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Abstract

The data-driven discrete exterior calculus (DDEC) structure
provides a novel machine learning architecture for discover-
ing structure-preserving models which govern data, allowing
for example machine learning of reduced order models for
complex continuum scale physical systems. In this work, we
present a Greedy Fiedler Spectral (GFS) partitioning method
to obtain a chain complex structure to support DDEC mod-
els, incorporating synthetic data obtained from high-fidelity
solutions to partial differential equations. We provide justi-
fication for the effectiveness of the resulting chain complex
and demonstrate its DDEC model trained for Darcy flow on a
heterogeneous domain.

Data-driven Discrete Exterior Calculus
A discrete exterior calculus structure (Desbrun et al. 2005)
provides a notion of differentiation beyond the differentiation
of scalar-valued functions. The familiar div, grad, and curl
operators from vector calculus in R3 satisfy the identities
div ◦ curl = 0 and curl ◦ grad = 0, and also appear in the
integral Green’s, Stokes’, and divergence theorems. Although
back-propagation provides the differentiation of tensors by
regarding the components as scalar functions, preservation of
these identities are critical to handling a number of physical
systems, particularly electromagnetic phenomena.

In the context of finite element approximation, compati-
ble spatial discretizations construct approximations faithful
to these underlying structures, and form the bedrock of dis-
cretization of multiphysics problems, particularly for second-
order elliptic systems (Arnold et al. 2007; Bochev and Hyman
2006; Arnold, Falk, and Winther 2006). We consider in this
work the design of machine learning architectures which
preserve a similar structure.

Stokes’ theorem plays a central role for expressing conser-
vation laws on a Riemannian manifold: given a differential
form ω on a manifold M , we have∫

Ω

dω =

∫
∂Ω

ω (1)

The data-driven exterior calculus (DDEC) (introduced in
(Trask, Huang, and Hu 2020)) is a parameterization of the

Copyright ©2021 for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY
4.0)

graph exterior calculus which allows the application of pop-
ular back propagation techniques from machine learning to
learn coordinate-free vector calculus operators from data.
The resulting operators are compatible with a discrete ver-
sion of Stokes’ theorem, allowing the learning of physical
conservation laws which naturally preserve conservation prin-
ciples, provide solvability guarantees for second-order elliptic
operators, and naturally handle diffusion problems. A key
ingredient for this calculus is a chain complex, which infor-
mally corresponds to a graph structure generalizing meshes
typically used to partition space. We propose a greedy Fiedler
spectral (GFS) partitioning scheme which extracts this graph
structure from eigenspectrum information of a given data set.

A motivating example: resistor networks

Before introducing DDEC in the abstract, we provide a fa-
miliar example to motivate both the discrete exterior calculus
and the chain complex structure on which it is defined. The
discrete exterior calculus is best exemplified by Kirchhoff’s
current law and Ohm’s law from circuit theory (see (Weyl
1923), (Smale 1972), and (Bamberg and Sternberg 1991)).

As a concrete example, consider an electrical circuit on
the graph in Figure 1. Suppose nodal electric potentials are

[0]
[1]

[2]

[3]

Figure 1: A simple circuit on a graph with 4 nodes.

known: the voltages at nodes [0], [1], [2], and [3] are 10V , 5V ,
3V , and 2V , respectively; we represent this fact by the vector
V = [10, 5, 3, 2]T whose entry i corresponds to the voltage
V ([i]) at node [i]. Further, suppose that the oriented current
on the edge [0, 1] is 1A, on edge [1, 2] is 0.7A, and on edge
[1, 3] is 0.3A; we order the edge labels lexicographically and
so represent these currents as I = [1.0, 0.7, 0.3].



The discrete exterior calculus boundary operator ∂ is

∂ =

[−1 +1
−1 +1
−1 +1

]
(2)

and the coboundary operator is defined as δ := ∂T ; explicitly,
it maps the edge [i, j] to the linear combination of nodes
+[j]− [i] accounting for edge orientation.

In this language of discrete exterior calculus, Kirchhoff’s
current law states that δI vanishes on interior nodes. Indeed,

δI =

−1
+1 −1 −1

+1
+1

[1.0
0.7
0.3

]
=

−1.0
0.0
0.7
0.3

 (3)

and the second entry vanishes since it is the discrete graph di-
vergence of I at node [1], i.e., it is the sum of all edge currents
leaving node [1]. Ohm’s law is realized by the equation

∂V = RI (4)

for which R represents the resistances on the edges. R is a
matrix with diagonal entries R[0,1], R[1,2], and R[1,3] corre-
sponding to the resistances at the respective edges.

However, Ohm’s Law is more accurately expressed as

R−1∂V = I (5)

and the operator δ∗ := R−1∂ is a metric-dependent gradient
(as opposed to the purely combinatorial ∂). The discrete
Stokes’ theorem states∫

[0,1]

δ∗V =

∫
∂[0,1]

V (6)

That this holds is the expression of Ohm’s law. For example,
on the edge [0, 1], we see that the left-hand side∫

[0,1]

δ∗V =

∫
[0,1]

R−1I

= R[0,1]I([0, 1])

is equal to the right-hand side∫
∂0[0,1]

V =

∫
[1]−[0]

V

= V ([1])− V ([0])

since V ([1])− V ([0]) = R[0,1]I([0, 1]).
While simple, this resistor network demonstrates how con-

servation statements can be encoded onto a graph structure
which exposes trainable metric information (the resistances)
to parameterize diffusion processes. In this example, the
circuit network is a 1-dimensional chain complex which sup-
ports conservation (encoded in Kirchoff’s law) and diffusion
(encoded in Ohm’s law) expressed using graph divergence
and gradient operators. More generally, the DDEC expresses
a class of such parameterized vector calculus models, pro-
vided a chain complex can be obtained.

The chain complex provided by the GFS partitioning pro-
posed in this paper provides in this example a circuit topology
for a given data set.

The data-driven exterior calculus
We gather the requisite definitions from DDEC to define
the chain complex and how it’s used, referring the inter-
ested reader to (Trask, Huang, and Hu 2020) for details. Let
N = {ni}NN

i=1 denote a set of nodes. We embed N in Rd
by associating with each node a unique position pi ⊂ Rd,
i ∈ 1, . . . , NN . A k-clique is an ordered tuple of k nodes; it
is assigned an orientation equal the sign of the permutation
which puts these k nodes in increasing order. We associate
each k-clique with the (k−1)-simplex spanned by its k node
positions. A k-chain ck is a formal R-linear combination of
(k + 1)-cliques, and we denote the space of k-chains by Ck.
The boundary operator ∂k : Ck+1 → Ck is defined via

∂k[n1, ..., nk] =

k∑
i

(−1)i−1[n1, ..., n̂i, . . . , nk], (7)

where ·̂ denotes an omitted entry. It satisfies the property
∂k−1 ◦ ∂k = 0. This forms an exact sequence

C0 C1 . . . Cd∂0 ∂1 ∂d−1
(8)

with the convention that ∂−1 maps C0 to the empty set.
The cochains Ck consist of linear functionals acting on

Ck. Given φ ∈ Ck, we denote the value associated with the
k-chain ti1i2...ik via the shorthand φi1i2...ik := φ(ti1i2...ik).
Note that the cochains inherit the orientation of the under-
lying chains, e.g. φij = −φji via the definition of π. Intro-
ducing the coboundary operator δk : Ck → Ck+1, we next
arrive at the following cochain complex

C0 C1 . . . Cd
δ0 δ1 δd−1 (9)

the resulting coboundary operators result in the traditional
graph div/grad/curl from the combinatorial Hodge theory
[REF]. Duality between the combinatorial boundary and
coboundary operators is expressed through the inner product

〈φ, ∂kt〉 = 〈δkφ, t〉. (10)

The DDEC operators on the chain complex are parameterized
metric perturbations of these, defined as

dk := Bk+1δkB
−1
k , and d∗k = D−1

k δ∗kDk+1 (11)

where Bk and Dk are diagonal matrices for each k.
In this paper, we specialize to chain complexes whose

largest cells are 2-dimensional, where we introduce notation
alluding to the vector calculus operators:

CURLh = B1δ0B
−1
0 , DIVh = B2δ1B

−1
1 , (12)

CURL∗
h = D−1

0 δ∗0D1, GRAD∗
h = D−1

1 δ∗1D2, (13)

DDEC chain complex through mesh partitioning
Given a domain mesh M consisting of n-dimensional cells
used in a finite element discretization of a physics PDE prob-
lem, it may be tempting to use M itself as a graph structure.
However, working with M directly is typically prohibitively
expensive since it is subject to the curse of dimensionality.
In addition, with a solution to the PDE on M in hand, it is



suitable to incorporate that physics information in obtaining
a coarse representation of M for use with a DDEC.

We now describe partitioning of the cells of M as a means
to obtain a chain complex which comes equipped with a
DDEC structure. We consider the topological dual graph T
to M . Its construction is as follows: for every n-cell of M ,
associate to it a node of T ; for every pair of n-cells of M
sharing an (n− 1)-dimensional face, create an edge between
their corresponding nodes of T ; by repeating this process,
i.e., creating a k-cell for T if k + 1 corresponding n-cells
of M share an (n − k)-dimensional face, then T becomes
the topological dual to the mesh M . This is a chain complex
with combinatorial δk and δ∗k operators as described in the
preceding section.

On the one hand, this discrete exterior calculus structure
on T itself can be perturbed into a DDEC by introducing the
Bk and Dk metrization as in (11). However, T is typically
prohibitively large and subject to the curse of dimensionality.
Instead, by partitioning the nodes of T , a coarsened chain
complex can be obtained which naturally admits a DDEC
structure. As noticed in (Trask, Huang, and Hu 2020), nodal
functions on the fine-scale chain complex are projected onto
the coarsened chain complex through averaging over each
partition. Since DDEC training involves minimizing the error
through approximation by these coarse functions, we are
motivated to obtain a coarse chain complex which has good
function approximation quality.

We illustrate the induced chain complex coarsening by a
partitioning of the nodes of T in the case it is a 2-dimensional
chain complex. In Figure 2, F0, F1, and F2 denote the 0-, 1-,
and 2-chains on T , i.e., the nodes, edges, and cells; F0, F 1,
and F 2 denote the 0-, 1-, and 2-chains on T , i.e., the linear
functionals on the nodes, edges, and cells.

0 F 0 F 1 F 2 0

0 C0 C1 C2 0

0 F0 F1 F2 0

0 C0 C1 C2 0

δfine
0

π0

δfine
1

π1 π2
δ0

ι0

δ1

ι1 ι2

π0

∂fine
0

π1 π2

∂fine
1

ι0

∂0

ι1

∂1

ι2

Figure 2: A diagram of domain partitioning for a 2-
dimensional chain complex. This summarizes the relationship
between the nodes, edges, and faces of a T and the nodes,
edges, and faces of a coarsened chain complex resulting from
partitioning T .

With a partition π2 of the nodes of T , we agglomerate the
fine-scale chains of F2 into coarse chains C2. By applying
the boundary operator to these chains, we establish the coarse
1-chainsC1 from F1, etc. For more details of this partitioning
process, we defer to (Trask, Huang, and Hu 2020). For the
purposes of this paper, it suffices to produce a partitioning
of the highest dimensional cells because it induces a parti-

tioning of the entire chain complex. We will see in Figure
8 an example induced chain complex partitioning where the
coarse cells correspond to the color-coded regions.

Greedy Fiedler Spectral Partitioning
We aim to apply a spectral partitioning scheme on the nodes
of T . Spectral methods have been used for compression of
information and partitioning in many domains. Examples
include JPEG image compression, manifold eigenfunction
parameterization (Jones, Maggioni, and Schul 2008), segmen-
tation of 3D models (Sharma et al. 2009), and partitioning
of finite element meshes for parallel processing (Kaveh and
Davaran 1999).

Graph Laplacian and Fiedler partitioning
To define spectral partitioning of T , we first define some some
mathematical objects used for that purpose. Consider the
graph obtained from the nodes and edges of T . The Laplacian
on T is defined as

L = D −A,
where D is the degree of the nodes and A is the (weighted)
adjacency matrix. For non-negative weights, it was first no-
ticed in (Fiedler 1975) that the eigenvector (called the Fiedler
eigenvector) of L corresponding to the second smallest eigen-
value ψ can be used to partition T into two connected sub-
graphs, T+ and T−, for which ψ is positive on the nodes of
T+ and negative on the nodes of T−, and whose edges of
T not belonging to T+ or T− are exactly those on which ψ
takes a positive value on one terminal node and a negative
value on the other (ignoring the special case when ψ may
take a value of 0 on some nodes). In this way, the value 0 can
be treated as a cut for this Fiedler eigenvector of the graph
Laplacian and used for graph partitioning.

Typically, a recursive hierarchical bi-partitioning is used
to further partition a graph beyond the first cut. Each of
the two partitioned subgraphs can be cut using their Fiedler
eigenvector, and so on. However, for the purposes of good
approximation, since the cochains take the average value of
the field on each partition, any partitioning of the mesh near
small field variations is unnecessary. So, for a given nodal
field V on T , we consider a different iterative approach: as
in adaptive quadrature, at each iteration, we choose to cut
the partition with the worst approximation by a piecewise
constant function (which is bounded a priori by the L2 norm
of V on each partition). The GFS partitioning scheme is
detailed in Algorithm 1. We use |∇V | for the node weights
of T , and each partition weight is the sum of all nodal weights
within the partition.

Implementation
We implemented the GFS partitioning in PYTHON using
the packages NUMPY, SCIPY, and NETWORKX for graph
manipulation. The pseudocode in Algorithm 1 can be im-
plemented using NETWORKX in a straightforward manner -
calculuation of edge weights by partition, deletion of edges,
and obtaining the positive and negative connected compo-
nents after a Fiedler eigenvector nodal cut are possible using
NETWORKX. The Fiedler eigenvectors were calculated using



Data: points X = {xn}, field values Vn = V (xn)
Result: partitioning Π = (P1, . . . , PNparts) such that⊔Nparts

i=1 Pi = X
Construct graph T = (X,Xij = (xi, xj))
Assign edge weights |Vj − Vi| on Xij

Initialize: Π = [G], Wparts = [WG]
for j ∈ {1, ...,Nparts} do

P←Gparts[−1]
Compute Fiedler eigenvector vP of P
for eij ∈ EP do

if vP (i) · vP (j) < 0 then
Remove edge eij from P

end
end
Identify partition: P = P+ t P−
Update: Gparts[−1] = P−
Append: Gparts+ = [P+]
for G ∈ Gparts do

Calculate and update partition weights
end
Sort Gparts with respect to partition weights

end
Algorithm 1: Greedy Fiedler Spectral Partitioning algo-
rithm for partitioning the domain of a field.

networkx.fiedler_vector. We note that a more ef-
ficient implementation can be made possible by evaluating
subgraph Laplacians efficiently; since L = D − A, and A
restricts to subgraphs simply by referincing the appropriate
submatrix, only the degree matrix D needs to be updated
properly between iterative cuts.

One-dimensional function approximation example
To better understand the GFS algorithm, we apply it to a
simple one-dimensional function f(x) = tanh(x) + 2 on
x ∈ [−5, 5]. This function plotted in Figure 3 along with
approximate functions given by uniform partitions and GFS
partitions for comparison (the average value of f over each
partition is used for the approximate functions). The fine-
scale graph is given by the nodes { k

1000 |k = 0, 1, . . . , 1000}
and the edges are {[ k

1000 ,
k+1
1000 ]|k = 0, 1, . . . , 999}. Uniform

partitioning here refers to cutting at the equally spaced points
k
n for k = 1, 2, . . . , n− 1 for an n-partition scheme.

Intuitively, to minimize the error of a coarse cochain ap-
proximation - which is piecewise constant on each partition
- it is prudent for a partitioning algorithm to apply most re-
finement between [−2, 2] where the derivative is great. Given
the weights |Vj − Vi| in Algorithm 1 we can see that parti-
tions within the interval [−2, 2] will carry the most partition
weights, and thus the greedy iteration to partition by the
heaviest weight will result in most approximation fidelity in
this region. Indeed, we see this refinement of partitioning
over [−2, 2] in Figure 3. Furthermore, Figure 4 compares
the GFS algorithm to a uniform partitioning scheme, and
demonstrates GFS yielding a lower L2-error, as expected. As
shown in Figure 4, while the rate of convergence is the same,

Figure 3: GFS approximations of f(x) = tanh(x)+2 versus
a uniform approximation with the same number of partitions.
The four plots display the cochain approximations of f de-
fined by the GFS approximation and the uniform approxi-
mation with the same number of partitions. The L2 errors
associated with each method are also shown.

Figure 4: Error and partition weight versus number of parti-
tions, again comparing partitioning by GFS and a uniform
partitioning scheme on f(x) = tanh(x) + 2. The left plot
shows the maximum, mean, and minimum over all partition
weights. The right plot displays the resulting L2 error of GFS
approximation versus uniform approximation, as a function
of the number of partitions.

the GFS method performs better and has less L2 error than
that of uniform partitioning.

Two-dimensional electrostatics/Darcy flow example

Next, we consider an application of the GFS partitioning to
data obtained from a textbook electrostatics problem. Con-
sider an infinite dialectric cylinder in R3 co-axial with the
z-axis, of radius b and relative capacivity K. Due to the in-
variance in the z-direction, the problem is analyzed on the
x − y plane. In polar coordinates, the background electric
field is given by Vback = Einfr cos(θ). The induced electric
potential due to the charge on the cylinder which matches
the boundary conditions imposed by Vback on the cylinder



surface interface is described analytically by

V (r, θ) =

Einf
(
−K−1
K+1

b2

r

)
cos(θ) for r > b(

Einf

K+1 − Einf
)
r cos(θ) for r ≤ b

(14)

Notably, a sharp interface is experienced by the gradient of
the field at r = b as depicted n Figure 5.

Figure 5: Electric potential V (left) and norm of the gradient
of the electric potential ||∇V || (right) over a Cartesian mesh
of [0, 1]× [0, 1].

We obtained point data by sampling the analytic expres-
sion for the electric potential due to the dialectric cylinder.
For the purpose of this example, we chose a simple Cartesian
mesh of [0, 1]× [0, 1] with 70 cells in each dimension. Figure
6 displays the partitioning of the 70×70 cells, comparing the
GFS partition to a uniform partitioning obtained by METIS.
We see a notable clustering of partitions near r = b. Further-
more, in Figure 7, we display the better approximation error
of GFS compared to METIS.

Using GFS partitioning for DDEC:
Example Electrostatics/Darcy flow problem

Finally, we display the utility of a GFS partitioning to obtain
a chain complex supporting a DDEC. The DDEC will be
trained to solve a system of PDEs which includes a conserva-
tion law, resulting in a machine learned surrogate model.

First, we apply GFS partitioning to obtain a coarse chain
complex. In Figure 8, we display the GFS partitioning of
the 70× 70 unit square fine-scale cells into 16 coarse cells,
and the resulting chain complex. Increased resolution is seen
near the r = b interface. Nodes, edges, and faces shaded by
different colors to distinguish the different components.

Next, on that GFS partitioning-obtained chain complex,
we pose the electrostatics problem

~D = −ε∇φ (15)

∇ · ~D = 0 (16)

where ~D, φ, ε are the electric displacement field, the electric
potential, and the inhomogeneous capacivity. Mathematically
equivalently, this system describes the Darcy flow of a fluid,
where these variables correspond to the velocity vector field,
the pressure, and the permeability, respectively, and where
the symbols ~u, p, and κ more commonly employed. In the
DDEC formulation, we have the system of equations

F + κ∇φ = 0

∇ · F = f
−→

w1 −GRAD∗
hu0 = 0

DIVhw1 = f0
(17)

Figure 6: Juxtaposition of domain partitioning performed
by METIS (left column) versus GFS (right column), using
electric field magnitude through a dialectric cylinder as node
weights. The rows correspond to 16, 32, 64, and 128 resulting
partitions, in increasing order from top to bottom.

where we have identified F as the electric displacement field
and the φ as the electric potential. The field κ was taken to
be 10 inside the circle of radius 0.1 centered at (0.6, 0.57);
the asymmetry of this configuration was chosen to break the
symmetry of domain bisection.

Finally, we train this DDEC model on the boundary value
data of the analytic solution (following the procedure in
(Trask, Huang, and Hu 2020) to learn F and φ). Figure 9
displays good agreement between the DDEC φ with the aver-
age of the analytic solution over each partition.



Figure 7: Approximation error comparison between piece-
wise constant averaging from METIS and GFS.

Figure 8: The DDEC complex obtained by GFS partitioning
of the unit square mesh using the electric potential gradient.
Partitioning results in coarse cells, edges, and nodes.

Conclusion and Further Work
In this article, we addressed the question of how to obtain
a chain complex for use in the data-driven discrete exterior
calculus. We introduced a Greedy Fiedler Spectral partition-
ing scheme of a finite-element mesh to obtain a coarse chain
complex with favorable approximation of a fine-scale scalar
field on the mesh. The question of how to obtain a suitable
graph to support data-driven modeling is requisite for suc-
cessful application of the DDEC. We demonstrate the utility
of this calculus in a number of upcoming works.
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