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Abstract

We consider the training process of a neural network as a dy-
namical system acting on the high-dimensional weight space. 
Each epoch is an application of the map induced by the opti-
mization algorithm and the loss function. Using this induced 
map, we can apply observables on the weight space and mea-
sure their evolution. The evolution of the observables are 
given by the Koopman operator associated with the induced 
dynamical system. We use the spectrum and modes of the 
Koopman operator to analyze the convergence versus non-
convergence of the training process. Our methods can help to 
determine if (1) a bad initialization of the network weights 
was used—in particular, how the existence of eigenvalues 
clustering around 1 determines when to terminate the learning 
process—allowing a restart before training too long and (2) to 
speed up the training time. Additionally, we show that incor-
porating structured loss functions based on negative Sobolev 
norms can allow for the reconstruction of a multi-scale signal 
polluted by very large amounts of noise. Using these Sobolev 
based loss functions improves robustness and interpretability.

Introduction
The training of neural networks is a topic of much interest 

due to their wide spread use in a variety of application do-
mains, from image recognition and classification to solving 
ordinary and partial differential equations. Unfortunately, 
the dimensionality of the problem often prevents rigorous 
analysis. Viewing a neural network training as dynamical 
system (Chang et al. 2017; Dietrich, Thiem, and Kevrekidis 
2020; Chang et al. 2019) provides a framework for a mathe-
matical approach to training.

Our objective is to introduce the wider community to var-
ious results in applying methods from dynamical systems, in 
particular the operator-theoretic approach, to extract insight 
into both the choosing of the neural network’s architecture, 
such as its depth, for a given problem and insight into the 
networks training process.

We consider the training process as a dynamical system 
acting on the high-dimensional weight space. Each epoch is
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an application of the map induced by the optimization al-
gorithm and the loss function. Using this induced map, we
can apply observables on the weight space and measure their
evolution. The evolution of the observables are given by a
linear operator, the Koopman operator, associated with the
induced dynamical system. We use the spectrum and modes
of the Koopman operator to obtain insight into the training
process. This viewpoint can help to determine if we have a
bad initialization of the network weights, allowing a restart
before training too long. Additionally, we incorporate struc-
tured loss functions based on negative Sobolev norms into
our network. Using these new types of loss functions (1) can
improve interpretability of the networks and (2) can allow
for significant noise rejection when training on noisy multi-
scale signals.

The rest of the paper is structured as follows. In the next
section, we mathematically formulate the training of a neu-
ral network as a dynamical system and introduce the Koop-
man operator viewpoint of analyzing dynamical systems.
The following section, investigates the convergence of the
training process through the lens of the Koopman operator’s
spectrum. In the final section before the conclusions, we ap-
ply loss functions inspired by negative Sobolev norms and
show how they can be used for significant noise rejection
when trying to reconstruct a signal.

Neural network training as a dynamical
system.

Let n(x;w), n : X×Rn → Rd, be a neural network, where
x ∈ X ⊂ Rm is the input feature vector, w ∈ Rn is the vec-
tor of network weights (parameters), and the output of the
network is a d-dimensional real vector. Let Ltr(w) be the
loss function of the network on the training set as a function
of the network parameter weights. The optimization prob-
lem that is to be solved is

w∗ = arg minLtr(w). (1)

The loss function Ltr and the chosen optimization algo-
rithm (e.g. stochastic gradient descent) induce a nonlinear,
discrete time map on the network weights that updates the
weights at each epoch:

T : Rn → Rn, wt+1 = T (wt), (2)



where wt are the network weights at the beginning of epoch
t ∈ N0; w0 represents the initialized network weights prior
to training. This induced map T is a discrete dynamical sys-
tem having the weight space as its state space.

Trying to directly analyze the map T can be quite diffi-
cult as it is implemented as a black box in whatever training
framework one is using. Instead one can track the evolution
of observables to gain insight into the dynamical system by
studying the spectral properties of an induced linear opera-
tor that drives the evolution of the observable. Let F be a
function space that is closed under composition with T ; that
is, if f ∈ F , then f ◦ T ∈ F . An operator U : F → F
can be defined via this composition Uf = f ◦ T . This oper-
ator, called the Koopman or composition operator, is linear
(Mezić 2005), albeit infinite-dimensional, even if T is non-
linear. Even though it is linear, it can still capture the full
nonlinear behavior of T . In many cases, the Koopman op-
erator has a spectral decomposition (Mezić 2005; Budišić,
Mohr, and Mezić 2012; Mohr and Mezić 2014; Mezić 2019)

Uf =
∞∑
j=1

cjλjφj +

∫
C
zdE(z)f, (3)

where cj ∈ C is a coefficient, λj ∈ C is an eigenvalue, φj ∈
F is an eigenfunction ofU , and dE(z) is a projection-valued
measure (PVM). The set of eigenvalues form the point spec-
trum. The PVM is associated with the continuous spectrum
of U ; it takes sets in the complex plane and associates pro-
jection operators on F with them. We can also consider the
case of vector-valued observables f = (f1, . . . , fm), where
fi ∈ F . In this case, there is an analogous decomposition
to (3), whose only difference is that the scalar-valued co-
efficients cj become vector-valued coefficients mj ∈ Cm.
These vector-valued coefficients are called Koopman modes,
originally called shape modes (Mezić 2005). Data-driven
algorithms, like the family of Dynamic Mode Decomposi-
tion algorithms, e.g. (Schmid and Sesterhenn 2008; Row-
ley et al. 2009; Jovanović, Schmid, and Nichols 2012, 2014;
Hemati, Williams, and Rowley 2014; Williams, Kevrekidis,
and Rowley 2015; Drmač, Mezić, and Mohr 2018; Drmač,
Mezić, and Mohr 2019), are used to approximate the modes
and eigenvalues using a trajectory from a single initial condi-
tion. Thus we do not need explicit access to U to analyze the
dynamical system. We use the DMD_RRR algorithm from
(Drmač, Mezić, and Mohr 2018) in the following work.

Insights into neural network training
convergence via the Koopman spectrum.

The main idea here is that by monitoring the spectrum of
the Koopman operator during the training process will give
us a method to determine when the training process should
be terminated so that good performance is given on the test-
ing set without the network memorizing the set. Having this
indicator allow the network to generalize better.

Given the trajectory of all network weights {wt}, where
t ∈ N is the training epoch, we use two different observ-
ables, a delay-embedded version of the (cross-entropy) loss
function, Ltr(wt) and the full-state observable which re-
turns the network weights wt at each training epoch t. In-

specting the Koopman spectrum of either of these observ-
ables tells us how quickly the system is learning and when a
fixed point is appearing. The Koopman mode decomposition
(3) can be written as

Ltr(wt) =
∑
k

mkλ
t
kφk + et, (4)

where mk is the Koopman mode normalized to norm 1, λk
is the associated eigenvalue, φk is the reconstruction coef-
ficient and et is the error term at epoch t. If all the eigen-
values not equal to 1 satisfy |λk| < 1, then the training
is stable (Mauroy and Mezić 2016). In this case, the slow-
est eigenvalue determines the rate of convergence. The im-
portance of a mode is determined by the absolute value of
the reconstruction coefficient, with higher values giving the
mode more importance. The further inside the unit circle the
eigenvalues corresponding to the important modes are, the
faster the training.

The standard MNIST data set was used for testing the
methods. The network tested was a convolutional network
with two convolutional layers with 16 and 32 kernels, each
followed by 2 × 2 max-pooling. Each kernel is 5 × 5.
Convolutional layers are followed by fully-connected layer
with 100 neurons, which is then followed by another fully-
connected layer with 10 neurons, after which follows soft-
max classification. The architecture is shown on Figure 1.
A cross-entropy loss function was used with a learning rate
of η = 1e-3. Different weight initialization (He or Xavier)
were tested as well. After each epoch, cross-entropy loss on
train and test sets were recorded along with the network
weights. All networks were trained for 1000 epochs, and
KMD analysis was applied to the snapshots for 3 different
epoch ranges specified in the figures.

Figure 1: Neural network architecture.

Figure 2 shows the results for the Xavier initialization
scheme. The top left figure shows the cross entropy loss of
the network evaluated on the training set at each epoch. The
top right figure shows the cross entropy on the test set. The
second row shows the KMD spectrum using the cross en-
tropy loss function on the training set as the observable. The
spectrum is computed using the first 40 (left), 100 (middle),
and 500 (rights) snapshots of the observable. The third row
shows the spectrum computed using the weight vectors as
the vector-valued observable. The spectrum is computed us-
ing the first 50 (left), 100 (middle), and 500 (right) snap-
shots of the observable. The spectrum was computed using
DMD_RRR. Eigenvalues inside the unit circle correspond
to decaying modes, whereas eigenvalues outside the unit cir-
cle correspond to growing modes. Eigenvalues very close to
the unit circle correspond to modes that change slower than
modes associated with eigenvalues closer to zero.



Each of the initialization schemes trains very fast, with a
large drop in the training error after a few epochs. The HE
and Xavier initialization schemes seem to over-memorize
the training set which we see as an increase in the cross en-
tropy loss on the test set. However, the final errors on the test
set are still lower than the final error for the random normal
scheme on the test set.

Since for all initialization schemes, the training process is
extremely fast, with a large drop in training set cross entropy,
the eigenvalues clustered close to 0 in the second row of the
figures (training set cross entropy observable) makes sense.
As more snapshots are taken to be used to compute the spec-
trum, there seems to some important eigenvalues showing up
close to 1, which would indicate that the training is nearing
a fixed point for the training process. This trend seems clear
in the final row of the plots which used the weights vector as
the observable for the KMD computation. After 50 epochs,
there are important eigenvalues clustered close to 0 and, as
more snapshots are taken, important eigenvalues appear and
cluster around 1.

Noise rejections using negative Sobolev norms
in the loss function.

Here, we investigate the performance of different loss func-
tions compared to the standard L2 loss when learning a mul-
tiscale signal. The loss functions that we use are inspired by
the functional form of negative-index Sobolev norms. For
functions f, h : Td → R, where Td is the d-dimensional
torus (R/Z)d, the Sobolev norm of order p = 2 and index
s < 0 of their difference can be computed via

‖f − h‖2Hs =
∑
k∈Zd

|f̂(k)− ĥ(k)|2

(1 + (2π‖k‖2)2)−s
, (5)

where f̂ and ĥ are the Fourier transforms of f and h, respec-
tively. As the norm ‖k‖2 of the wave vector increases, the
contribution of the term |f̂(k) − ĥ(k)|2 to the loss dimin-
ishes; discrepancies between f and h at small scales are not
as important as discrepancies at larger/coarser scales.

We use the Sobolev loss functions to fully connected neu-
ral networks with L layers (` = 0, . . . , L− 1) in two ways.
Let h : RD → RM be the function to be learned and
s : R → R be a monotonically increasing function that de-
fines a scale. Usually we will use the linear function s(`) = `
or the exponential function s(`) = 2`.

Sobolev loss 1. For each hidden layer `, we define an aux-
iliary output for that layer denoted by f` = C`z`, where
z` ∈ RN` are the activation functions for layer ` and C` ∈
RM×N` is a matrix. We add a loss function for each auxil-
iary output having the form

L`(h, f`) =

M∑
m=1

∑
‖k‖1=s(`)

∣∣∣ĥ(m)(k)− f̂
(m)
` (k)

∣∣∣2
(1 + (2π‖k‖2)2)1/2

, (6)

for ` ∈ {1, . . . , L} and where ĥ(m) is the Fourier transform
of the m-th component function of h = (h(1), . . . , h(M)).

By applying a loss of different scales, s(`), at each layer,
we are enforcing a more interpretable network. Note that for
` = 0, the denominator of (6) is 1 and by Parseval’s identity,
the expression is equivalent to the L2 norm.

Sobolev loss 2. Here, instead of applying pieces of (5) at
each layer, we apply it only at the output of the final layer,
fL−1 = CL−1z`:

L(h, fL−1) =

M∑
m=1

L−1∑
`=0

∑
‖k‖1=s(`)

|ĥ(m)(k)− f̂
(m)
L−1(k)|2

(1 + (2π‖k‖2)2)1/2
.

(7)
We apply the two methods on the multiscale signal

h(x) = x+sin(2πx4) (thereforeM=1) on the interval [0, 2].
At each point x, we add noise η(x) to the signal that is dis-
tributed according to

η ∼ ε
(

max
x∈[0,2]

h(x)− min
x∈[0,2]

h(x)

)
N(0, 1). (8)

The noisy signal ĥ = h+ η is used as the data set. Figure 3
shows the performance of the different loss functions using
the noisy signal to train. The left column contains the re-
sult for pure L2 loss function, the middle column is Sobolev
loss 1, and the third column is Sobolev loss 2. Each row,
top to bottom, corresponds to noise levels ε = 0.05, 0.5,
and 1.0, respectively. The network had 9 hidden layers each
containing 20 neurons and a single node output layer. Lay-
ers were fully-connected. As can be seen the pure L2 loss
function reconstructs the clean signal h poorly at every noise
level, basically reconstructing the average of the signal. Of
the two Sobolev loss functions, the first performs the best at
reconstructing the clean signal, even in the presence of high
amounts of noise. This is likely due to imposing a specific
scale for each layer, rather than trying to force the network
to try to disentangle the scales at the final layer. For each
of the Sobolev loss, the linear scale function, s(`) = ` was
used.

Conclusions
In this paper, we have presented results on using the Koop-
man operator to analyze aspects of neural networks. In order
to do this, we consider the training process as a dynamical
system on the weights. In particular, we used the spectrum
of the Koopman operator to analyze the training process and
determine when to terminate training and restart. We have
also introduced structured loss functions based on negative
Sobolev norms which allow for significant noise rejection
when trained on a noisy multi-scale signal.
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Drmač, Z.; Mezić, I.; and Mohr, R. 2018. Data Driven Modal
Decompositions: Analysis and Enhancements. SIAM Journal
on Scientific Computing 40(4): A2253–A2285.
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Mezić, I. 2019. Spectrum of the Koopman operator, spec-
tral expansions in functional spaces, and state-space geome-
try. Journal of Nonlinear Science 1–55.
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