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Abstract

Dealing with robotic actions in uncertain environments has been demonstrated to be hard. Many classic
planning approaches to robotic action make the closed world assumption, rendering them inefficient for
everyday household activities, as they function without generalizability to other contexts or the ability
to deal with unexpected changes. In contrast, humans robustly execute underspecified instructions in
unfamiliar environments. In this paper, we initiate our research program where we propose the use of
functional relations in the form of image-schematic micro-theories, formally represented in ISLF9L to
enrich action descriptors with semantic components. It builds on the body of work in embodied cognition
showing that human conceptualization of action sequences is founded on abstract patterns learned from
physical experiences in the form of spatiotemporal relationships between object, agents and environments.
These theories are used to inform action selection mechanisms for behavioral robotics written in EL++
and we argue how these micro-patterns can be applied in a more general way to deal with underspecified

action commands and commonsense problem-solving.
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1. Introduction

Robot agents are starting to accomplish human-scale everyday manipulation tasks such as setting a
table, cleaning up, and preparing (very) simple meals. Most knowledge representation approaches
to reasoning about actions conceptualize the repertoire of robots as a state transition system, with
actions as atomic transitions between states [1]. Representatives of this research approach are

PDDL [2], situation [3] and event calculus representations [4, 5] and their variations.

This abstraction is critical from the robot agent perspective because the main reasoning task of
a robot agent is to infer how it has to move its body in order to accomplish an underdetermined
task such as “put the oat milk on the table” without causing unwanted side effects. However,
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the use of abstract action models make robots inflexible as the same task can be implemented
through different body motions: the robot can close a door with its hand but, analogically, it can
also use its elbow if the hand is occupied by carrying an object. Further, the same motion can
implement different tasks: a pushing motion can close a door but also position an object more
accurately. The lack of such reasoning capabilities not only limits the manipulation tasks that
robots can perform, but the accuracy by which it performs the actions as well.

There are approaches to include more detailed representations, such as the combination of task
and motion planning. However, motion planning typically tries to compute collision-free paths
rather than motions that achieve certain effects [6]. Approaches to axiomatizing manipulation
actions have been attempted for some commonsense reasoning problems, e.g., egg cracking [7].
However, these often result in long and complicated axiomatizations that are difficult to ground
into the action execution systems of robots.

In this paper, we propose to equip knowledge representation and reasoning systems for robotic
agents with a generalizable layer of understanding of the conditions in the environment. This
allows the robot to reason about action execution in terms of motion types when encountering
unexpected changes in a given situation. For any physical state of affairs in the world, this layer
of understanding can be described using a set of functional relationships between objects, agents
and environments, called image schemas.

While in an early stage, we will argue that the contribution of our proposition is multifold:

(i) Reasoning about functional relationships: It allows robots and artificial agents to reason
about the functional relationships between objects and other entities situated in complex environ-
ments in a cognitively-plausible way. (ii) Reasoning about alternatives to a plan: This semantic
grounding of the environment offers problem-solving capabilities in that it provides means to
expand the reasoning outside the specified action plan. This enables corrective actions such as
avoidance of blockages. (iii) Increase adaptability through analogy: It also offers generalizability
in that information relevant to one situation can be analogically transferred to another situation.
(iv) Improve natural language understanding: Building on research founded in cognitive lin-
guistics, it enables a large body of work to be leveraged towards increasing natural language
understanding and for robots to follow human instructions and commands more accurately.

2. Action Semantics with Image Schemas and Affordances

Adult humans are creatures of habit. Repeated experiences with similar situations, i.e. particular
states of the world, shape us into experts on a variety of situations possible in our environment.
We can use generalized patterns of information from our previous experiences to reason about
outcomes of uncertain situations. These expectations extend to action instructions as well.
Asking someone to set the table or get the milk will likely result in a satisfactory outcome,
regardless of whether that person has been in that particular kitchen or not. Humans have
extensive understanding of the affordances of a kitchen, which tools are needed for eating, and
an appropriate set-up of a dining table given different contexts, such as type of meal or number
of participants. In comparison, robots, which are relatively proficient in well-defined tasks
in constrained environments [8, 9], struggle when confronted with vague and underspecified
instructions.



To aid this research agenda, we propose to utilize the underlying patterns of expectations
found in humans as suggested by the theory of embodied cognition [10]. It proposes that our
conceptualization and understanding of the environment comes from perceiving and interacting
with it. Such information is formed into generalized patterns, image schemas. These encompass
the spatiotemporal relationships between objects, agents and environments'.

One way this could be computationally realized is to characterize the image schemas in relation
to the affordances they require [11]. Concrete examples are, for instance, how a glass affords
CONTAINMENT of liquids and a plate offers SUPPORT for food, but also abstract concepts and
more dynamic transformations are included in this, e.g. how ‘space to grow’ is ENABLEMENT and
SCALING. Turning affordance theory into a computationally applicable theory for commonsense
reasoning of events and actions has been approached in both theoretical and applied computer
science [12, 13]. Image schemas have also been proposed to provide patterns to organize hybrid
reasoning involving qualitative and quantitative descriptions of scenes [14].

While affordances can be described by the interplay of respective dispositions of objects and
agents [15], image schemas offer another layer of abstraction describing common manifestations
of affordance-based configurations that, furthermore, constitute the meaning of many linguistic
constructions [16]. Consequently, it has been argued that the meanings of linguistic units can be
traced back into the generalized patterns of the sensorimotor experiences seen as image schemas,
as well as force-dynamic schemas [17].

The image schemas capture relationships such as SOURCE_PATH_GOAL (SPG) - depicting
movement of an object between two points, LINK - the force-dynamic relationship that connects
objects with one another, and VERTICALITY - vertical movement, and relative position and
symmetry on the vertical axis. Another strength of using image schemas for formal research on
underspecified environments and instructions is that they have been shown to come in different
levels of specificity, e.g. the difference between a tight and loose containment, or how SOURCE_
PATH_GOAL ranges from simple object movement to increasingly specific notions with source
and goal locations [18]. For instance, a milk-carton is a prime example of a tight container which
functions as a required component of transportation (SPG) of any liquid. They have been argued
to manifest as graph hierarchies of increasingly complex image-schematic relationships, and have
been formalized accordingly [18].

The embodied grounding of image schemas makes them a prime subject to be learned through
statistical methods and deep learning. For example, in the work by [9], subsymbolic information
of robotic object manipulations are collected and transformed into symbolic Narrative-Enabled
Episodic Memories (NEEMs) featuring a semantics based on the SOMA ontology [19]. These
are collected into an episodic memory knowledge base and are used to learn general knowledge
about particular situations — such as, that milk is usually in the fridge, or that cups can be found in
cupboards. A robot that has a NEEM about a fridge containing such perishable objects as cartons
of oat milk, can use this information when tasked to “put the oat milk on the table.” Within
these NEEMs, the image-schematic relationships exist as background knowledge evoked by the
possible actions. In the next section, we provide an overview of the formal system that we employ

!'Some cognitive scientists might oppose this rather narrow view of image schemas. However, we argue that this
is a good starting point for modeling and simulating computational intelligence as this definition is more formalizable
than the abstract, multi-modal notions that may be more accurate from the cognitive perspective.



for representing the abstract image schemas before moving onto a working example.

3. Action and Event Analysis using ISL/°*

It has been suggested that the conceptualization of particular events and actions can be described
using image schema profiles [20]. While these profiles tend to be conceptually unstructured and
describe simple groups of the image-schematic relationships that represent the way we think
about a particular concept or event, recent research in knowledge representation has brought forth
an approach to employ structured combinations of image schemas to describe in conceptual detail
what functional relationships take place in certain activities [21, 22]. After introducing ISLFOL,
we use the household action of ‘fetching milk’ to demonstrate how such structured combinations
can look for our action selection approach.

3.1. The Image Schema Logic, ISL7°X

ISLFOL | the image schema logic, is an expressive multi-modal logic intended to capture the basic
spatiotemporal interactions present in image-schematic events [18]. In short, it combines the
Region Connection Calculus (RCC) [23], Ligozat’s Cardinal Directions (CD) [24], Qualitative
Trajectory Calculus (QTC) [25], with 3D Euclidean space assumed for the spatial domain,
and Linear Temporal Logic over the reals (RTL). This combination of calculi allows the formal
modeling of spatial relationships between objects and regions in RCC and their relative movement
using a reduced version of QTC with the following syntax:

* (01 moves towards O2’s position: O1 v Oo,
* O1 moves away from O3’s position: O; <= Oq
* O is at rest with respect to O2’s position: O1 |o Os.

The temporal dimension is based on linear temporal logic (RTL) over the reals [26] with future
and past operators. The syntax of this logic is defined by the grammar

pu=p | Tl-plere|leUp|pp

where ¢ U 1) reads as “p holds, until ¥ and ¢ 1 reads as “p holds, since 1).” As it is standard in
temporal logic, we can define additional temporal operators based on these, for instance, operators
like: F¢ (at some time in the future, ) is defined by T U¢; and, G (at all times in the future,
) is defined as =F—p,

In ISLFOL, the temporal structures, often disregarded due to the increase in complexity in
formal image schema modeling, constitute the primary model-theoretical object, e.g., a linear
order to represent the passage of time, in which complex propositions that employ a secondary
semantics are included. The atoms are topological assertions about regions in space using RCC,
the relative movement of objects with respect to each other using QTC, and relative orientation,
using CD. We refer the reader to [18] for more details on this language.

ISLFOL axioms are based on a concept language in First Order Logic (FOL), making it an
expressive tool to represent different situations and concepts. The idea is that each image schema
(e.g. LINK (x,y) and SOURCE_PATH_GOAL (X,p,s,g)) is modelled using the logic’s semantics
and is represented using FOL.



3.2. The Underlying Logic of Image Schemas

While ISLOL is predominantly a modeling language, the image schemas are defined by internal
logical rules that can be used to reason with. For instance, the CONTAINMENT relationship is
transitive in that an object that is contained within another object will move if the container moves
(consider how the milk will remain in the carton when the carton moves), see:

Ya,b:Object, s, g:Region, p:Path € X :
(CONTAINED_IN(a, b) A SPG(b,p, s,g)) — SPG(a,p, s, g)

Following the same reasoning, a LINKed relationship ensures that what happens to one of the
objects is transferred also to the linked object (a robot holding a carton will ensure that if the
robot moves, then the carton moves as well). Likewise, a SUPPORTed object will move, if the
SUPPORTIng object is transferred to another location (consider a robot carrying the milk-carton
on a tray).

These kinds of built-in rules for our expectations of the environment offer the possibility to
make predictions for the outcomes of particular actions. These rules also offer the possibility
for dealing with unexpected problems that can arise. For instance, if the robot’s movement is
BLOCKed by another entity getting in the way, the robot would be able to reason if that object is
in movement and thus, wait for it to pass, or if it is still, circumvent the BLOCKAGE. Likewise, a
robot would be able to reason about how a container needs to be opened for something to be able
to exit the container. The next section will tackle this and related reasoning challenges.

3.3. Fetching and Placing Actions

One of the most common things we ask other people to do is to fetch different things for us. From
a household robot’s perspective, the instruction Get the oat milk can be described as a particular
instance of a Fetch-And-Place action descriptor. In addition to the call to perform the action, the
instruction includes additional important — albeit implicit — forms of knowledge. First, the noun
oat milk evokes information about what it is, e.g. a perishable good, where it is usually stored
and so on. The SOMA ontology of everyday activities [19], provides a foundational framework
as well as additional dedicated modules for the household domain, expressing that OatMilk
is_a PerishableSubstance thatis stored_in CoolingDevices such as Refrigerators.
In image-schematic terms, all liquid substances (LS) are further specified as requiring a container
(C) for transport:

VLS, C:Object(Move(LS) <> CONTAINED_IN(LS, C) A Move(C))

Second, the verb get requires the understanding of transporting something by evoking a SOURCE_
PATH_GOAL schema with the locations of the source and the goal being an integral part of the
transportation expressed. The ABox for the oat milk reveals that pos;(OatMilk) : Fridge, and
the robot needs to understand that the source of the instruction (the person speaking) reveals the
goal of the transportation — namely, close to the speaker, posgoq (OatMilk) : Speaker.

If the robot has an episodic memory concerning oat milk, in addition to the ontological
semantics contained in a NEEM, it has information that milk is a perishable liquid stored in



a container that is placed on a shelf in a fridge. Image-schematically this represents nested
CONTAINMENT: the object in question is inside one container (carton) which in turn is inside
another container (fridge) for different purposes. This is crucial information for knowing how
to treat the object. While a robot could theoretically move the entire fridge to the person asking
for oat milk, this is an inefficient way of solving the problem. Likewise, it is not very smart
to take the oat milk out of the carton before attempting to moving it. One reason for this is
because the purposes for CONTAINMENT are fundamentally different, the liquid needs tight
CONTAINMENT for transportation, whereas the fridge’s loose CONTAINMENT has nothing to do
with transportation but instead for static storage and preservation.

The second image-schematic component is the movement of the oat milk from the fridge to
the person asking for it. This represents the construction of SOURCE_PATH_GOAL capturing
different levels of specificity of the conceptualizations of movement. The classical linguistic
interpretation is that a trajector (object or agent) moves along a path from a particular SOURCE to
a determined GOAL. In this case, the robotic agent needs to be able to deduce that the SOURCE is
the initial location inside the fridge and that the GOAL is to reach the near vicinity of the person
asking for the milk. This may sound like a trivial problem, but it includes not only the SPG
schema, but also the CONTAINMENT schema as the Going_OUT schema is part of the schema’s
dynamic relationships and can, in isolation to the whole event, also be described as a combination
of the image schemas SPG and CONTAINMENT.

The third image-schematic relationship we cover in our working example is SUPPORT. Obvi-
ously, all objects are supported by the ground, but for a robot to masterfully be able to manipulate
objects, it is not possible for it to neglect the naive rules and structures of placing things on top
of other things. With the oat milk, this offers important information to be transferred from the
source to the goal state. At the source inside the fridge, the oat milk is vertically> SUPPORTed on
a shelf. This could be seen as a required property of the oat milk-carton throughout the action
and in the goal state, as it has an opening at the top.

In ISL”OL most® image schemas and their hierarchical graphs can be formally represented in
the form of ontological patterns. Any formalization using ISL"? would use their placeholder
names to access the full axiomatization. For instance, the LINK, image schema is formalized
using EC(z,y) A force(x,y) n force(y,z) describing how for two objects, x,y, to be linked,
they are externally connected (asserted by the RCCS8 operator EC) and there is a force from
each respective object towards the other. The action event can be described as six different
image-schematic states, depicted and verbalized in Figure 1.

The purpose of understanding image-schematic relationships in scenes is not only to identify
the logical axiomatizations thereof in ISLFOF, it is to describe the underlying patterns for
understanding the meaning of events and actions. By giving an artificial agent access to this
level of semantic layer, it becomes possible to reason about this particular scenario, as well
as to transpose this knowledge to other similar situations with different objects and contexts.
Additionally, this type of reasoning becomes vital to recover from errors and mishaps that might
occur[27].

2 Assuming that the carton is elongated on the vertical axis.

3The logic is not able to elegantly handle transformational relationships involved in image schemas such as
Spiraling or Scaling, as they are more loosely described in terms of other objects and instead their previous states. For
this the addition of mathematical functions could be a way forward.



Scene 1: Initial state. There is a LINK between the Handle
Scene 1 3 and the FridgeDoor. The FridgeDoor is in CONTACT with the
@ Fridge. The Milk is CONTAINED_INSIDE in the Carton, the
Carton is VERTICAL and SUPPORTed by the Shelf which is
CONTAINED_INSIDE the Fridge.
Scene 2: Opening the door. To open the door, the
FridgeDoor needs to leave its state of being in CONTACT
with the Fridge. This is done by SOURCE_PATH, where the
Handle moves along a CircledPath away from the Fridge.
Scene 3: Lift milk-carton. Through VERTICAL oriented
SOURCE_PATH_GOAL the SUPPORT from the Shelf on the
Carton is removed, since the Milk is CONTAINED_INSIDE in
the Carton it MOVEs as well.
Scene 4: Take the Milk out. The Carton goes OUT of
the Fridge through its opening, and is no longer CON-

Scene 2

Scene 3

Scene4 |, 1.l
()

g
d 000

Dc

MoVEs towards the Table, the Milk MOVESs to the Table.
Scene 6: Goal state of the Milk resting on the Table: The
@ Carton’s movement is BLOCKed when it comes in CONTACT

Scene5 [ | ee.l. @ TAINED_INSIDE.
: Scene 5: Milk goes to its destination. Since the Carton
- 1 7 S )

Scene 6

with the Table, turning the force from the movement into the
reversed force as SUPPORT from the Table.

Figure 1: Image-schematic scene breakdown of taking the milk out of the fridge.

4. The Contributions in Practice

In this section, we will illustrate how ISLFOL can contribute to robotics to address the issues
listed in the introduction. We will, for each item in turn, explain the underlying problems, provide
an example of reasoning in ISLO” to address such problems, and then show how the results
inform the construction of axioms in a simpler formalism, EL++ [28, 29], that can be used in a
quick perception-action loop of a robot. The overall approach then is to use ISL"O “off-line,”
in a robot’s idle moments, to either imagine new possible situations or analyze past experience,
and to encode knowledge thus obtained into simple rules that can be employed effectively for
reflexive, fluid actions.

4.1. Reasoning about Functional Relations

One thing that we have repeatedly stressed in this paper is how the image schemas offer a
cognitively plausible method for artificial agents to reason about their surroundings. A simple
example is how humans, birds, and other animals understand that if you want to eat a nut you
have to crack the shell before you can take it out. Likewise, humans are quite experienced with
the understanding that if you want to take the milk out of the fridge, it is not possible unless you
first open the fridge door.

This level of commonsense reasoning is intuitive in biological intelligence, but it has been
demonstrated to be time-consuming to axiomatize the full scenarios (as with the egg cracking



problem) and inefficient to rely purely on statistical methods. This is where the image schema
logic could play a vital role.

To give an example of how a CONTAINMENT inference can work in ISL"OL, consider the
following axiom about solid objects (for simplicity, we omit to include conditions about no
parthood relations between the objects involved)*:

YO1,0s : SolidObject O # Os — —'PO(Ol, 02)

ISLFOL allows us to define a few regions of interest around an object: its interior (which we will
take here as a primitive predicate), its exterior, and openings. Let then a closed container be an
object with an interior but no openings, and an enclosed object be one contained inside a closed
container.

exterior(E,O) := interior(I,0) n E = Com(0O u I)
opening(op, O) := interior(I,0) A exterior(E, O)

A PP(op, E) n EC(op,I)

closed(O) := —Jop opening(op, O)

enclosed(O) := 3C closed(C) A CONTAINED_IN(O, C)

Reasoning inside the RCC8 fragment of ISL¥©” then establishes that, for solid objects, to touch

an enclosed object without also being enclosed in the same container is impossible:

VR,O,C : SolidObject
Enclosed(O,C) A —Enclosed(R,C) — —EC(R,O)

In upcoming work, we intend to use EL++ ontologies to encode image-schematic knowledge for
action selection. The previous result from ISL¥?L may be approximated in EL++ as:

Enclosed = disContainedIn.Obj
Freem Enclosed E L

EC m 3(hasParticipant. Enclosed)
m (FhasParticipant.Free) & L

Meaning, a relationship in which one participant is a free object and another is enclosed cannot
be of type EC. This has consequences for action selection because, e.g., an EC relation between a
gripper and an item to grasp is necessary. If such a relation is impossible, then reaching for an
item should be delayed. Further axioms could pinpoint possible alternative actions, such as to
manipulate handles on the container to open it.

4.2. Reasoning about Alternatives to a Plan

Another vital contribution that the image schemas bring to reasoning about action execution
is dealing with unexpected situations. In a kitchen, it is not unlikely that multiple humans are

*As defined in RCC8: PO - Partial Overlap; EC - Externally Connected. PP - Proper Part, Com - set theoretical
complement in R3.



present at the same time and may continuously change the state of the environment. If a person
at a table asks the robot to fetch them the milk, the robot needs to be able to reason about any
changes that might have taken place. Perhaps the originally intended path is no longer possible to
take because another person put something in front of the robot or is actively crossing the path in
that instance. Not only it is expected that the robot should stop and not run over the other human,
but it should also be able to redirect its movement if the object on the path is unlikely to move
anytime soon, i.e. if it does not have a movement state. If the human blocking its movement is
simply walking past as part of an SOURCE_PATH_GOAL of its own right, then the robot can
simply take a break before continuing along the same path. However, if the person, or item,
remains on the path, the robot needs to be able to reroute to still be able to successfully reach the
goal of the instructions. It would do this, by generating a new SOURCE_PATH_GOAL construct
in which the source is no longer based at the fridge, but at the location of the BLOCKAGE, and
the path is no longer the fastest route (or what previously had been suggested) but a route that
bypasses the blocking object.

The above discussion can be formally represented in ISLFOF as follows with omitting the
assumption that the source and goal (S,G) are TPP, tangential proper parts, of the path. Assuming
again the axiom of solid objects, and the following axiom about SPG:

VA, X:SolidObject, VS, G:Region, Y P:Path
SPG(A, P, S,G) A G(PO(X,P)) - F(PO(A, X))
That is, if a trajector A follows a path P, it will pass through any region along the path. Then,
one can show the following:
VA, B:SolidObject, VS, G:Region,VP:Path
A # B A G(PO(B,P)) — G(—SPG(A, P, S,G))
In other words, if a path is forever blocked, it is never possible to use it to go from S to G.
As before, we wish to provide a robotic agent with some simple rules to select, or filter out,
actions. The previous result from ISLFC% could be approximated in EL++ thusly, assuming ap-

propriate recognition procedures for entities such as paths and stationary objects, and appropriate
controllers for actions such as moving the robot base:

BlockedPath = Path m JoverlappedBy.StaticObj
BaseMovement m Juses.Blocked Path = 1

That is, no action that involves moving the base should use a blocked path. If such a path is the
one currently used by the robot, it should search for a different one. A similar set of simple rules
might encode for the robot that it may be worth waiting if a path is blocked by a moving object:
BusyPath = Path m doverlapped By.M ovingObj
BaseMovement m Juses. BusyPath © DelayedAct

Such a set of action rules would be justified if one believed that objects moving away from a path
eventually do not overlap it:

VB:SolidObject, ¥ P:Path :
G(B < P) —» F(—PO(B,P))



4.3. Increase Adaptability through Analogy

Bypassing things like BLOCKED_MOVEMENT by redirecting routes requires the robot to rethink
its actions based on new image-schematic states of the world. This is useful, but it is also possible
to use this in a more general way by abstracting away from the actual parts of the world.

This builds on the idea of analogical reasoning, that there are underlying patterns that can
be transferred from an information rich source domain to an underspecified target domain. For
robotic actions, this offers the possibility to reuse previously learned relationships. One crucial
component for successful analogical transfer is that the source and target share the same structure.
In the settings of functional relations as the foundation to guide robotic action selection, these
patterns are also useful as a basis for generalization. For instance, if a robot has access to the
image-schematic information that for something to be taken out of a closed container as for
instance a fridge, it can use this information to reason about similar CONTAINMENT situations. It
can use this generalized information to take the lasagna out of the oven (take note of how Figure
1 would be exactly the same with this example), a letter out of a envelope and join the masses of
biological species whose evolutionary predecessors learned long ago that the nut needs to come
out of its shell.

A less complex analogy, as only one object needs to be exchanged, is how it is possible to
close a door with another body part than a hand, should it be preoccupied holding milk-cartons
or lasagnas. In this case, what we want is to describe, image-schematically, what it means for a
solid object to push another, via some third solid object:

push(R, A, L) :=
(R=LvLINK(R,L)) A (L > A) A EC(L, A)

A robot using EL++ rules to select and parameterize actions might then be interested in classifying
what objects it can push with:

Pushing = Juses.Af fordsPushing
OwnBodyPart = Af fordsPushing
AlinkedTo.OwnBodyPart T Af fordsPushing

4.4. Improve Natural Language Understanding

Another important requirement of a successful household robot system is to be able to understand
human instructions. Natural language instructions are usually underspecified and contain vast
amounts of ambiguity, polysemy, and implicit information that need to resolved and explicated in
order to execute the corresponding actions appropriately. Another problem is that instructions
often omit vital semantic components such as determiners, quantities and even the object them-
selves [30]. For instance, in the example above get the oat milk, neither the source nor the target
locations are made explicit next to the omission of the addressee. Yet any adult human would
be able to successfully reach the correct goal state based on this instruction. While we have not
dived deeper into the linguistic aspects of image schemas for this particular paper, the theory,
analysis and application of image schemas stem from research in cognitive linguistics.



To improve natural language understanding in robotics, with a special focus on instructions,
we employ an efficient construction-based parser [31] that produces semantic specifications as
connected RDF triples that represent as much of the meaning of the instructions as contained
in the textual commands. All terms in these semantic specifications are aligned to the SOMA-
SAY module [32] that is part of the larger SOMA framework [19] that rests on the DUL+D&S
foundational ontology [33]. Image-schematic theories are part of the descriptive branch of SOMA
and constitute the central anchoring point of the semantic representations of the instructions given
to the robotic agents. While these OWL-DL based representations only afford limited reasoning
as compared to ISLFOL | we ensure a seamless usage of the ensuing semantic representations
by using the terms provided in SOMA as a lingua franca throughout the system. Additional
mechanisms that are part of our deep language understanding pipeline are needed for further
explicating the implicit information to arrive at executable robotic action plans. This concerns,
for example, the learning of tool selections via human computation approaches [34] or the setting
of action parameters and execution variations by means of physics-based simulations that satisfy
the expectation constraints provided by the given ISL¥'?% models [14].

5. Discussion on Past and Future Work

Using commonsense reasoning to improve robotic action selection is not a novel idea, it has
been a fundamental component since the beginning of formal research on intelligent systems (a
comprehensive overview is given in [35]). Many researchers (e.g. [36, 8, 37]) have worked on
providing robotic systems with human-like commonsense knowledge so that the agents more
efficiently can plan and execute their actions.

Similar to the ideas in this paper, is the work by [38]. They consider activity knowledge as a
means to fill the gaps in abstract instructions, but treat these gaps in a much more general point of
view than the specifics found in image schemas. A more general approach to activity modeling
for robotic agents is presented by the IEEE-RAS working group ORA [39]. The group has the
goal of defining a standard ontology for various sub-domains of robotics, including a model for
object manipulation tasks. It has defined a core ORA ontology [40], as well as additional modules
for industrial tasks such as kitting [41]. In terms of methodology, we differ in the foundational
assumptions we assert, with important consequences on the structure of our ontology, modeling
workflow, and inferential power. In the case of ORA, the SUMO upper-level ontology is used
as foundational layer. Compared to SUMO, we use a richer axiomatization of entities on the
foundational layer, and put particular emphasis on the distinction between physical and social
activity context.

Unlike most previous methods, that often build action descriptors for particular actions and
scenarios, we suggest relying on the generalized information learned from the sensorimotor expe-
riences, encoded as functional relationships based on image schemas. While there exists research
on how to formalize image schemas [42] and to use them for simulation-based reasoning [43],
the role they play in active applications is not quite as thoroughly investigated. Another novel
approach is to construct hybrid reasoning pipelines that connect simulation-based reasoning with
qualitative reasoning about functional relations [14], but this needs further investigation.

At this stage, the contributions of the paper remain purely theoretical. However, the novelty of



the approach and our conviction of the ideas underlying the core concepts and their contributions
motivates future work.

The next steps of this research program is to further strengthen the applicability of this work by
providing a more feasible connection between ISL¥©” and simple formal languages commonly
used in robotics, such as EL++. Additionally, we intend to develop an image schema parser that
can identify and extract image-schematic relationships from the subsymbolic data of robotic
simulations and visually recorded human activity to provide automation to the system. Thirdly,
we aim to connect the formal part and the identification parser to the body of work in cognitive
linguistics to improve the robotic agents’ understanding of instructions in natural language.
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