
Physics-Informed Machine Learning Simulator for Wildfire Propagation

Luca Bottero1, Francesco Calisto1, Giovanni Graziano1, Valerio Pagliarino1,
Martina Scauda2, Sara Tiengo1, Simone Azeglio1

1Student, Department of Physics, University of Turin
2Student, Department of Mathematics, University of Turin

luca.bottero192, francesco.calisto, giovanni.graziano136, valerio.pagliarino, martina.scauda, sara.tiengo,
simone.azeglio@edu.unito.it

Abstract

The aim of this work is to evaluate the feasibility of re-
implementing some key parts of the widely used Weather Re-
search and Forecasting WRF-SFIRE simulator by replacing
its core differential equations numerical solvers with state-
of-the-art physics-informed machine learning techniques to
solve ODEs and PDEs, in order to transform it into a real-
time simulator for wildfire spread prediction. The main pro-
gramming language used is Julia, a compiled language which
offers better perfomance than interpreted ones, providing Just
in Time (JIT) compilation with different optimization levels
(Lubin and Dunning 2015). Moreover, Julia is particularly
well suited for numerical computation and for the solution of
complex physical models, both considering the syntax and the
presence of specific libraries such as DifferentialEquations.jl
and ModelingToolkit.jl.

INTRODUCTION
In recent years wildfires have been increasingly growing in
intensity and frequency, becoming a serious threat to the
health and socio-economic stability of various countries all
over the world. In particular, Australia was devastated by
the ”Black Summer”, the bushfire season between 2019 and
2020, and California just suffered from the most severe wild-
fire season recorded in its modern history. According to
the California Department of Forestry and Fire Protection
(Gauk-Roger et al. 2020): over 4 percent of its land was
burned by more than 8,600 fires (California 2020).

The interconnection between wildfires and climate
change is evident and has been studied by climate scien-
tists over the years (Turco et al. 2014; Romps et al. 2014).
On one hand, climate change favors the spread of wildfires.
One of the main factors in play is the rise in global tem-
peratures: the early beginning of spring leads to the rapid
melting of snowpacks, causing land to dry out earlier and
remain dry for longer. In addition, the hotter the air, the
more water it soaks up from plants and soils; the ”vapor
pressure deficit” is used to measure the difference between
how much water the air holds and how much it could hold:
the higher this coefficient, the more soil and vegetation will
dry out (Borunda 2020). Furthermore, bark beetles and other

Copyright ©2021 for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY
4.0)

insects that survive at high temperatures are responsible for
killing millions of trees, according to the Fourth National
Climate Assessment (Reidmiller et al. 2018), turning them
into kindling for wildfires. On the other hand, wildfires im-
pact climate change in two ways: firstly, they emit massive
amounts of carbon dioxide and other pollutants that can af-
fect regional and even global climate. Secondly, vast lands
laid bare by fires are soaked with rain, increasing the risk
for devastating landslides. On top of this, wildfires produce
serious health risks due to the emission of toxic chemical
compounds (Lieberman 2019).

In such a worrisome scenario, having the support of fast
and accurate wildfire spread simulators that can run iter-
atively in order to evaluate several different containment
strategies is of unprecedented importance.

Real-time is revolutionary
The current stable version of WRF is able to produce highly
accurate and validated predictions, but each simulation takes
several hours, which is acceptable for a single run. Never-
theless, if one wants to use the simulator for containment
strategies, time is a major obstacle. In order to use WRF for
that purpose, one should run the simulator iteratively with
different initial scenarios, therefore predicting the outcome
of various containment strategies and choosing the best one
according to the output of the program. The revolutionary
reach of such an approach is that it would limit human error
in situations where taking the right decision quickly is ex-
tremely difficult. To reach this goal it is essential to signif-
icantly increase the computational efficiency of fire spread
models, which can be done thanks to Machine Learning
techniques.

Physics-based or ML?
In the context of science, the well-known adage “a picture is
worth a thousand words” might well be “a model is worth a
thousand datasets.”, writes Christopher Rackauckas in his
trademark paper (Rackauckas et al. 2020). A single sen-
tence couldn’t describe the true power of Scientific Machine
Learning better. Machine Learning’s utmost strength, i.e.
universal flexibility to approximate any nonlinearity from
data, as stated by the Universal Approximation Theorem
(Kůrková 1992), is at the same time its main drawback: the

higher the complexity of the problem, the more data the al-
gorithm needs to train. While some fields can provide big
data, such as bioinformatics (Li et al. 2019), many scien-
tific disciplines are still limited in the use of Deep Learn-
ing (DL) by a lack of data. Another reason for the ineffec-
tiveness of Machine Learning (ML) might be the apparent
chaotic nature of a phenomenon. This is the case of wild-
fires and weather-related phenomena, which don’t depend
solely on the initial and boundary conditions, but evolve ac-
cording to complex internal dynamics that cannot be pre-
dicted from mere data. In order to make a neural network
learn such dynamics, one would need data with both high
spatial and temporal resolution, something not available in
this field (Cenci et al. 2018). For this reason, we think that
the growing field of Scientific Machine Learning is a good
compromise where climate and wildfire science could take
advantage. The idea is to embed physical information, gen-
erally in the form of partial differential equations, into the
ML model, thus constructing a Physics Informed Neural
Network (PINN). A former physics-informed approach con-
sists in training the model on data and constraining the so-
lution space to the physically admissible ones (e.g. for in-
compressible fluid dynamics, any flow solution that breaks
the mass conservation principle would not be considered by
the model (Raissi, Perdikaris, and Karniadakis 2019)). An-
other physics-informed architecture - the one considered in
our case - consists instead in training the neural network
directly on the physical model output data, employing the
feed-forward networks as an efficient approximator of tra-
jectories in the solution space. This approach leads to vari-
ous advantages, such as avoiding the so-called curse of di-
mensionality: as the dimensionality of an equation increases,
the computational costs of a numerical equation solver grow
exponentially, while PINNs can be proven to have a poly-
nomial bound (Grohs, Jentzen, and Salimova 2019). This
results in a significant speed up with respect to numerical
solvers when solving high dimensional problems. We de-
cided to use the second technique since our goal is to eval-
uate the feasibility of a high efficiency, ML-based, wildfire
spread simulator that uses the equations of the WRF-SFIRE
model.

METHODS
Firstly, we started by investigating the structure of the sys-
tems of partial differential equations (PDEs) that constitute
the core of the physical model of WRF-SFIRE. In this way
we detected the modules where replacing the current struc-
ture has the greatest impact (i.e. CPU overhead). As ex-
pected, numerical solvers of the model’s main differential
equations are responsible for more than 20% of the total
overhead. In particular, the level set equation (a PDE which
describes the spread of the fireline, according to the level set
method) and the Euler system (a system of 7 PDEs govern-
ing the atmosphere behavior), have significant impacts on
the CPU load during fire simulation. Therefore, in this pa-
per we will present a detailed application of the PINN
architecture to the level set equation and we will outline
some ideas about the implementation of Euler system.

Mathematical structure
Atmospheric governing equations The flux form con-
served prognostic variables are defined as

V = µdv = (U, V,W)

Ω = µdω

Θm = µdθm
Qm = µdqm

(1)

where µd = ∂ηpd is the vertical coordinate metric, v =
(u, v, w) are the covariant velocities in the horizontal and
vertical directions, ω = η̇ is the contravariant vertical ve-
locity, θm is the moist potential temperature and qm =
qv, qc, qr... denote the mixing ratios of moisture variables.
Accordingly, the flux-form Euler equations, representing the
core of the ARW, can be written as follows (Skamarock et al.
2019):
Conservation of momentum

∂tU + (∇ · V u) + µdα∂xp+ (ααd
)∂ηp∂xφ = FU

∂tV + (∇ · V v) + µdα∂yp+ (ααd
)∂ηp∂yφ = FV

∂tW + (∇ · V w)− g[(ααd
)∂ηp− µd] = Fw

(2)
Conservation of heat

∂tΘm + (∇ · V θm) = FΘm (3)

Conservation of mass

∂tµd + (∇ · V) = 0 (4)

Geopotential Material Derivative

∂tφ+ µ−1
d [(V · ∇φ)− gW] = 0 (5)

Scalar moisture equations

∂tQm + (∇ · V qm) = FQm
(6)

where

∇ · V a = ∂x(Ua) + ∂y(V a) + ∂η(Ωa)

and
V · ∇a = U∂xa+ V ∂ya+ Ω∂ηa,

for a generic variable a.
These equations are coupled with the diagnostic equation

for dry hydrostatic pressure

∂ηφ = −αdµd (7)

and the diagnostic relation for the full pressure (dry air com-
bined with water vapor)

p = p0

(Rdθm
p0αd

)γ
(8)

In Eq. (2) - (6), αd = 1
pd

is the inverse density of dry
air, α = αd(1 + qv + qc + qr + ...)−1, while Rd is the
gas constant for dry hair and γ =

cp
cv

= 1.4 is the ratio
of the heat capacities for dry air. The right hand side terms
FU , FV , FW , FΘm

contain the Coriolis and curvature terms
along with mixing terms and physical forcings.

Optimization problem

System of PDEs

Variables

x
0

x
1

x
n...

Target functions

u
0

u
1

u
n...

Initial conditions

Boundary conditions

u
0

.

.

.
u

n

Neural Network u (x
 i
, θ)

x
0

x
1

x
n

...

u
0

u
1

u
n

...

Discretization

θ
θ

T
R

A
IN

IN
G

 (L
O

S
S

 M
IN

IM
IZ

A
T

IO
N

)

Automatic differentiation

Substitution

Substitution

Substitution

Loss function

θ

PINN

∂2
x1

u
1
 + ∂2

x2
u

1
+ … - F

1
 = 0

...
∂2

x1
u

m
 + ∂2

x2
u

m
+ … - F

m
 = 0

∂2
x1

u (t = 0) … – A = 0 ...

∂2
x1

u (x
1
 = 0) … – A = 0 ...

Figure 1: Physics-informed neural network architecture for
solving PDEs

Level set equation In SFIRE (Mandel, Beezley, and
Kochanski 2011), the propagation of a fire burning in the
area Σ = Σ(t) in the horizontal (x, y) plane on which the
Earth is projected, is implemented by the level set method,
which evolves a function ψ = ψ(x, t), called the level set
function, such that the burning area at a time t is

Σ(t) = {x : ψ(x, t) ≤ 0}

and the fireline Γ(t), i.e. the boundary of the burning region
Σ(t), is the level set

Γ(t) = {x : ψ(x, t) = 0}. (9)

The evolution of the level set function is governed by the
partial differential equation

∂tψ + S||∇ψ|| = 0, (10)

called the level set equation. The model adopts a semi-
empirical approach, where the fire spread rate S is computed
from fuel properties, using the following modified Rother-
mel formula (Rothermel 1972):

S = R0(1 + φW + φS). (11)

Here, R0 represents the spread rate in the absence of wind,
whereas φW and φS are respectively the wind factor and
the slope factor. In WRF, this equation is solved numeri-
cally through discretization on the refined fire grid, adopting
Heun’s method, a second-order Runge Kutta method ((Man-
del, Beezley, and Kochanski 2011), p.596).

The new architecture
We have replaced the original numerical solvers with a pro-
foundly different approach, by taking advantage of the re-
cently developed Julia packages NeuralPDE.jl and DiffE-
qFlux.jl (Rackauckas et al. 2019), which support Physics In-
formed Neural Networks (PINNs) for automated PDE solv-
ing and Backwards Stochastic Differential Equation (BSDE)

methods to deal with parabolic PDEs. We employed the for-
mer method: PINNs are feed forward neural networks that
are trained to solve supervised learning tasks while respect-
ing any given law of physics described by general nonlinear
partial differential equations. The resulting neural networks
form a new class of universal function approximators that
naturally encode any underlying physical laws as prior in-
formation (Zubov 2020).

The underlying architecture can be summarized by the
following steps, with reference to Fig.1. Let’s put ourselves
in the most general case, where we want to find n target func-
tions [u1, ..., un] which satisfy a system of n PDEs. We first
construct a surrogate solution to u(x) as a neural network
û(x;θ) with n inputs and outputs and parameters θ; since a
neural network is mathematically a composite function, the
derivatives of û with respect to its input can be evaluated
by applying the chain rule for differentiating compositions
of functions using automatic differentiation (AD). Then we
need to define a loss function (we used the L2 norm) in
order to calculate the discrepancy between [u1, ..., un] and
the outputs of the neural network: this is where we force
our network to satisfy the physics imposed by the PDEs.
Indeed, the loss is defined by substituting our neural net-
work and its derivatives back into the equations we want to
solve (where we brought all the terms on the left-hand side
of the equal sign). The last step is to train the neural network
to find the best parameters by minimizing the loss function
with gradient-based optimizers, such as Adam or LBFGS. It
is straightforward that minimizing the loss function means
solving the equations, since we are approximating our target
functions with û better and better. The key point is that it
converts an integration problem into a mere minimiza-
tion task and it does not need data to train, because it is
trained on the PDEs themselves.

Implementation of the Level set
The level-set differential equation is, as previously ex-
plained, the mathematical core for calculating the spread of
the fire. The level set equation (that is a 2D surface embed-
ded in a 3D euclidean space) is initially set as the distance
of each point from the ignition’s line. Our approach requires
that every quantity is provided either as a constant or as a
function. Therefore we implemented the initial condition as
a cone with elliptical section, because we had to deal with
circular and linear ignition shapes (theoretically, any igni-
tion shape can be given as input). The cone is then shifted
down in order to make the contour level z = 0 resembling
the desired initial fire line (see the Appendix for a graph-
ical representation). Multiple ignition points are possible,
but further refinements are needed to make this possibility
fully functional. The algorithm contains all the necessary
expressions for the calculation of the fire spread rate, tak-
ing into account the values of the wind, the altimetric pro-
file, the fuel map etc. These variables have to be given in
input as differentiable vector fields of space and time. This
can be considered both a limit and an advantage, in fact on
one hand the discretized measurements must be fitted using
approximating functions, but on the other hand this method
is very computationally efficient. The possibility to give in

Optimization Algorithm ADAM (4800 itera-
tions)

Final Objective Value 6.39 e-8
Training Strategy QuadratureTraining()
Domains t ∈ [0, 10], x ∈

[0, 10], y ∈ [0, 10]

Training Mesh Size [dt, dx, dy] =
[0.17, 0.02, 0.02]

Initial Condition ψ(0, x, y) = (5(x −
0.3)2 + 0.15y2)

1
2 −

0.2

Neural Network dimensions 3 > 16 > 1

Training Time 647 s

Table 1: Technical Specs of the model - One Fire
Domain sizes are expressed in arbitrary units, since scaling
factors trasform input and output in pre-processing and post-
processing phases.

input finite matrix of values is presented in ”Future Work”
and depends on the fact that some key libraries we use are
still under development. You can see in the appendix an ex-
ample of the altimetric profile of the Isom Creek fire location
fitted using a 4th degree polynomial. The last step before the
training of the model is a proportional scaling of the values
to a domain with size in the order of 101 and the definition
of a discretization that is used only to run the training al-
gorithm. The outputs will be continuous functions. The dis-
cretization to this interval prevents some numerical instabil-
ities and spikes that are linked to the early stage of devel-
opment of some Julia libraries in use. The loss function is
made of two parts: the former minimizing the L2 error re-
ferred to the PDE definition and the latter minimizing the
L2 distance between the boundary conditions and the solu-
tion evaluated at the boundaries. At this point the training
algorithm is instantiated and launched. The minimization of
the loss functions is the process that actually solves the PDE
and constitutes the main load for the CPU. It can be eas-
ily parallelized and thus accelerated using GPUs. When the
training is completed the prediction undergoes a new pro-
portional scaling that gives back the original domain shape.

Ideal simulation: ”One fire”

For clarity, we renamed the Two Fires ideal simulation as
One Fire, after having removed one ignition point. It is a
simple case that demonstrates that our model works well on
the level set in case of fires that spread in flat areas where
the fuel doesn’t change. It also evolves according to the wind
direction, represented by a vector with two components. The
results at different time frames are represented in Fig.2. The
details about the architecture employed and the training are
listed in TABLE 1.

In order to provide a quantitative measure of the error be-
tween the outputs we decided to use the Hausdorff distance

WRF model PINNs model

Figure 2: Comparison between the WRF and PINNs outputs
at different time frames

 60		 120 180		 240	 300		 360 420
[min]

Figure 3: Hausdorff distance as a measure of the error - One
Fire.

(Knauer et al. 2009),

dH(X,Y) = max

{
sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)

}
,

normalized on the area of the curves that represent the fire-
line, as Fig.3 shows. The fact that the error decreases tells
us that as the area grows with time, the difference between
the two regions doesn’t increase, meaning that they evolve
in synchrony and with the same shape.

Simulation of a real wildfire: Isom Creek, Alaska,
6/5/2020
We have been able to simulate the Isom Creek fire (Incident-
Information-System June 2020) both with WRF and with
our implementation. Although it is not possible to perform
a precise quantitative comparison between WRF and the
real data, or between our result and the real data (due to a
lack of temporal precision of the available data at (Incident-
Information-System 2020), it is clear that the WRF output
simulates the wildfire accurately, at least visually. The re-
sult obtained with the PINN architecture is shown in Fig.4.
It is clear that our implementation hasn’t been able to cap-
ture the shape of the fireline with the same accuracy. This
will be pointed out below as a temporary limitation to our

Optimization Algorithm ADAM (3000 itera-
tions)

Final Objective Value 2.14 e-6
Training Strategy QuadratureTraining()
Domains t ∈ [0, 10], x ∈

[0, 10], y ∈ [0, 10]

Training Mesh Size [dt, dx, dy] =
[0.17, 0.02, 0.02]

Initial Condition ψ(0, x, y) = ((x −
5)2+0.7(y−5)2)

1
2−

0.2

Neural Network dimensions 3 > 16 > 1

Training Time 270 s

Table 2: Technical Specs of the model - The considerations
on measurement units made in TABLE 1 apply also here.

WRF model PINNs model

Figure 4: Comparison between the WRF and PINNs outputs
at different time frames

model: at the moment it is not possible to assign a differ-
ent fuel category to each mesh point (i.e. using a matrix to
build a function), so the fireline will always have a smooth
perimeter. The specifics of the architecture are outlined in
TABLE 2.

The error can be quantitatively measured with the Haus-
dorff distance as before, with the outcome plotted in Fig.5.

The considerations outlined in the previous paragraph re-
main valid here.

DISCUSSION
Implementation of the Euler system
On top of the results previously outlined, we have also
taken on the implementation of the most computationally
expensive part of the WRF physical model. Writing and
solving the 7-equation Euler system in Julia was really
challenging, in fact at the moment we are not aware of any
publications where these techniques are yet applied to PDE
systems of such complexity. The first problem was to figure
out which were the independent and dependent variables:
climate models adopt different conventions depending

 165	 202.5 	 240	 	 277.5 315	 352.5 	 390 427.5
[min]

Figure 5: Hausdorff distance as a measure of the error - Isom
Creek.

on the circumstances (e.g., they generally use pressure
coordinates instead of height coordinates). Then we had
to choose the most suitable training strategy, which turned
out to be QuadratureTraining. We have used parabolic
initial conditions for a first evaluation, but we want to
investigate them more in depth, since the study of boundary
conditions often deserves a paper on its own. Unfortunately,
the NeuralPDE library is still unable to treat this kind
of problem with stability, and often incurs errors due to
internal divergence calculations. Despite this, we have been
able to obtain convergence of the loss function, although
it is not enough to present valid results. We contacted the
authors of these libraries, that are still under development,
and we are looking forward to contributing.

The results exposed above show the feasibility of uti-
lizing the Julia NeuralPDE library to model a wildfire
related differential equation, i.e. the level set equation. As
disclosed above, we have also obtained some preliminary
but unstable results regarding the atmospheric coupling
of the model by attempting to solve the Flux-Form Euler
system equation. The outputs obtained with our approach
don’t strictly follow the jagged firelines of WRF: that’s
not an intrinsic limit of the architecture, which doesn’t
lack variance even if it is rather simple; the reason is, as
explained above, that the inputs (fuel and wind in particular)
we gave to the NN are not varied enough, due to limitations
of the library. In spite of this we have shown the ability of
our implementation to reproduce the desired time evolution
of the fireline as given by WRF.

Advantages of this architecture
The various advantages of this approach are:

• We can get a rough estimate of the speed up our model
provides - compared to numerical solvers - by noting that
the train time is of some hundreds of seconds, while the
WRF run time is more than an hour. This point has to
be further studied: on one hand, we used a simpler set of
inputs for the reasons we will explain later; on the other
hand we worked on one of the eight cores at our disposal.

• While numerical methods only solve on the initial domain

range, this architecture learns the neural network param-
eters that can be used to extend the predicted solution
outside of the training domains (with a decrease in ac-
curacy if the extrapolation is extended too much). This
can be used for ”forensic investigations”: it is possible to
reconstruct the ignition point and the evolution of the fire-
line from the final state of the wildfire.

• It is possible to interpolate the solution on a continuous
mesh.

• Modifying the equations of the model is as easy as chang-
ing a few lines of code, instead of re-implementing the
discretization and perturbative form of the equations, al-
lowing for faster investigation of new models.

• Given the possibility to use several CPU cores, the speed
could increase even more and this approach could be run
iteratively in order to simulate the outcome of different
containment scenarios and choose the best among them.

• This architecture doesn’t need neural networks with a
high number of degrees of freedom to be accurate, reduc-
ing the overall computational cost and increasing perfor-
mance. In quantitative terms, this means not exceeding
some tens of neurons on a single hidden layer.

• As a consequence, the model is more interpretable (it is
less similar to a complete black-box) and its users can run
the resulting simulator on standard PCs without needing
high performance machines.

• PINNs can be used to extrapolate physical laws once
they have been interpolated, hence providing a tool to re-
fine theoretical models. However, this requires a greater
amount of input data.

Limitations
Let’s now analyze the limits of our approach:

• At the moment, it cannot run on GPUs nor multiple CPUs
because the library we used is not fully developed yet. We
contacted the developers and they are working on it.

• The library doesn’t support the usage of matrices as func-
tions of their indices. This means it is not possible to use
a variable fuel map, fundamental in order to capture the
evolution of the fire with higher accuracy. We opened an
issue about this (Calisto 2020).

• Our approach suffers from numerical instability depend-
ing on the training strategy adopted and on the number of
neurons and layers.

• The model only works on relatively small domains and
is unstable for larger ones. Since the output has a small
codomain, we had to scale the quantities involved up and
introduce a scale factor on the fire spread rate in order
to make it compatible with the evolution of the output of
WRF.

• We still have to figure out how to predict the spread of a
wildfire with more than one ignition point.

• The architecture has not yet been extended to Convolu-
tional Neural Networks, Recurrent Neural Networks or
others.

90 d
•ProjectX 2020: EVALUATING THE FEASIBILITY OF A

PINNS-BASED ARCHITECTURE

40 d
•IMPLEMENTING INPUT OF DISCRETIZED DATA (ARRAYS) IN

NEURALPDE.JL

30 d
•FIXING STABILITY FOR LARGE DOMAINS

60 d
•FIXING BUGS IN THE CURRENT INTERFACE FOR GPUS
•UPGRADING MULTITHREADING

15 d
•ENABLING THE MACROS OF MODELINKTOOLKIT.JL FOR

DEFINITION OF NUMERICAL PROBLEM

200 d
•IMPLEMENTATION OF COUPLED WRF + SFIRE PHYSICS USING

THE NEW ARCHITECTURE

60 d
•TEST PHASE ‘A’

45 d •IMPLEMENTATION / INTERFACING FOR NON-GLOBAL MODULES

30 d
•NESTING AND SUBDOMAINS

40 d
•TEST PHASE 'B'

80 d
•WRAPPING AND EMBEDDING INSIDE THE WRF ARCHITECTURE

OR DESIGN OF A NEW FRONTEND

180 d
•TEST PHASE ‘C'

𝛼 •ALPHA RELEASE

Figure 6: Future prospect of our work

FUTURE WORK
This research is the first step towards a concrete implementa-
tion of PINNs-based wildfire simulation. We have designed
a chart (Fig.6) that shows the next improvements to be made
in order to achieve such a ambitious goal.

CONCLUSIONS
The study we carried out had the goal to investigate the ap-
plicability of the recently developed field of Scientific Ma-
chine Learning on climate, wildfires in particular, models.
We have outlined some results that tell us that many im-
provements are needed in order to transform this into a val-
idated product, but also show the big potential of our ap-
proach. We need to add further refinements to the imple-
mentation in order to carry out a precise time comparison
between the two approaches, but the results obtained thus
far show promising evidence. The encouraging outcome in-
spires us to continue our work by improving the architec-
tures and possibly employ them in different fields of re-
search. We hope that this line of research will be considered
as a starting point for a more effective cohesiveness between
Machine Learning and Physical Models in Climate Science,
and thus further explored by other researchers.

Acknowledgments
This work was presented at the ProjectX 2020 competi-
tion by UofT AI. We acknowledge University of Turin, Ma-
chine Learning Journal Club for supporting. We thank Pro-
fessor Enrico Ferrero (Università del Piemonte Orientale),

Professor Massimiliano Manfrin (University of Turin) and
the whole Atmospheric Physics and Metereology Group,
PhD Christopher Rackauckas (Massachussets Institute of
Technology), PhD Kirill Zubov (Saint-Petesburg State Uni-
versity), Vaibhav Dixit (Julia Computing), PhD Brian Wee
(Founder at Massive Connections), Dr. Rustem Arif Al-
bayrak (NASA), PhD David Marvin (CEO at Salo Sciences),
Professor Piero Fariselli (University of Turin) and Pietro
Monticone M.Sc. student (University of Turin), for their pre-
cious help and availability. We acknowledge the company
Mollificio Astigiano (Belveglio, Asti, Italy) for providing
the computational power needed for this research and the
HPC4AI center of the University of Turin for their support.

References
Borunda, A. 2020. The science connecting wildfires to
climate change. URL https://www.nationalgeographic.
com/science/2020/09/climate-change-increases-risk-fires-
western-us/.

California. 2020. Fire statistics, CALFIRE. URL https://
www.fire.ca.gov/incidents/2020/.

Calisto, F. 2020. Embedding arrays into NeuralPDE
differential equations. URL https://github.com/SciML/
NeuralPDE.jl/issues/177.

Cenci, L.; Pulvirenti, L.; Boni, G.; and Pierdicca, N. 2018.
Defining a Trade-off Between Spatial and Temporal Reso-
lution of a Geosynchronous SAR Mission for Soil Mois-
ture Monitoring. Remote Sensing 10: 1950. doi:10.3390/
rs10121950.

Gauk-Roger, T.; Chan, S.; Hanna, J.; and Almasy, S. 2020.
California wildfires: Fire chief says dozens of major blazes
have state in ’dire situation’. CNN URL https://edition.cnn.
com/2020/09/08/us/california-fires-tuesday/index.html.

Grohs, P.; Jentzen, A.; and Salimova, D. 2019. Deep neural
network approximations for Monte Carlo algorithms.

Incident-Information-System. 2020. Isom Creek Fire Pro-
gression Map. URL https://inciweb.nwcg.gov/incident/map/
6758/7/98095.

Incident-Information-System. June 2020. Isom Creek Fire
Information. URL https://inciweb.nwcg.gov/incident/6758.

Knauer, C.; Löffler, M.; Scherfenberg, M.; and Wolle, T.
2009. The directed Hausdorff distance between imprecise
point sets.

Kůrková, V. 1992. Kolmogorov’s theorem and multilayer
neural networks. Neural Networks 5. doi:10.1016/0893-
6080(92)90012-8.

Li, Y.; Huang, C.; Ding, L.; Li, Z.; Pan, Y.; and Gao, X.
2019. Deep learning in bioinformatics: Introduction, appli-
cation, and perspective in the big data era. Methods 166:
4–21.

Lieberman, B. 2019. Wildfires and climate change: What’s
the connection? URL https://yaleclimateconnections.
org/2019/07/wildfires-and-climate-change-whats-the-
connection.

Lubin, M.; and Dunning, I. 2015. Computing in Operations
Research Using Julia. INFORMS Journal on Computing
27(2): 238–248. doi:10.1287/ijoc.2014.0623.
Mandel, J.; Beezley, J. D.; and Kochanski, A. K. 2011. Cou-
pled atmosphere-wildland fire modeling with WRF 3.3 and
SFIRE 2011. Geoscientific Model Development 4(3): 591–
610. doi:10.5194/gmd-4-591-2011.
Rackauckas, C.; Innes, M.; Ma, Y.; Bettencourt, J.; White,
L.; and Dixit, V. 2019. DiffEqFlux.jl - A Julia Library for
Neural Differential Equations. CoRR abs/1902.02376.
Rackauckas, C.; Ma, Y.; Martensen, J.; Warner, C.; Zubov,
K.; Supekar, R.; Skinner, D.; and Ramadhan, A. 2020. Uni-
versal differential equations for scientific machine learning.
arXiv preprint: 2001.04385 .
Raissi, M.; Perdikaris, P.; and Karniadakis, G. E. 2019.
Physics-informed neural networks: A deep learning frame-
work for solving forward and inverse problems involving
nonlinear partial differential equations. Journal of Compu-
tational Physics 378: 686–707.
Reidmiller, D. R.; Avery, C. W.; Easterling, D. R.; Kunkel,
K. E.; Lewis, K. L.; Maycock, T. K.; and Stewart, B. C.
2018. Impacts, Risks, and Adaptation in the United States:
The Fourth National Climate Assessment, Volume II. Tech-
nical report. doi:10.7930/nca4.2018.
Romps, D. M.; Seeley, J. T.; Vollaro, D.; and Molinari, J.
2014. Projected increase in lightning strikes in the United
States due to global warming. Science 346(6211): 851–854.
ISSN 0036-8075. doi:10.1126/science.1259100. URL https:
//science.sciencemag.org/content/346/6211/851.
Rothermel, R. C. 1972. A Mathematical Model for Predict-
ing Fire Spread in Wildland Fires. USDA Forest Service
Research Paper INT-115 URL http://www.treesearch.fs.fed.
us/pubs/32533.
Skamarock, W. C.; Klemp, J. B.; Dudhia, J.; Gill, D. O.;
Liu, Z.; Berner, J.; Wang, W.; Powers, J. G.; Duda, M. G.;
Barker, D. M.; and Huang, X.-Y. 2019. A Description of the
Advanced Research WRF Model Version 4. doi:10.5065/
1DFH-6P97.
Turco, M.; Llasat, M.-C.; von Hardenberg, J.; and Proven-
zale, A. 2014. Climate change impacts on wildfires in
a Mediterranean environment. Climatic Change 125(3-4):
369–380. doi:10.1007/s10584-014-1183-3.
Zubov, K. 2020. Physics-informed neural networks
(PINNs) solver on Julia. GSoC 2020. First evaluation. URL
https://nextjournal.com/kirill zubov/physics-informed-
neural-networks-pinns-solvers-on-julia-gsoc-2020-first-
evaluations.

APPENDIX
All the code produced is published on a public repository
available at this link:
https://github.com/MachineLearningJournalClub/MLJC-
UniTo-ProjectX-2020-public. The output of the WRF
simulations can be found in the following Google Drive
folder: https://tinyurl.com/mljc-unito-px2020.

Figure 7: Boundary condition comparison and training - Isom Creek

Interpolation of the altimetric profile of the Isom Creek fire location
using polynomial 2D curve fitting - [meters]

Figure 8: Altimetric profile interpolation of the Isom Creek
fire region.

