,ξ

L(W, ξ,D). (3)

The recent work by Cyr et al. (2019) performed a similar
partition of weights into linear layer weights W and hidden
layer weights ξ for regression problems. Two important ob-
servations were made using this decomposition. First, the
output of the hidden layers can be treated as an adaptive basis
with the learned weights W corresponding to the coefficients
producing the prediction. Second, holding ξ fixed leads to
a linear least squares problem for the basis coefficients W
that can be solved for a global minimum. This work builds
on these two observations for classification problems. The
output of the hidden layers FHL defines a basis

Φα(·, ξ) : RNin → R for α = 1 . . . Nbasis (4)
where Φα(x, ξ) is row α of FHL(x, ξ). Thus the input to
the softmax classification layer are Nclasses functions, each
defined using the adaptive basis Φα and a single row of the
weight matrix W. The crux of this approach to classification
is the observation that for all ξ, the function

S(W,D) = L(W, ξ,D) (5)
is convex with respect to W, so the global minimizer

W∗ = argmin
W

S(W,D) (6)

github.com/rgp62/


may be obtained via Newton iteration with line search. In
the Algorithm section, we introduce a coordinate-descent
optimizer that alternates between a globally optimal solution
of (6) and a gradient descent step minimizing (3). Combining
this with the interpretation of the hidden layer as providing a
data-driven adaptive basis, this ensures that during training
the parameters evolve along a manifold providing optimal fit
of the adaptive basis to data (Cyr et al. 2019). We summa-
rize this perspective in the section on Relation to previous
works, and in the Results section we investigate how this
approach differs from stochastic gradient descent (GD), both
in accuracy and in the qualitative properties of the hidden
layer basis.

Convexity analysis and invertibility of the
Hessian

In what follows, we use basic properties of convex func-
tions (Boyd, Boyd, and Vandenberghe 2004) and the Cauchy-
Schwartz inequality (Folland 1999) to prove that S in (5) is
convex. Recall that convexity is preserved under affine trans-
formations. We first note that LLL(W;D, ξ) is linear. By (1),
it remains only to show that the composition LCE ◦ FSM is
convex. We write, for any data vector y,

LCE ◦ FSM(x;y)

= −
Nclasses∑
i=1

yi log

(
exp(xi)∑Nclasses

j=1 exp(xj)

)

= −
Nclasses∑
i=1

yixi +

Nclasses∑
i=1

yi log

Nclasses∑
j=1

exp (xj)



= −
Nclasses∑
i=1

yixi + log

Nclasses∑
j=1

exp (xj)

 .

The first term above is affine and thus con-
vex. We prove the convexity of the second term
f(x) := log

(∑Nclasses
i=1 exp (xi)

)
by writing

f(θx + (1− θ)y)

= log

(
Nclasses∑
i=1

(exp(xi))
θ

(exp(yi))
1−θ

)
.

Applying Cauchy-Schwartz with 1/p = θ and 1/q = 1− θ,

f(θx + (1− θ)y)

≤ log

(Nclasses∑
i=1

exp(xi)

)θ (Nclasses∑
i=1

exp(yi)

)1−θ
= θf(x) + (1− θ)f(y).

Thus f , and therefore LCE ◦ FSM and S, are convex. As a
consequence, the HessianH of S with respect to W is a sym-
metric positive semi-definite function, allowing application
of a convex optimizer in the following section to realize a
global minimum.

Data: batch B ⊂ D, ξold,Wold, α, ρ
Result: ξnew,Wnew
for j ∈ {1, ...,newton_steps} do

Compute gradient G = ∇WS(Wold,B) and
Hessian H = ∇W∇WS(Wold,B) ;

Solve Hs = −G;
W† ←Wold + s;
λ← 1;
while S(W†,B) > S(Wold,B) + αλG · s do

λ← λρ;
W† ←Wold + λs;

end
end
Wnew ←W†;
ξnew ← GD(ξold,B,Wnew);

Algorithm 1: Application of coordinate descent algo-
rithm for classification to a single batch B ⊂ D. For the
purposes of this work, we use ρ = 0.5 and α = 10−4.

Algorithm
Application of the traditional Newton method to the problem
(3) would require solution of a dense matrix problem of size
equal to the total number of parameters in the network. In
contrast, we alternate between applying Newton’s method
to solve only for W in (6) and a single step of a gradient-
based optimizer for the remaining parameters ξ; the Newton
step therefore scales with the number of weights (Nbasis ×
Nclasses) in the linear layer. Since S is convex, Newton’s
method with appropriate backtracking or trust region may
be expected to achieve a global minimizer. We pursue a
simple backtracking approach, taking the step direction and
size from standard Newton and repeatedly reducing the step
direction until the Armijo condition is satisfied, ensuring an
adequate reduction of the loss (Armijo 1966; Dennis Jr and
Schnabel 1996). For the gradient descent step we apply Adam
(Kingma and Ba 2014), although one may apply any gradient-
based optimizer; we denote such an update to the hidden
layers for fixed W by the function GD(ξ,B,W). To handle
large data sets, stochastic gradient descent (GD) updates
parameters using gradients computed over disjoint subsets
B ⊂ D (Bottou 2010). To expose the same parallelism, we
apply our coordinate descent update over the same batches by
solving (6) restricted to B. Note that this implies an optimal
choice of W over B only. We summarize the approach in
Alg. 1.

While H and G may be computed analytically from (2),
we used automatic differentiation for ease of implementation.
The system Hs = −G can be solved using either a dense or
an iterative method. Having proven convexity of S in (6), and
thus positive semi-definiteness of the Hessian, we may apply
a conjugate gradient method. We observed that solving to a
relatively tight residual resulted in overfitting during training,
while running a fixed number Ncg of iterations improved val-
idation accuracy. Thus, we treat Ncg as a hyperparameter in
our studies below. We also experimented with dense solvers;
due to rank deficiency we considered a pseudo-inverse of the



formH† = (H+εI)−1, where taking a finite ε > 0 provided
similar accuracy gains. We speculate that these approaches
may be implicitly regularizing the training. For brevity we
only present results using the iterative approach; the resulting
accuracy was comparable to the dense solver. In the follow-
ing section we typically use only a handful of Newton and
CG iterations, so the additional cost is relatively small.

We later provide convergence studies comparing our tech-
nique to GD using the Adam optimizer and identical batching.
We note that a lack of optimized software prevents a straight-
forward comparison of the performance of our approach vs.
standard GD; while optimized GPU implementations are al-
ready available for GD, it is an open question how to most
efficiently parallelize the current approach. For this reason we
compare performance in terms of iterations, deferring wall-
clock benchmarking to a future work when a fair comparison
is possible.

Relation to previous works
We seek an extension of Cyr et al. (2019). This work used
an adaptive basis perspective to motivate a block coordi-
nate descent approach utilizing a linear least squares solver.
The training strategy they develop can be found under the
name of variable projection, and was used to train small net-
works (McLoone et al. 1998; Pereyra, Scherer, and Wong
2006). In addition to the work in Cyr et al. (2019), the per-
spective of neural networks producing an adaptive basis has
been considered by several approximation theorists to study
the accuracy of deep networks (Yarotsky 2017; Opschoor,
Petersen, and Schwab 2019; Daubechies et al. 2019). The
combination of the adaptive basis perspective combined with
the block coordinate descent optimization demonstrated dra-
matic increases in accuracy and performance in Cyr et al.
(2019), but was limited to an `2 loss. None of the previous
works have considered the generalization of this approach
to training deep neural networks with a cross-entropy loss
typically used in classification as we develop here.

Bottou, Curtis, and Nocedal (2018) provides a mathemati-
cal summary on the breadth of work on numerical optimizers
used in machine learning. Several recent works have sought
different means to incorporate second-order optimizers to
accelerate training and avoid issues with selecting hyperpa-
rameters and training schedules (Osawa et al. 2019, 2020;
Botev, Ritter, and Barber 2017; Martens 2010). Some pursue
a quasi-Newton approach, defining approximate Hessians, or
apply factorization to reduce the effective bandwidth of the
Hessian (Botev, Ritter, and Barber 2017; Xu, Roosta, and Ma-
honey 2019). Our work pursues a (block) coordinate descent
strategy, partitioning degrees of freedom into sub-problems
amenable to more sophisticated optimization (Nesterov 2012;
Wright 2015; Blondel, Seki, and Uehara 2013). Many works
have successfully employed such schemes in ML contexts
(e.g. (Blondel, Seki, and Uehara 2013; Fu 1998; Shevade
and Keerthi 2003; Clarkson, Hazan, and Woodruff 2012)),
but they typically rely on stochastic partitioning of variables
rather than the partition of the weights of deep neural net-
works into hidden layer variables and their complement pur-
sued here. The strategy of extracting convex approximations
to nonlinear loss functions is classical (Bubeck 2014), and

some works have attempted to minimize general loss func-
tions by minimizing surrogate `2 problems (Barratt and Boyd
2020).

Results
We study the performance and properties of the NGD algo-
rithm as compared to the standard stochastic gradient descent
(GD) on several benchmark problems with various architec-
tures. We start by applying dense network architectures to
classification in the peaks problem. This allows us to plot
and compare the qualitative properties of the basis functions
Φα(·, ξ) encoded in the hidden layer (4) when trained with
the two methods. We then compare the performance of NGD
and GD for the standard image classification benchmarks
CIFAR-10, MNIST, and Fashion MNIST using both dense
and convolutional (ConvNet) architectures. Throughout this
section, we compare performance in terms of iterations of
Alg. 1 for NGD and iterations of stochastic gradient descent,
each of which achieves a single update of the parameters
(W, ξ) in the respective algorithm based on a batch B; this is
the number of epochs multiplied by the number of batches.

Peaks problem
The peaks benchmark is a synthetic dataset for understand-
ing the qualitative performance of classification algorithms
(Haber and Ruthotto 2017). Here, a scattered point cloud in
the two- dimensional unit square [0, 1]2 is partitioned into dis-
joint sets. The classification problem is to determine which of
those sets a given 2D point belongs to. The two-dimensional
nature allows visualization of how NGD and GD classify
data. In particular, plots of both how the nonlinear basis en-
coded by the hidden layer maps onto classification space
and how the linear layer combines the basis functions to
assign a probability map over the input space are readily
obtained. We train a depth 4 dense network of the form (1)
with Nin = 2, three hidden layers of width 12 contracting to
a final hidden layer of width Nbasis = 6, with tanh activation
and batch normalization, and Nclasses = 5 classes. As speci-
fied by Haber and Ruthotto (2017), 5000 training points are
sampled from [0, 1]2. The upper-left most image in Figure 2
shows the sampled data points with their observed classes.
For the peaks benchmark we use a single batch containing
all training points, i.e. B = D. The NGD algorithm uses
5 Newton iterations per training step with 3 CG iterations
approximating the linear solve. The learning rate for Adam
for both NGD and GD is 10−4.

Figure 1 demonstrates that for an identical architecture,
NGD provides a rapid increase in both training and valida-
tion accuracy over GD after a few iterations. For a large
number of iterations both approaches achieve comparable
training accuracy, although NGD generalizes better to the
validation set. The improvement in validation accuracy is
borne out in Figure 2, which compares representative in-
stances of training using GD and NGD. While a single in-
stance is shown, the character of these results is consistent
with other neural networks trained for the Peaks problem in
the same way. The top row illustrates the predicted classes
argmax [FSM(x)] ∈ {0, 1, 2, 3, 4} for x ∈ [0, 1]2 and the



0 2000 4000 6000 8000 10000
Iterations

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 A
cc

ur
ac

y

GD
NGD

0 2000 4000 6000 8000 10000
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

V
al

id
at

io
n 

A
cc

ur
ac

y

GD
NGD

Figure 1: The training (left) and validation (right) accuracy for the peaks problem for both gradient descent (GD) and the
Newton/gradient descent (NGD) algorithm. The solid lines represent the mean of 16 independent runs, and the shaded areas
represent the mean ± one standard deviation.

training data, demonstrating that the NGD-trained network
predicts the class i = 2 of lowest training point density more
accurately than the GD-trained network. The remaining sets
of images visualize both the classification probability map
[FSM(x)]i for i ∈ {0, 1, 2, 3, 4} (middle row) and the six
basis functions Φα(x, ξ) (bottom row) learned by each op-
timizer. The difference in the learned bases is striking. GD
learns a basis that is nearly discontinuous, in which the sup-
port of each basis function appears fit to the class boundaries.
On the other hand, NGD learns a far smoother basis that can
be combined to give sharper class boundary predictions. This
manifests in the resulting probability map assigned to each
class; linear combinations of the rougher GD basis results
in imprinting and assignment of probability far from the rel-
evant class. This serves as an explanation of the improved
validation accuracy of NGD as compared to GD despite sim-
ilar final training accuracy. The NGD algorithm separates
refinement of the basis from the determination of the coeffi-
cients. This provides an effective regulation of the final basis,
leading to improved generalization.

Image recognition benchmarks
We consider in this section a collection of image classifica-
tion benchmarks: MNIST (Deng 2012; Grother 1995), fash-
ion MNIST (Xiao, Rasul, and Vollgraf 2017), and CIFAR-
10 (Krizhevsky, Hinton et al. 2009). We focus primarily on
CIFAR-10 due to its increased difficulty; it is well-known
that one may obtain near-perfect accuracy in the MNIST
benchmark without sophisticated choice of architecture. For
all problems, we consider a simple dense network architec-
ture to highlight the role of the optimizer, and for CIFAR-10
we also utilize convolutional architectures (ConvNet). This
highlights that our approach applies to general hidden layer
architectures. Our objective is to demonstrate improvements
in accuracy due to optimization with all other aspects held
equal. For CIFAR-10, for example, the state-of-the-art re-
quires application of techniques such as data-augmentation
and complicated architectures to realize good accuracy; for
simplicity we do not consider such complications to allow

a simple comparison. The code for this study is provided at
github.com/rgp62/.

For all results reported in this section, we first optimize the
hyperparameters listed in Table 1 by maximizing the valida-
tion accuracy over the training run. We perform this search
using the Gaussian process optimization tool in the scikit-
optimize package with default options (Head et al. 2018).
This process is performed for both GD and NGD to allow
a fair comparison. The ranges for the search are shown in
Table 1 with the optimal hyperparameters for each dataset
examined in this study. For all problems we partition data
into training, validation and test sets to ensure hyperparam-
eter optimization is not overfitting. For MNIST and fashion
MNIST we consider a 50K/10K/10K partition, while for
CIFAR-10 we consider a 40K/10K/10K partition. All train-
ing is performed with a batch size of 1000 over 100 epochs.
For all results the test accuracy falls within the first standard
deviation error bars included in Figure 3.

Figure 3 shows the training and validation accuracies using
the optimal hyperparameters for a dense architecture with
two hidden layers of width 128 and 10 and ReLU activation
functions. We find for all datasets, NGD more quickly reaches
a maximum validation accuracy compared to GD, while both
optimizers achieve a similar final validation accuracy. For
the more difficult CIFAR-10 benchmark, NGD attains the
maximum validation accuracy of GD in roughly one-quarter
of the number of iterations. In Figure 3, we also use the
CIFAR-10 dataset to compare the dense architecture to the
following ConvNet architecture,

Convolution
8 channels, 3x3 kernel

→ Max Pooling
2x2 window

→ Convolution
16 channels, 3x3 kernel

→ Max Pooling
2x2 window

→ Convolution
16 channels, 3x3 kernel

→ Dense
width 64

→ Dense
width 10

where the convolution and dense layers use the ReLU activa-
tion function. Again, NGD attains the maximum validation
accuracy of GD in one-quarter the number of iterations, and
also leads to an improvement of 1.76% in final test accu-
racy. This illustrates that NGD accelerates training and can
improve accuracy for a variety of architectures.

github.com/rgp62/


Training Data GD Prediction NGD Prediction

0

1

2

3

4

GD: Classes NGD: Classes

GD: Basis Functions NGD: Basis Functions

Figure 2: Results for peaks benchmarks, with comparison between NGD and GD on an identical architecture. In this example,
GD obtained a training accuracy of 99.3% and validation accuracy of 96.2%, while NGD obtained a training accuracy of 99.6%
and validation accuracy of 98.0%. Top: Training data (left), classification by GD (center), and classification by NGD (right).
GD misclassifies large portions of the input space. Middle: The linear and softmax layers combine basis functions to assign
classification probabilities to each class. The sharp basis learned in GD leads to artifacts and attribution of probability far from
the sets (left) while diffuse basis in NGD provides a sharp characterization of class boundaries (right). Bottom: Adaptive basis
encoded by hidden layer, as learnt by GD (left) and NGD (right). For GD the basis is sharp, and individual basis functions
conform to classification boundaries, while NGD learns a more regular basis.

Hyperparameter range MNIST Fashion CIFAR-10 CIFAR-10
MNIST ConvNet

Learning rate [10−8, 10−2] 10−2.81 10−3.33 10−3.57 10−2.66

10−2.26 10−2.30 10−2.50 10−2.30

Adam decay [0.5, 1] 0.537 0.756 0.629 0.755
parameter 1 0.630 0.657 0.891 0.657
Adam decay [0.5, 1] 0.830 0.808 0.782 0.858
parameter 2 0.616 0.976 0.808 0.976

CG iterations [1, 10] 3 1 2 2
Newton iterations [1, 10] 6 5 4 7

Table 1: Hyperparameters varied in study (first column), ranges considered (second column), and optimal values found for
MNIST (third column), Fashion MNIST (fourth column), CIFAR-10 (fifth column), and CIFAR-10 with the ConvNet architecture
(last column). For the learning rate and the Adam decay parameters, the optimal values for NGD followed by GD are shown. The
optimal CG and Newton iterations are only applicable to NGD.



CIFAR-10 ConvNet

Figure 3: Training accuracy (top row) and validation accuracy (bottom row) for CIFAR-10, Fashion MNIST, and MNIST datasets
using the dense architecture, and CIFAR-10 using the ConvNet architecture. Mean and standard deviation over 10 training runs
are shown.

Conclusion

The NGD method, motivated by the adaptive basis interpreta-
tion of deep neural networks, is a block coordinate descent
method for classification problems. This method separates
the weights of the linear layer from the weights of the pre-
ceding nonlinear layers. NGD uses this decomposition to
exploit the convexity of the cross-entropy loss with respect
to the linear layer variables. It utilizes a Newton method to
approximate the global minimum for a given batch of data be-
fore performing a step of gradient descent for the remaining
variables. As such, it is a hybrid first/second order optimizer
which extracts significant performance from a second-order
substep that only scales with the number of weights in the
linear layer, making it an appealing and feasible application
of second-order methods for training very deep neural net-
works. Applying this optimizer to dense and convolutional
networks, we have demonstrated acceleration with respect
to the number of epochs in the validation loss for the peaks,
MNIST, Fashion MNIST, and CIFAR-10 benchmarks, with
improvements in accuracy for peaks benchmark and CIFAR-
10 benchmark using a convolutional network.

Examining the basis functions encoded in the hidden layer
of the network in the peaks benchmarks revealed significant
qualitative difference between NGD and stochastic gradient
descent in the exploration of parameter space corresponding
to the hidden layer variables. This, and the role of the tol-
erance in the Newton step as an implicit regularizer, merit
further study.

The difference in the regularity of the learned basis and
probability classes suggests that one may obtain a quali-
tatively different model by varying only the optimization
scheme used. We hypothesize that this more regular basis
may have desirable robustness properties which may effect
resulting model sensitivity. This could have applications to-
ward training networks to be more robust against adversarial
attacks.

Acknowledgements
Sandia National Laboratories is a multimission laboratory
managed and operated by National Technology and Engineer-
ing Solutions of Sandia, LLC, a wholly owned subsidiary
of Honeywell International, Inc., for the U.S. Department
of Energy’s National Nuclear Security Administration under
contract DE-NA0003525. This paper describes objective tech-
nical results and analysis. Any subjective views or opinions
that might be expressed in the paper do not necessarily repre-
sent the views of the U.S. Department of Energy or the United
States Government. SAND Number: SAND2021-3013 C.

The work of R. Patel, N. Trask, and M. Gulian are sup-
ported by the U.S. Department of Energy, Office of Advanced
Scientific Computing Research under the Collaboratory on
Mathematics and Physics-Informed Learning Machines for
Multiscale and Multiphysics Problems (PhILMs) project. E.
C. Cyr is supported by the Department of Energy early career
program. M. Gulian is supported by the John von Neumann
fellowship at Sandia National Laboratories.

References
Armijo, L. 1966. Minimization of functions having Lips-
chitz continuous first partial derivatives. Pacific Journal of
mathematics 16(1): 1–3.

Barratt, S. T.; and Boyd, S. P. 2020. Least squares auto-tuning.
Engineering Optimization 1–22.

Blondel, M.; Seki, K.; and Uehara, K. 2013. Block coor-
dinate descent algorithms for large-scale sparse multiclass
classification. Machine learning 93(1): 31–52.

Botev, A.; Ritter, H.; and Barber, D. 2017. Practical Gauss-
Newton optimisation for deep learning. In Proceedings of the
34th International Conference on Machine Learning-Volume
70, 557–565. JMLR. org.

Bottou, L. 2010. Large-scale machine learning with stochas-



tic gradient descent. In Proceedings of COMPSTAT’2010,
177–186. Springer.

Bottou, L.; Curtis, F. E.; and Nocedal, J. 2018. Optimization
methods for large-scale machine learning. Siam Review 60(2):
223–311.

Boyd, S.; Boyd, S. P.; and Vandenberghe, L. 2004. Convex
optimization. Cambridge university press.

Bubeck, S. 2014. Convex optimization: Algorithms and
complexity. arXiv preprint arXiv:1405.4980 .

Clarkson, K. L.; Hazan, E.; and Woodruff, D. P. 2012. Sub-
linear optimization for machine learning. Journal of the ACM
(JACM) 59(5): 1–49.

Cyr, E. C.; Gulian, M. A.; Patel, R. G.; Perego, M.; and
Trask, N. A. 2019. Robust training and initialization of deep
neural networks: An adaptive basis viewpoint. arXiv preprint
arXiv:1912.04862 .

Daubechies, I.; DeVore, R.; Foucart, S.; Hanin, B.; and
Petrova, G. 2019. Nonlinear approximation and (deep) ReLU
networks. arXiv preprint arXiv:1905.02199 .

Deng, L. 2012. The MNIST database of handwritten digit
images for machine learning research [best of the web]. IEEE
Signal Processing Magazine 29(6): 141–142.

Dennis Jr, J. E.; and Schnabel, R. B. 1996. Numerical meth-
ods for unconstrained optimization and nonlinear equations,
volume 16. Siam.

Folland, G. B. 1999. Real analysis: modern techniques and
their applications, volume 40. John Wiley & Sons.

Fu, W. J. 1998. Penalized regressions: the bridge versus the
lasso. Journal of computational and graphical statistics 7(3):
397–416.

Grother, P. J. 1995. NIST special database 19 handprinted
forms and characters database. National Institute of Stan-
dards and Technology .

Haber, E.; and Ruthotto, L. 2017. Stable architectures for
deep neural networks. Inverse Problems 34(1): 014004.

Head, T.; MechCoder; Louppe, G.; Shcherbatyi, I.; fcharras;
Vinícius, Z.; cmmalone; Schröder, C.; nel215; Campos, N.;
and et al. 2018. scikit-optimize/scikit-optimize: v0.5.1 - re-
release doi:10.5281/zenodo.1170575.

Kingma, D. P.; and Ba, J. 2014. Adam: A method for stochas-
tic optimization. arXiv preprint arXiv:1412.6980 .

Krizhevsky, A.; Hinton, G.; et al. 2009. Learning multiple
layers of features from tiny images .

Martens, J. 2010. Deep learning via Hessian-free optimiza-
tion. In ICML, volume 27, 735–742.

McLoone, S.; Brown, M. D.; Irwin, G.; and Lightbody, A.
1998. A hybrid linear/nonlinear training algorithm for feed-
forward neural networks. IEEE Transactions on Neural Net-
works 9(4): 669–684.

Nesterov, Y. 2012. Efficiency of coordinate descent meth-
ods on huge-scale optimization problems. SIAM Journal on
Optimization 22(2): 341–362.

Opschoor, J. A.; Petersen, P.; and Schwab, C. 2019. Deep
ReLU networks and high-order finite element methods. SAM,
ETH Zürich .
Osawa, K.; Tsuji, Y.; Ueno, Y.; Naruse, A.; Foo, C.-S.;
and Yokota, R. 2020. Scalable and Practical Natural
Gradient for Large-Scale Deep Learning. arXiv preprint
arXiv:2002.06015 .
Osawa, K.; Tsuji, Y.; Ueno, Y.; Naruse, A.; Yokota, R.; and
Matsuoka, S. 2019. Large-scale distributed second-order
optimization using Kronecker-factored approximate curva-
ture for deep convolutional neural networks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, 12359–12367.
Pereyra, V.; Scherer, G.; and Wong, F. 2006. Variable projec-
tions neural network training. Mathematics and Computers
in Simulation 73(1-4): 231–243.
Shevade, S. K.; and Keerthi, S. S. 2003. A simple and ef-
ficient algorithm for gene selection using sparse logistic re-
gression. Bioinformatics 19(17): 2246–2253.
Wright, S. J. 2015. Coordinate descent algorithms. Mathe-
matical Programming 151(1): 3–34.
Xiao, H.; Rasul, K.; and Vollgraf, R. 2017. Fashion-MNIST:
a novel image dataset for benchmarking machine learning
algorithms. arXiv preprint arXiv:1708.07747 .
Xu, P.; Roosta, F.; and Mahoney, M. W. 2019. Newton-type
methods for non-convex optimization under inexact hessian
information. Mathematical Programming 1–36.
Yarotsky, D. 2017. Error bounds for approximations with
deep ReLU networks. Neural Networks 94: 103–114.


	A Newton/gradient coordinate descent optimizer for classification
	Convexity analysis and invertibility of the Hessian
	Algorithm
	Relation to previous works
	Results
	Peaks problem
	Image recognition benchmarks

	Conclusion
	Acknowledgements

