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Abstract
We present an algorithm for concept combination inspired and informed by the research in cognitive and
experimental psychology. Dealing with concept combination requires, from a symbolic AI perspective,
to cope with competitive needs: the need for compositionality and the need to account for typicality
effects. Building on our previous work on weighted logic, the proposed algorithm can be seen as a
step towards the management of both these needs. More precisely, following a proposal of Hampton
[1], it combines two weighted Description Logic formulas, each defining a concept, using the following
general strategy. First it selects all the features needed for the combination, based on the logical distinc-
tion between necessary and impossible features. Second, it determines the threshold and assigns new
weights to the features of the combined concept trying to preserve the relevance and the necessity of
the features. We illustrate how the algorithm works exploiting some paradigmatic examples discussed
in the cognitive literature.

1. Introduction

Dealing with concept combination requires, from an AI point of view that blends logical and
cognitive perspectives, to cope with competitive needs: the need for compositionality and the
need to account for typicality effects. Compositionality would require (the representation of) a
combined concept to be a function of (the representations of) the combining concepts. It is often
advocated as one of the main explanations for the human ability to create and understand new
meaningful concepts [2]. Typicality effects refer to a number of phenomena—mainly observed
in cognitive psychology [3]—related to the categorization task: some instances of a concept are
more representative, and then easier to be categorized, than others.

Logically, concepts are often reduced to sets of necessary and sufficient conditions precluding
the possibility to deal with typicality effects. Vice versa, cognitive theories of concepts focus
on typicality effects by sacrificing compositionality: this is the case of, e.g. Prototype Theory.
According to the Prototype Theory [4, 1], concepts are represented by means of prototypes, i.e.,
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sets of features associated with weights representing their relevance for the concept.1 Typicality
can be evaluated by summing up the weights of the features (in the prototype) matched by a
given individual: the most typical members, the best exemplars, are the individuals with the
highest score. However, the Prototype Theory seems inadequate to capture compositionality, as
paradigmatically illustrated by the Pet Fish example. A gold fish is a very typical example of Pet
Fish but it is a quite atypical example of Fish, and a quite poor example of Pet. This is known as
conjunction effect: when an individual is well described by a concept combination, it is usually
more typical of the combined concept than of the two components [5]. In a different perspective,
the prototypical instances of Pet are furry, the ones of Fish are grey, but the prototypical
instances of Pet Fish are neither furry nor (likely) grey. So, it is argued, the typicality of the
combined concept is not predictable from the one of the component concepts [6]. Consequently,
prototypes are unable to account for concept combination and for the productivity of human
concepts, i.e., concepts cannot be represented by prototypes [2].

Some approaches, e.g., [7] and [8], tried to overcome this impasse by ‘importing’ prototypes
into a formal setting. Here we pursue this general idea by deploying the logical framework we
proposed in [9] which extends Description Logic languages by means of a family of operators
(denoted by the symbol ∇∇, spoken ‘tooth’) allowing one to define concepts in terms of weighted
features. Similarly to prototypes, each operator takes a list of concept descriptions and assigns
a weight to each of them. Furthermore, once a threshold is determined, the operator returns a
complex concept which applies to those instances that satisfy certain combinations of features,
the ones that reach the chosen threshold by summing up the weight of the satisfied features.

Given the ∇∇-definitions of two concepts (and a given knowledge base), we introduce an
algorithm that returns the ∇∇-definition of the combined concept. The general rules governing
the algorithm are grounded on the ones analyzed in cognitive science studies. In particular,
we refer to the work done by Hampton in [1]. We then illustrate how the algorithm works by
analysing the Pet Fish example and several paradigmatic examples discussed in the literature.

2. Hampton’s Model of Attribute Inheritance

Different models have been proposed in the context of prototype theory in order to deal with the
kind of conjunction effects described above. A quite famous one is the selective modification model
proposed by [10]. The authors propose an elaboration of the Prototype Theory, interpreting
concepts in terms of schema structures. Distinguishing between dimensions (e.g., color) and
features (e.g., red) of a concept, the proposed model is able to account for the conjunction effect
in the case of adjective-noun combinations (e.g. red apple). Unfortunately, it has little to say in
the context of noun-noun combinations.

A different kind of analysis is proposed in [1]. Still within the Prototype Theory, Hampton
proposes an attribute inheritance model2, which analyses the case of conjunctive noun-noun
combinations (e.g., a Sport which is a Game). According to this proposal, the features of the
combined concept are initially collected from the ones of the constituent concepts following the

1The Prototype Theory usually distinguishes attributes or dimensions (e.g., color) from values or features (e.g.,
crimson). In the following we do no consider this distinction and we focus on features (values).

2Following Hampton, in this section the terms ‘attribute’ and ‘feature’ are used interchangeably.



standard rule for conjunction. The weight of the features of the combined concept depends on
the weight(s) this feature has in the prototypes of the combining concepts. In particular, when
the feature appears in the prototypes of both the combining concepts, Hampton considers the
average value, a sort of trade-off.

An original aspect of the proposal concerns the constraints posed on the inheritance of the
features. Hampton introduces two main constraints: (𝑖) the features that are necessary for
either constituent are also necessary for the combination; (𝑖𝑖) the features that are impossible
for either constituent are impossible also for the combination. The notions of necessity and
impossibility are characterised in a logical way: an attribute is necessary when it holds for all
instances of the concept while it is impossible when it is necessarily false for all the instances of
the concept. Hampton analyzes the example of the Pet Fish: a Pet is necessarily owned, and for a
Fish it is impossible to be cuddly. Then Pet Fish must inherit the first attribute but cannot inherit
the second one. He also suggests that the idea of averaging the weights of the features shared
by the combining concepts may not work in the case of impossible and necessary features.
In case of necessity (impossibility) a maximum (minimum) rule is applied, i.e., the weight of
the necessary (impossible) features of the combined concept is inherited from the combining
concept where this feature is more (less) relevant.

The model proposed by Hampton is able to explain several phenomena concerning concept-
combination as observed in the context of experimental psychology. Two of them are of
particular interest in the analysis of Pet Fish, namely, inheritance failure and attribute emergence.

Inheritance failure occurs when a feature which is important for a constituent (𝑖) becomes
irrelevant for the conjunction or (𝑖𝑖) it is not inherited at all. The case (𝑖) can be explained as
an effect of the averaging procedure: when the constituents share a feature, its weight can be
high in the prototype of one constituent but very low in the prototype of the other constituent.
The case (𝑖𝑖) can be explained by exploiting the notion of impossibility discussed above: if a
feature is impossible for one of the constituent concepts, it is not inherited at all.

Attribute emergence is the inverse of inheritance failure, namely the increased weight of
a feature in the prototype of the conjunction w.r.t. its weights in the prototypes of the con-
stituent concepts, or the emergence of a new feature of the conjunction. Hampton explains this
phenomenon in terms of extensional feedback: there is a feedback from past experiences and
background knowledge into the combined concept. This means that the prototype of the com-
bined concept can be adapted taking into account the experienced exemplars and the available
knowledge about the environment. In the case of Pet Fish, one can for instance introduce some
necessary features like ‘small’ and ‘lives in aquarium’.

3. Tooth Operators and Preliminary Hypotheses

In this section, we delineate the formal framework necessary to introduce the ∇∇-definitions
of concepts serving as input for the algorithm for concept combination presented in Sect. 4.
Following the work done in [9, 11, 12], we extend standard DL languages [13] with a class of
𝑚-ary operators denoted by the symbol ∇∇ (spoken ‘tooth’). Each operator works as follows:
(𝑖) it takes a list of concepts, (𝑖𝑖) it associates a weight (i.e., a number) to each of them, and (𝑖𝑖𝑖)
it returns a complex concept that applies to those instances that satisfy a certain combination of



concepts, i.e., those instances for which, by summing up the weights of the satisfied concepts,
a certain threshold is met. More precisely, we assume a vector of 𝑚 weights 𝑤⃗ ∈ R𝑚 and a
threshold value 𝑡 ∈ R. If 𝐶1, . . . , 𝐶𝑚 are concepts of 𝒜ℒ𝒞, then ∇∇𝑡

𝑤⃗(𝐶1, . . . , 𝐶𝑚) is a concept
of 𝒜ℒ𝒞∇∇. For 𝐶 ′

𝑖 ∈ 𝒜ℒ𝒞, the set of 𝒜ℒ𝒞∇∇ concepts is described by the grammar:

𝐶 ::= 𝐴 | ¬𝐶 | 𝐶 ⊓ 𝐶 | 𝐶 ⊔ 𝐶 | ∀𝑅.𝐶 | ∃𝑅.𝐶 | ∇∇𝑡
𝑤⃗(𝐶

′
1, . . . , 𝐶

′
𝑚)

To better visualise the weights an operator associates to the concepts, we often use the
notation ∇∇𝑡((𝐶1, 𝑤1), . . . , (𝐶𝑚, 𝑤𝑚)) instead of ∇∇𝑡

𝑤⃗(𝐶1, . . . , 𝐶𝑚). A knowledge base KB is
a finite set of concept inclusions of the form 𝐶 ⊑ 𝐷, where 𝐶 and 𝐷 are concept expressions.
We write 𝐶 ≡ 𝐷 to signify that 𝐶 ⊑ 𝐷 and 𝐷 ⊑ 𝐶 .

Given finite, disjoint sets 𝑁𝐶 and 𝑁𝑅 of concept and role names, respectively, an interpre-
tation 𝐼 consists of a non-empty set ∆𝐼 and a mapping ·𝐼 that maps every concept name 𝐶
to a subset 𝐶𝐼 ⊆ ∆𝐼 and every role name 𝑅 ∈ 𝑁𝑅 to a binary relation 𝑅𝐼 ⊆ ∆𝐼 ×∆𝐼 . The
semantics of the operator is obtained by extending the definition of the semantics of 𝒜ℒ𝒞 as
follows. Let 𝐼 = (∆𝐼 , ·𝐼) be an interpretation of 𝒜ℒ𝒞. The interpretation of a ∇∇-concept
𝐶 = ∇∇𝑡((𝐶1, 𝑤1), . . . , (𝐶𝑚, 𝑤𝑚)) is:

𝐶𝐼 = {𝑑 ∈ ∆𝐼 | 𝑣𝐼𝐶(𝑑) ≥ 𝑡} (1)

where 𝑣𝐼𝐶(𝑑) is the value of 𝑑 ∈ ∆𝐼 under the concept 𝐶 , defined as:

𝑣𝐼𝐶(𝑑) =
∑︁

𝑖∈{1,...,𝑚}

{𝑤𝑖 | 𝑑 ∈ 𝐶𝐼
𝑖 } (2)

For instance consider 𝐶𝐸 = ∇∇1.8((𝐹1, 1.2), (𝐹2, 1), (𝐹3, 0.4), (𝐹4, 0.1)). If an individual 𝑑 ∈
𝐹 𝐼
1 ∩ 𝐹 𝐼

3 but 𝑑 /∈ 𝐹 𝐼
2 , then 𝑑 /∈ 𝐶𝐸

𝐼 because even when 𝑑 ∈ 𝐹4
𝐼 we have that 𝑣𝐼𝐶𝐸

(𝑑) =
1.2 + 0 + 0.4 + 0.1 = 1.7 < 1.8.

The interpretation 𝐼 is a model of the knowledge base KB if for every concept inclusion
𝐶 ⊑ 𝐷 in KB, it is the case that 𝐶𝐼 ⊆ 𝐷𝐼 . A concept inclusion 𝐶 ⊑ 𝐷 is entailed by the
knowledge base KB (noted KB |= 𝐶 ⊑ 𝐷) when 𝐶𝐼 ⊆ 𝐷𝐼 holds for every model 𝐼 of KB. A
concept 𝐶 is satisfiable in KB when 𝐶𝐼 ̸= ∅ for some model 𝐼 of KB. Adding tooth-expressions
to the language of 𝒜ℒ𝒞 is thus done without modifying the standard notion of interpretation in
DL. As observed in [9], tooth-operators do not increase the expressive power of any language
that contains the standard Boolean operators. It was shown in [14] that adding tooth-operators
to such DL languages does not increase the complexity of the corresponding inference problem.
Tooth-operators behave like perceptrons [15, 14]: a (non-nested) tooth expression is a linear
classification model, which enables to learn weights and thresholds from real data (in particular,
from set of assertions about individuals) exploiting standard linear classification algorithms.
Multilayer perceptrons can then be represented via nested tooth expressions.

The design of the tooth operator is inspired by the Prototype Theory: the concepts in the
∇∇-definition of 𝐶 may be seen as the features of 𝐶 and their weights may be intended to
represent the relevance of such features (for 𝐶). This allows us to express typicality effects
in the context of a logical representation: in our setting, the most typical instances, the best
exemplars, of 𝐶 are the individuals with the highest score, i.e., by exploiting the value 𝑣𝐼𝐶 ,
individuals can be ordered in terms of typicality.



Given 𝐶 = ∇∇𝑡((𝐹1, 𝑤1), ..., (𝐹𝑚, 𝑤𝑚)), a knowledge base KB, and a set 𝒫 of concepts, we
introduce the following sets:

– ft(𝐶) = {𝐹1, . . . , 𝐹𝑚};
– snc(𝐶) = {𝐹𝑖 ∈ ft(𝐶) |

∑︀
𝑗 ̸=𝑖𝑤𝑗 < 𝑡};

– nc(KB, 𝐶,𝒫) = {𝑃 ∈ 𝒫 | KB ⊨ 𝐶 ⊑ 𝑃};
– im(KB, 𝐶,𝒫) = {𝑃 ∈ 𝒫 | KB ⊨ 𝐶 ⊑ ¬𝑃}.

ft(𝐶) is the set of the features of 𝐶 while snc(𝐶) is the set of the strongly necessary features
of 𝐶: individuals lacking a feature in snc(𝐶) cannot reach the threshold. Note that snc(𝐶)
is defined in a purely syntactic way, logical inference is not deployed here. By relying on nc
and im (that are grounded on logical inference), the sets of necessary and impossible features
of 𝐶 w.r.t. KB can be defined as nc(KB, 𝐶, ft(𝐶)) and im(KB, 𝐶, ft(𝐶)), respectively. Note
that snc(𝐶) ⊆ nc(∅, 𝐶, ft(𝐶)); indeed when ⊨ 𝐹𝑖 ⊑ 𝐹𝑗 (with 𝑖 ̸= 𝑗) we have that snc(𝐶) ⊂
nc(∅, 𝐶, ft(𝐶)). In the previous example, snc(𝐶𝐸) = {𝐹1, 𝐹2} and, assuming that KB contains
only 𝐹2 ⊑ 𝐹3, nc(𝐾𝐵,𝐶𝐸 , ft(𝐶𝐸)) = {𝐹1, 𝐹2, 𝐹3}.

In the following, we always consider a single knowledge base KB. To simplify the notation we
then write nc(𝐶,𝒫) and im(𝐶,𝒫) rather than nc(KB, 𝐶,𝒫) and im(KB, 𝐶,𝒫), respectively.
Furthermore, we assume that all the ∇∇-concepts 𝐶 are satisfiable in KB and that they are not
redundant, i.e., im(𝐶, ft(𝐶)) = ∅ (none of the features included in the tooth contradicts any
of the necessary features of 𝐶). Finally, given a set 𝒫 of concepts, we write ⌈𝒫⌉ to indicate the
conjunction of all the concepts in 𝒫 .

4. An Algorithm to Combine ∇∇-Concepts

We present an algorithm for concept combination inspired by the work of Hampton [1] discussed
in section 2. Following [1], we mainly focus on the case of conjunctive concept combination, i.e.,
combinations that closely relate to a conjunction of the constituent concepts. The algorithm
considers as input the ∇∇-definitions of two concepts, one (𝐻) playing the role of head and
one (𝑀 ) playing the role of modifier, and it outputs the ∇∇-definition of the combined concept
noted 𝑀∘𝐻 . Without losing generality [9, 15], we assume that: (𝑖) 𝐻 and 𝑀 have the same
positive threshold and (𝑖𝑖) all the features have positive weights.

The head and modifier roles are based on a linguistic distinction on noun-noun compound
[16]. Looking at noun-noun combinations in English, two parts can be distinguished, the Head
and the Modifier, depending on the syntactic construction of the compound. Considering for
instance a “Tool Weapon”, the noun “weapon” would play the role of the Head, whereas “tool”
would be the Modifier. As the names suggest, the Head provides the base category of the
combined concept, whilst the Modifier alters the attributes of the Head. The result is that a
“Tool Weapon” may be in principle quite different from a “Weapon Tool”. However, the role of
the Head concept may here be also compliant with the notion of a dominant concept (discussed
below), as introduced in [1], in line with the work in [8].

The algorithm consists of three phases: phase 1 collects the features of 𝑀∘𝐻 by assuming
that the head dominates the modifier; phase 2 selects the weights of the features of 𝑀∘𝐻 ; and
phase 3 determines a range of possible thresholds for (the ∇∇-definition of) 𝑀∘𝐻 . As we will



see, in phase 1 the logical nature of ∇∇-operators allows one to use the inference power of logic
to determine incompatibilities between the features of 𝐻 and 𝑀 . Vice versa, phases 2 and 3
use only the information made available by the (intensional) ∇∇-definitions of concepts.

Phase 1: features. The set of the features of 𝑀∘𝐻 is built in two steps:

(Step 1) ft̄(𝑀∘𝐻) = nc(𝐻, ft(𝐻)) ∪ (nc(𝑀, ft(𝑀)) ∖ im(𝐻, ft(𝑀)))

(Step 2) ft(𝑀∘𝐻) = ft(𝐻) ∖ im(𝐻 ⊓ ⌈ft̄(𝑀∘𝐻)⌉, ft(𝐻)) ∪
ft(𝑀) ∖ im(𝑀 ⊓ ⌈ft̄(𝑀∘𝐻)⌉, ft(𝑀))

Step 1 collects all the necessary features of 𝐻 together with all the necessary features of 𝑀
which are not impossible for 𝐻 . This shows in which sense 𝐻 dominates 𝑀 , 𝐻 is the base of
𝑀∘𝐻 : in case of incompatibilities we discard necessary features of 𝑀 , not of 𝐻 . It follows that
ft(𝑀∘𝐻) and ft(𝐻∘𝑀) can differ.

Step 2 builds on the previous step, examining all the non-necessary features of both 𝐻 and
𝑀 . Specifically, it aims at excluding all the features of H (resp. M ), which are impossible for
H (resp. M ) itself, once all the necessary features of M (resp. H ) in ft̄(𝑀∘𝐻) are added.

The selection of features based on the distinction between necessary and impossible features
aims at mimicking the model proposed in [1] and discussed in section 2.

Phase 2: weights. Once built the set ft(𝑀∘𝐻) containing all the features of 𝑀∘𝐻 , weights
are assigned to them in the following way:

(1) the weight of each feature in ft(𝐻) (resp. ft(𝑀)) is divided by the maximal sum of the
weights of consistent (in KB) subsets of ft(𝐻) (resp. ft(𝑀));

(2) for all the features in sft¯ (𝑀∘𝐻) = ft̄(𝑀∘𝐻) ∩ (snc(𝑀) ∪ snc(𝐻)) we consider the
weight calculated in (1) except for the ones in sft¯ (𝑀∘𝐻)∩ ft(𝐻)∩ ft(𝑀) for which we
consider the maximal weight (of the weights calculated in (1));

(3) for all the features in ft(𝑀∘𝐻) ∖ sft¯ (𝑀∘𝐻) we consider the weight calculated in (1)
except for the ones in (ft(𝑀∘𝐻) ∖ sft¯ (𝑀∘𝐻)) ∩ ft(𝐻) ∩ ft(𝑀) for which we consider
the average weight (of the weights calculated in (1)).

In Sect. 3 we observed that the weight of a feature can be seen as an indicator of the relevance
of such feature for the concept. The idea in (1) is to normalize this indicator with respect to the
value 𝑣𝐼𝐶 of the possible best exemplars. The numbers of features of 𝐻 and 𝑀 may substantially
differ preventing absolute weights to be accurate relevance-indicators. (2) and (3) attribute to the
features of 𝑀∘𝐻 the weights calculated in (1) except when a feature belongs to ft(𝐻)∩ ft(𝑀)
and has different normalized weights (in 𝐻 and 𝑀 ). In these cases, following Hampton [1], we
consider the maximal weight for the features in sft¯ (𝑀∘𝐻)—as we will see in the discussion
of the phase 3, sft¯ (𝑀∘𝐻) corresponds to snc(𝑀∘𝐻)—and the average weight for the other
features of 𝑀∘𝐻 .

Phase 3: threshold. We fix the threshold for 𝑀∘𝐻 to assure that sft¯ (𝑀∘𝐻) = snc(𝑀∘𝐻),
i.e., the strongly necessary features of 𝐻 together with the strongly necessary features of 𝑀
(that are compatible with the necessary features of 𝐻) are also strongly necessary features of



𝑀∘𝐻 . To do that, the threshold must belong to the open interval (𝑤−𝑤𝑚+, 𝑤−𝑤𝑀−) where 𝑤
is the sum of the weights of the features in ft(𝑀∘𝐻), 𝑤𝑚+ is the minimal weight of the features
in sft¯ (𝑀∘𝐻), and 𝑤𝑀− is the maximal weight of the features in ft(𝑀∘𝐻) ∖ sft¯ (𝑀∘𝐻). By
increasing the threshold we exclude some combinations of non-necessary features. Furthermore,
assume that ⌈sft¯ (𝑀∘𝐻)⌉ implies some features in ft(𝑀∘𝐻) ∖ sft¯ (𝑀∘𝐻). These implied
features are necessary even though the threshold can be reached without counting their weights,
i.e., they are not strongly necessary. It is also possible that some features in ft̄(𝑀∘𝐻) ∖
sft¯ (𝑀∘𝐻) are not necessary for 𝑀∘𝐻 , i.e., the algorithm preserves the strong necessity but not
the necessity. E.g., consider the case where ft(𝑀) = {𝐹1, 𝐹2}, 𝐹1 ∈ snc(𝑀), 𝐹2 /∈ snc(𝑀),
KB ⊨ 𝐹1 ⊑ 𝐹2, and 𝐹1 (but not 𝐹2) is incompatible with the necessary features of 𝐻 . In this
case 𝐹2 ∈ ft̄(𝑀∘𝐻) ∖ sft¯ (𝑀∘𝐻) but 𝐹2 is no more necessary for 𝑀∘𝐻 because 𝐹1, which
grounds the necessity of 𝐹2, has been discarded.

5. Examples

We illustrate how the proposed algorithm works by means of several paradigmatic examples of
noun-noun and adjective-noun combinations. Without presenting a direct empirical validation,
we analyze how the algorithm accounts for the phenomena and rules identified by Hampton in
[1] to build the prototypes of conjunctive combinations of concepts (in particular, inheritance
failure, dominance effect, overextension, and emergence of features). Even though the ∇∇-
definitions and KBs we consider seem plausible, we cannot commit on their empirical foundation.
Their main intent is to show how the effectiveness of the rules proposed by Hampton critically
depends not only on the weights of the features and on the thresholds in the ∇∇-definitions
but also on the assumed background knowledge. The embedding of prototypes into a logical
framework allows the algorithm to explicitly and formally take into account both these aspects.

5.1. Noun-Noun Combinations

5.1.1. Pet Fish

We start by considering the case of Pet Fish that has been advocated to show the inadequacy of
the Prototype Theory to capture concept combinations. Consider the following ∇∇-definitions
and assume 𝐹𝑖𝑠ℎ is the head and 𝑃𝑒𝑡 the modifier:

𝐹𝑖𝑠ℎ = ∇∇10((∀𝑙𝑖𝑣𝑒𝑠𝐼𝑛.𝑊𝑎𝑡𝑒𝑟, 3), (¬𝑊𝑎𝑟𝑚𝐵𝑙𝑜𝑜𝑑𝑒𝑑, 3), (∀𝑏𝑟𝑒𝑎𝑡ℎ𝑒𝑠𝑇ℎ𝑟𝑜𝑢𝑔ℎ.𝐺𝑖𝑙𝑙, 3),
(𝐺𝑟𝑒𝑦, 0.9), (𝑆𝑐𝑎𝑙𝑦, 0.9), (∃ℎ𝑎𝑠𝑃𝑎𝑟𝑡.𝐹 𝑖𝑛, 1))

𝑃𝑒𝑡 = ∇∇10((𝐶𝑎𝑟𝑒𝑑𝐹𝑜𝑟, 3)(𝑃𝑟𝑒𝑡𝑡𝑦, 3), (∀𝑙𝑖𝑣𝑒𝑠𝐼𝑛.𝐻𝑜𝑢𝑠𝑒, 3), (𝐹𝑢𝑟𝑟𝑦, 0.9),
(𝑊𝑎𝑟𝑚𝐵𝑙𝑜𝑜𝑑𝑒𝑑, 0.9), (∃𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑠𝐶𝑜𝑚𝑝𝑎𝑛𝑖𝑜𝑛𝑠ℎ𝑖𝑝𝑇𝑜.𝐻𝑢𝑚𝑎𝑛, 1))

Furthermore, assume the following KB:

∀𝑙𝑖𝑣𝑒𝑠𝐼𝑛.𝑊𝑎𝑡𝑒𝑟 ⊓ ∀𝑙𝑖𝑣𝑒𝑠𝐼𝑛.𝐻𝑜𝑢𝑠𝑒 ⊑ ∀𝑙𝑖𝑣𝑒𝑠𝐼𝑛.𝐴𝑞𝑢𝑎𝑟𝑖𝑢𝑚 (3a)

𝐹𝑢𝑟𝑟𝑦 ⊑ 𝑊𝑎𝑟𝑚𝐵𝑙𝑜𝑜𝑑𝑒𝑑 (3b)

𝑃𝑟𝑒𝑡𝑡𝑦 ⊓ ∀𝑏𝑟𝑒𝑎𝑡ℎ𝑒𝑠𝑇ℎ𝑟𝑜𝑢𝑔ℎ.𝐺𝑖𝑙𝑙 ⊑ ¬𝐺𝑟𝑒𝑦 (3c)



Phase 1 collects the features of 𝑃𝑒𝑡∘𝐹𝑖𝑠ℎ. More precisely, (Step 1) defines the set of nec-
essary features of Pet∘Fish . It collects the necessary features of the Head concept 𝐹𝑖𝑠ℎ
(nc(𝐹𝑖𝑠ℎ, ft(𝐹𝑖𝑠ℎ)) = {∀𝑙𝑖𝑣𝑒𝑠𝐼𝑛.𝑊𝑎𝑡𝑒𝑟,¬𝑊𝑎𝑟𝑚𝐵𝑙𝑜𝑜𝑑𝑒𝑑,∀𝑏𝑟𝑒𝑎𝑡ℎ𝑒𝑠𝑇ℎ𝑟𝑜𝑢𝑔ℎ.𝐺𝑖𝑙𝑙}) and
the necessary features of the Modifier Pet which are not impossible for 𝐹𝑖𝑠ℎ. In this case there
are no inconsistencies between the necessary features of the two concepts, therefore

ft̄(𝑃𝑒𝑡∘𝐹𝑖𝑠ℎ) = {∀𝑙𝑖𝑣𝑒𝑠𝐼𝑛.𝑊𝑎𝑡𝑒𝑟,¬𝑊𝑎𝑟𝑚𝐵𝑙𝑜𝑜𝑑𝑒𝑑,∀𝑏𝑟𝑒𝑎𝑡ℎ𝑒𝑠𝑇ℎ𝑟𝑜𝑢𝑔ℎ.𝐺𝑖𝑙𝑙, 𝐶𝑎𝑟𝑒𝑑𝐹𝑜𝑟,
𝑃𝑟𝑒𝑡𝑡𝑦,∀𝑙𝑖𝑣𝑒𝑠𝐼𝑛.𝐻𝑜𝑢𝑠𝑒}

.

(Step 2) examines the non-necessary features aiming at excluding all the features of Fish
(resp. Pet ), which are impossible for the concept Fish (resp. Pet ) itself, once one adds all the
necessary features of the concept Pet (resp. Fish) in ft̄(𝑃𝑒𝑡∘𝐹𝑖𝑠ℎ). In our example,

ft(𝑃𝑒𝑡∘𝐹𝑖𝑠ℎ) = {∀𝑙𝑖𝑣𝑒𝑠𝐼𝑛.𝑊𝑎𝑡𝑒𝑟,¬𝑊𝑎𝑟𝑚𝐵𝑙𝑜𝑜𝑑𝑒𝑑,∀𝑏𝑟𝑒𝑎𝑡ℎ𝑒𝑠𝑇ℎ𝑟𝑜𝑢𝑔ℎ.𝐺𝑖𝑙𝑙, 𝐶𝑎𝑟𝑒𝑑𝐹𝑜𝑟,
𝑃𝑟𝑒𝑡𝑡𝑦,∀𝑙𝑖𝑣𝑒𝑠𝐼𝑛.𝐻𝑜𝑢𝑠𝑒, 𝑆𝑐𝑎𝑙𝑦, ∃ℎ𝑎𝑠𝑃𝑎𝑟𝑡.𝐹 𝑖𝑛,
∃𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑠𝐶𝑜𝑚𝑝𝑎𝑛𝑖𝑜𝑛𝑠ℎ𝑖𝑝𝑇𝑜.𝐻𝑢𝑚𝑎𝑛}

.

Indeed:

• 𝐹𝑢𝑟𝑟𝑦 /∈ ft(𝑃𝑒𝑡∘𝐹𝑖𝑠ℎ) because of (3b) in the KB and
¬𝑊𝑎𝑟𝑚𝐵𝑙𝑜𝑜𝑑𝑒𝑑 ∈ nc(𝐹𝑖𝑠ℎ, ft(𝐹𝑖𝑠ℎ)) and then ¬𝑊𝑎𝑟𝑚𝐵𝑙𝑜𝑜𝑑𝑒𝑑 ∈ ft̄(𝑃𝑒𝑡∘𝐹𝑖𝑠ℎ);

• 𝑊𝑎𝑟𝑚𝐵𝑙𝑜𝑜𝑑𝑒𝑑 /∈ ft(𝑃𝑒𝑡∘𝐹𝑖𝑠ℎ) again because¬𝑊𝑎𝑟𝑚𝐵𝑙𝑜𝑜𝑑𝑒𝑑 ∈ nc(𝐹𝑖𝑠ℎ, ft(𝐹𝑖𝑠ℎ));
• 𝐺𝑟𝑒𝑦 /∈ ft(𝑃𝑒𝑡∘𝐹𝑖𝑠ℎ) because of (3c) in the KB and 𝑃𝑟𝑒𝑡𝑡𝑦, ∀𝑏𝑟𝑒𝑎𝑡ℎ𝑒𝑠𝑇ℎ𝑟𝑜𝑢𝑔ℎ.𝐺𝑖𝑙𝑙 ∈
ft̄(𝑃𝑒𝑡∘𝐹𝑖𝑠ℎ).

Phase 2 assigns weights to the features in ft(𝑃𝑒𝑡∘𝐹𝑖𝑠ℎ). First, note that ft̄(𝑃𝑒𝑡∘𝐹𝑖𝑠ℎ) =
sft¯ (𝑃𝑒𝑡∘𝐹𝑖𝑠ℎ). Second, ft(𝐹𝑖𝑠ℎ) ∩ ft(𝑃𝑒𝑡) = ∅, therefore there are no cases in (2) and (3) in
phase 2 where we need to maximize or average the weights. For each feature of each component
concept, the weight associated to that feature is divided by the score of the best exemplars of
that concept (11.8 for 𝐹𝑖𝑠ℎ; 𝐹𝑖𝑠ℎ has no incompatible features therefore the best exemplars
have all the features in ft(𝐹𝑖𝑠ℎ), similarly for 𝑃𝑒𝑡). We obtain:

𝑃𝑒𝑡∘𝐹𝑖𝑠ℎ = ∇∇𝑡((∀𝑙𝑖𝑣𝑒𝑠𝐼𝑛.𝑊𝑎𝑡𝑒𝑟, 0.25), (¬𝑊𝑎𝑟𝑚𝐵𝑙𝑜𝑜𝑑𝑒𝑑, 0.25),
(∀𝑏𝑟𝑒𝑎𝑡ℎ𝑒𝑠𝑇ℎ𝑟𝑜𝑢𝑔ℎ.𝐺𝑖𝑙𝑙, 0.25), (𝐶𝑎𝑟𝑒𝑑𝐹𝑜𝑟, 0.25), (𝑃𝑟𝑒𝑡𝑡𝑦, 0.25),
(∀𝑙𝑖𝑣𝑒𝑠𝐼𝑛.𝐻𝑜𝑢𝑠𝑒, 0.25), (𝑆𝑐𝑎𝑙𝑦, 0.07), (∃ℎ𝑎𝑠𝑃𝑎𝑟𝑡.𝐹 𝑖𝑛, 0.08),
(∃𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑠𝐶𝑜𝑚𝑝𝑎𝑛𝑖𝑜𝑛𝑠ℎ𝑖𝑝𝑇𝑜.𝐻𝑢𝑚𝑎𝑛, 0.08))

.

Following the phase 3, the threshold 𝑡 ∈ (1.48, 1.65). The lower bound is the sum of
the weights of the features in ft(𝑃𝑒𝑡∘𝐹𝑖𝑠ℎ) minus the smaller weight of the features in
sft¯ (𝑃𝑒𝑡∘𝐹𝑖𝑠ℎ), i.e., 1.73 − 0.25 = 1.48. The upper bound is the sum of the weights of
the features in ft(𝑃𝑒𝑡∘𝐹𝑖𝑠ℎ) minus the bigger weight of the features in ft(𝑃𝑒𝑡∘𝐹𝑖𝑠ℎ) ∖
sft¯ (𝑃𝑒𝑡∘𝐹𝑖𝑠ℎ), i.e., 1.73 − 0.08 = 1.65. When 𝑡 ∈ (1.48, 1.65), we have snc(𝑃𝑒𝑡∘𝐹𝑖𝑠ℎ) =
sft¯ (𝑃𝑒𝑡∘𝐹𝑖𝑠ℎ) and none of the non-necessary features of 𝐹𝑖𝑠ℎ and 𝐻𝑒𝑎𝑑 becomes strongly
necessary for 𝑃𝑒𝑡∘𝐹𝑖𝑠ℎ.

A note on the inheritance failure. One of the main points of the Pet Fish counter-example
against the prototype theory is the inheritance failure of, e.g., the feature 𝐺𝑟𝑒𝑦: prototype
representations are not compositional, it is argued, since there is no rule able to explain why,



e.g., fishes, but not petfishes, are usually grey. In our example 𝐺𝑟𝑒𝑦 ∈ ft(𝐹𝑖𝑠ℎ) but 𝐺𝑟𝑒𝑦 /∈
ft(𝑃𝑒𝑡∘𝐹𝑖𝑠ℎ). This is due to the fact that (𝑖) 𝐺𝑟𝑒𝑦 is a non-necessary feature of 𝐹𝑖𝑠ℎ; (𝑖𝑖)
𝑃𝑟𝑒𝑡𝑡𝑦 is necessary feature of 𝑃𝑒𝑡 compatible with all the necessary features of 𝐹𝑖𝑠ℎ; and (𝑖𝑖𝑖)
KB contains (3c). Even when dropping one of these assumptions, alternative strategies may be
exploited to at least partially model inheritance failure in our framework,.

Assume, for instance, that 𝑃𝑟𝑒𝑡𝑡𝑦 is a necessary feature of 𝑃𝑒𝑡, but KB does not contain (3c).
In this case we would have that 𝑃𝑟𝑒𝑡𝑡𝑦,𝐺𝑟𝑒𝑦 ∈ ft(𝑃𝑒𝑡∘𝐹𝑖𝑠ℎ). The relevance of 𝐺𝑟𝑒𝑦 w.r.t.
𝑃𝑒𝑡∘𝐹𝑖𝑠ℎ is lower than the one of 𝐺𝑟𝑒𝑦 w.r.t. 𝐹𝑖𝑠ℎ but this holds in general when the number
of features in 𝑃𝑒𝑡∘𝐹𝑖𝑠ℎ is higher than the number of features in 𝐹𝑖𝑠ℎ. We may however find
some mechanisms to enforce 𝐺𝑟𝑒𝑦 to have an increasingly marginal relevance w.r.t. 𝑃𝑒𝑡∘𝐹𝑖𝑠ℎ.
Inspired by the idea of extensional feedback [17], we could decrease (or increase) the weight of
a feature according to the number of instances, within KB, satisfying that feature in the context
of the new concept. For instance, we may observe that, extensionally, when adding the feature
𝑃𝑟𝑒𝑡𝑡𝑦 to the concept 𝐹𝑖𝑠ℎ, the number of 𝐺𝑟𝑒𝑦 fish (proportionally) decrease, and reduce the
weight of the feature 𝐺𝑟𝑒𝑦 accordingly. This may be thought as an additional step within our
algorithm that nicely integrates the prototype, knowledge, and exemplar views on concepts.

Conversely, if 𝑃𝑟𝑒𝑡𝑡𝑦 is a non-necessary feature of 𝑃𝑒𝑡 and KB contains (3c), still we have
that 𝑃𝑟𝑒𝑡𝑡𝑦,𝐺𝑟𝑒𝑦 ∈ ft(𝑃𝑒𝑡∘𝐹𝑖𝑠ℎ). This would not cause any problem in terms of consistency
because both 𝑃𝑟𝑒𝑡𝑡𝑦 and 𝐺𝑟𝑒𝑦 are non-necessary features of 𝑃𝑒𝑡∘𝐹𝑖𝑠ℎ. However, one could
modify the algorithm to discard some non-necessary features inconsistent with other non-
necessary features in order to produce a ∇∇-definition for the combined concept that maximizes
the typicality of the best exemplars.

A note on emergent features. Assuming KB contains (3a), we have that KB ⊨ 𝑃𝑒𝑡∘𝐹𝑖𝑠ℎ ⊑
∀𝑙𝑖𝑣𝑒𝑠𝐼𝑛.𝐴𝑞𝑢𝑎𝑟𝑖𝑢𝑚 but neither KB ⊨ 𝐹𝑖𝑠ℎ ⊑ ∀𝑙𝑖𝑣𝑒𝑠𝐼𝑛.𝐴𝑞𝑢𝑎𝑟𝑖𝑢𝑚 nor KB ⊨ 𝑃𝑒𝑡 ⊑
∀𝑙𝑖𝑣𝑒𝑠𝐼𝑛.𝐴𝑞𝑢𝑎𝑟𝑖𝑢𝑚 hold. ∀𝑙𝑖𝑣𝑒𝑠𝐼𝑛.𝐴𝑞𝑢𝑎𝑟𝑖𝑢𝑚 can then be seen as an emergent property of
𝑃𝑒𝑡∘𝐹𝑖𝑠ℎ which follows only by the conjunction of the necessary features of 𝐹𝑖𝑠ℎ and 𝑃𝑒𝑡.

5.1.2. Sport Game

The Sport Game concept is among the combinations considered by Hampton in his experiments
and it is an example of combinations becoming quite close to conjunctions. Assume that KB is
empty and that 𝑆𝑝𝑜𝑟𝑡 and 𝐺𝑎𝑚𝑒 are defined as follows:3

𝑆𝑝𝑜𝑟𝑡 = ∇∇4((𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦, 3), (∃𝑑𝑜𝑛𝑒𝐹𝑜𝑟.𝐹𝑢𝑛, 0.6), (𝐼𝑠𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑒, 0.7),
(∃𝑑𝑜𝑛𝑒𝐹𝑜𝑟.𝐻𝑒𝑎𝑙𝑡ℎ, 0.7), (∃𝑛𝑒𝑒𝑑𝑠.𝐴𝑡ℎ𝑙𝑒𝑡𝑖𝑐𝐴𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠, 0.8))

𝐺𝑎𝑚𝑒 = ∇∇4((∃𝑑𝑜𝑛𝑒𝐹𝑜𝑟.𝐹𝑢𝑛, 2), (𝐼𝑠𝐸𝑥𝑐𝑖𝑡𝑖𝑛𝑔, 1), (𝐼𝑠𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑒, 1),
(¬(∃ℎ𝑎𝑠.𝑆𝑒𝑟𝑖𝑜𝑢𝑠𝐺𝑜𝑎𝑙), 1), (∃𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠.𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛, 1))

In this case, 𝐺𝑎𝑚𝑒 has no necessary features4, i.e., nc(𝐺𝑎𝑚𝑒, ft(𝐺𝑎𝑚𝑒)) = ∅. Moreover, the
two concepts do not include clashing information, namely im(𝐺𝑎𝑚𝑒, ft(𝑆𝑝𝑜𝑟𝑡)) = ∅ and
im(𝑆𝑝𝑜𝑟𝑡, ft(𝐺𝑎𝑚𝑒)) = ∅. We would then obtain ft̄(𝑆𝑝𝑜𝑟𝑡∘𝐺𝑎𝑚𝑒) = {𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦}.

As a result, at the end of phase 1, all the features of 𝑆𝑝𝑜𝑟𝑡 and 𝐺𝑎𝑚𝑒 are collected, i.e.,

3A similar example was used in [11], and imitates the features collected in [1].
4Following the well-known argument proposed in [18].



ft(𝑆𝑝𝑜𝑟𝑡∘𝐺𝑎𝑚𝑒) = {𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦, ∃𝑑𝑜𝑛𝑒𝐹𝑜𝑟.𝐹𝑢𝑛, 𝐼𝑠𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑒,
∃𝑑𝑜𝑛𝑒𝐹𝑜𝑟.𝐻𝑒𝑎𝑙𝑡ℎ,∃𝑛𝑒𝑒𝑑𝑠.𝐴𝑡ℎ𝑙𝑒𝑡𝑖𝑐𝐴𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠, 𝐼𝑠𝐸𝑥𝑐𝑖𝑡𝑖𝑛𝑔,
¬(∃ℎ𝑎𝑠.𝑆𝑒𝑟𝑖𝑜𝑢𝑠𝐺𝑜𝑎𝑙),∃𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠.𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛}

The weight assignment proceeds as usual but note that 𝐼𝑠𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑒 and ∃𝑑𝑜𝑛𝑒𝐹𝑜𝑟.𝐹𝑢𝑛
are two non-necessary features of 𝑆𝑝𝑜𝑟𝑡∘𝐺𝑎𝑚𝑒 which belong to ft(𝑆𝑝𝑜𝑟𝑡) ∩ ft(𝐺𝑎𝑚𝑒). Ac-
cording to (3) of phase 2, for these features we need then to take the average of the weights
they have in 𝑆𝑝𝑜𝑟𝑡 and 𝐺𝑎𝑚𝑒. At the end of phase 2, we obtain

𝑆𝑝𝑜𝑟𝑡∘𝐺𝑎𝑚𝑒 = ∇∇𝑡((𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦, 0.5), (∃𝑑𝑜𝑛𝑒𝐹𝑜𝑟.𝐹𝑢𝑛, 0.2), (𝐼𝑠𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑒, 0.14),
(∃𝑑𝑜𝑛𝑒𝐹𝑜𝑟.𝐻𝑒𝑎𝑙𝑡ℎ, 0.12), (∃𝑛𝑒𝑒𝑑𝑠.𝐴𝑡ℎ𝑙𝑒𝑡𝑖𝑐𝐴𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠, 0.13),
(𝐼𝑠𝐸𝑥𝑐𝑖𝑡𝑖𝑛𝑔, 0.16), (¬∃ℎ𝑎𝑠.𝑆𝑒𝑟𝑖𝑜𝑢𝑠𝐺𝑜𝑎𝑙, 0.16),
(∃𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠.𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛, 0.16))

Phase 3 establishes that 𝑡 ∈ (1.07, 1.37).

A note on dominance effect. In the example, ft(𝑆𝑝𝑜𝑟𝑡∘𝐺𝑎𝑚𝑒) = ft(𝐺𝑎𝑚𝑒∘𝑆𝑝𝑜𝑟𝑡). Ac-
tually, the algorithm outputs the same ∇∇-definition for 𝑆𝑝𝑜𝑟𝑡∘𝐺𝑎𝑚𝑒 and 𝐺𝑎𝑚𝑒∘𝑆𝑝𝑜𝑟𝑡. If

𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ⊑ ∃ℎ𝑎𝑠.𝑆𝑒𝑟𝑖𝑜𝑢𝑠𝐺𝑜𝑎𝑙 (4)

is included in KB, the situation does not change, the only difference is that (Step 2) of phase 1
rules out ¬∃ℎ𝑎𝑠.𝑆𝑒𝑟𝑖𝑜𝑢𝑠𝐺𝑜𝑎𝑙 from ft(𝑆𝑝𝑜𝑟𝑡∘𝐺𝑎𝑚𝑒) = ft(𝐺𝑎𝑚𝑒∘𝑆𝑝𝑜𝑟𝑡).5

In these cases, the role played by 𝑆𝑝𝑜𝑟𝑡 and 𝐺𝑎𝑚𝑒 is not relevant and the syntactic distinction
between Head and Modifier given by the word order has no impact in the construction of the
combined concept. However, in his experiments Hampton observed another phenomenon called
dominance effect: when one of the component concepts has a greater number of important
features, the resulting combination is more similar to that concept, no matter what the words
order is in carrying out the combination (see [1], p.57). First, 𝑆𝑝𝑜𝑟𝑡 has an essential feature while
nc(Game, ft(𝐺𝑎𝑚𝑒)) = ∅. Second, the best exemplars 𝑑 of 𝑆𝑝𝑜𝑟𝑡∘𝐺𝑎𝑚𝑒 (and 𝐺𝑎𝑚𝑒∘𝑆𝑝𝑜𝑟𝑡)6

would obtain an higher score w.r.t. 𝑆𝑝𝑜𝑟𝑡 than w.r.t. 𝐺𝑎𝑚𝑒, i.e., 𝑣𝐼𝑆𝑝𝑜𝑟𝑡(𝑑
𝐼) > 𝑣𝐼𝐺𝑎𝑚𝑒(𝑑

𝐼). These
two remarks suggest (𝑖) that 𝑆𝑝𝑜𝑟𝑡 has more important features than 𝐺𝑎𝑚𝑒; and (𝑖𝑖) that our
algorithm is more sensible to the dominance effect than to the Head/Modifier distinction.

A note on overextension. As briefly discussed above, the choice of the threshold plays a
central role in determining the extension of the combination. The flexibility of the threshold
permits to deal with another phenomenon observed by Hampton [1], namely overextension.
Hampton observed that, when classifying items under the combined concept, people usually do
not follow a rule corresponding to the intersection: the extension of the combination is very
often over-extended in order to include items that are very good examples of one of the two
concepts, but that do not belong to the extension of the other. In our setting, we may account
for overextension appropriately lowering the threshold below the maximal possible value.

For instance, assume that the individual (constant) boxing is characterized by the axioms

5The situation is different when considering ¬∃ℎ𝑎𝑠.𝑆𝑒𝑟𝑖𝑜𝑢𝑠𝐺𝑜𝑎𝑙 as a necessary feature of 𝐺𝑎𝑚𝑒.
6In the example there are no incompatibilities between the features of 𝑆𝑝𝑜𝑟𝑡∘𝐺𝑎𝑚𝑒 (𝐺𝑎𝑚𝑒∘𝑆𝑝𝑜𝑟𝑡), thus the

best exemplars have all the features.



𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦(boxing),∃𝑑𝑜𝑛𝑒𝐹𝑜𝑟.𝐹𝑢𝑛(boxing), 𝐼𝑠𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑒(boxing),
∃𝑛𝑒𝑒𝑑𝑠.𝐴𝑡ℎ𝑙𝑒𝑡𝑖𝑐𝐴𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠(boxing), ∃𝑑𝑜𝑛𝑒𝐹𝑜𝑟.𝐻𝑒𝑎𝑙𝑡ℎ(boxing).

According to the previous definitions of 𝑆𝑝𝑜𝑟𝑡 and 𝐺𝑎𝑚𝑒, boxing is an instance of 𝑆𝑝𝑜𝑟𝑡 but
not of 𝐺𝑎𝑚𝑒. However, it is easy to chose a value for the threshold for 𝑆𝑝𝑜𝑟𝑡∘𝐺𝑎𝑚𝑒 in the
(1.07, 1.37) range (determined by the algorithm in the phase 3) to include boxing among the
instances of 𝑆𝑝𝑜𝑟𝑡∘𝐺𝑎𝑚𝑒. It is enough to set the threshold in the interval (1.07, 1.09].

5.1.3. Fish Vehicle

The Fish Vehicle example is another case analysed by Hampton [19]. While Sport Game is close
to a plain conjunction, Fish Vehicle is an impossible combination due to a number of clashes
between the features of the component concepts. Sport Game and Fish Vehicle can be seen as
two extremes in the the spectrum of concept combinations. Assume that:

𝐹𝑖𝑠ℎ = ∇∇10((∀𝑙𝑖𝑣𝑒𝑠𝐼𝑛.𝑊𝑎𝑡𝑒𝑟, 3), (𝐴𝑛𝑖𝑚𝑎𝑙, 3), (∀𝑏𝑟𝑒𝑎𝑡ℎ𝑒𝑠𝑇ℎ𝑟𝑜𝑢𝑔ℎ.𝐺𝑖𝑙𝑙, 3), (𝐺𝑟𝑒𝑦, 0.9),
(𝑆𝑐𝑎𝑙𝑦, 0.9), (∃ℎ𝑎𝑠𝑃𝑎𝑟𝑡.𝐹 𝑖𝑛, 1))

𝑉 𝑒ℎ𝑖𝑐𝑙𝑒 = ∇∇10((𝐴𝑟𝑡𝑒𝑓𝑎𝑐𝑡, 3), (∃ℎ𝑎𝑠𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦.𝑀𝑜𝑣𝑒𝐹𝑎𝑠𝑡, 3), (𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑, 3), (𝐻𝑎𝑛𝑑𝑦, 1),
(∃ℎ𝑎𝑠𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡.𝑆𝑡𝑒𝑒𝑟𝑖𝑛𝑔𝑆𝑦𝑠𝑡𝑒𝑚, 1), (∃ℎ𝑎𝑠𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡.𝑆𝑒𝑎𝑡, 0.9))

and consider the following KB:

𝐴𝑛𝑖𝑚𝑎𝑙 ⊑ ¬𝐴𝑟𝑡𝑒𝑓𝑎𝑐𝑡 (5a)

∀𝑏𝑟𝑒𝑎𝑡ℎ𝑒𝑠𝑇ℎ𝑟𝑜𝑢𝑔ℎ.𝐺𝑖𝑙𝑙 ⊑ ¬𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑 (5b)

𝐴𝑟𝑡𝑒𝑓𝑎𝑐𝑡 ⊑ ∀𝑙𝑖𝑣𝑒𝑠𝐼𝑛.⊥ (5c)

𝐴𝑟𝑡𝑒𝑓𝑎𝑐𝑡 ⊑ ∀𝑏𝑟𝑒𝑎𝑡ℎ𝑒𝑠𝑇ℎ𝑟𝑜𝑢𝑔ℎ.⊥ (5d)

Contrarily to the previous example, the Head and Modifier roles have here a strong impact in
the combination. When 𝑉 𝑒ℎ𝑖𝑐𝑙𝑒 is the Head, all the necessary features of 𝐹𝑖𝑠ℎ are discarded
from ft̄(𝑉 𝑒ℎ𝑖𝑐𝑙𝑒∘𝐹𝑖𝑠ℎ) because they belong to im(𝑉 𝑒ℎ𝑖𝑐𝑙𝑒, ft(𝐹𝑖𝑠ℎ)), i.e., they are all im-
possible for 𝑉 𝑒ℎ𝑖𝑐𝑙𝑒. The combined concept would then be essentially a 𝑉 𝑒ℎ𝑖𝑐𝑙𝑒, with few
marginal characteristic of the 𝐹𝑖𝑠ℎ (e.g., being 𝐺𝑟𝑒𝑦 and 𝑆𝑐𝑎𝑙𝑦). Conversely, assuming the
𝐹𝑖𝑠ℎ as the Head would exclude many of the necessary features of 𝑉 𝑒ℎ𝑖𝑐𝑙𝑒 (i.e., 𝐴𝑟𝑡𝑒𝑓𝑎𝑐𝑡 and
𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑), leading to the opposite result.

To obtain a more hybrid combination, a different mechanism is needed: see [20] for a computa-
tional treatment of the same example in the context of formal ontologies, through the procedure
of axiom weakening. Similar combinations are also analysed in the context of Computational
Conceptual Blending (CCB) (see, e.g., [21, 22]). CCB, however, originates from a quite different
conceptual framework [23] and it exploits different technical strategies (i.e., the identification
of shared structures between the two input spaces through a cross-space mapping). A thorough
comparison of the two approaches is beyond the scope of this paper.

5.2. Adjective-Noun Combinations

Our proposal to combine concepts strongly refers to the work of Hampton that mainly focuses
on noun-noun combinations. However, the most common cases of concept combinations



discussed in the literature are adjective-noun combinations, e.g., red apple or pink elephant. In
the following, we analyze some of the examples of this kind of combinations discussed in [24].

First observe that the concepts representing adjectives like red, smooth, salty, etc., usually, do
not have a ∇∇-definition. Given the fact that our algorithm applies only to ∇∇-defined concepts,
we introduce here ∇∇-definitions logically equivalent to these ‘adjective-concepts’: for any
‘adjective-concept’ 𝐶 we add the concept 𝐶∇∇ defined as 𝐶∇∇ = ∇∇𝑤((𝐶,𝑤)). In this way we
assure that 𝐶∇∇ ≡ 𝐶 , i.e., 𝐶∇∇ is logically indistinguishable from 𝐶 .

Red Book. Assume that the ∇∇-definition of 𝐵𝑜𝑜𝑘 does not contain any color-feature. 𝑅𝑒𝑑
is a necessary feature of 𝑅𝑒𝑑∇∇ therefore, assuming 𝑅𝑒𝑑 is compatible with all the features of
𝐵𝑜𝑜𝑘, the tooth of 𝑅𝑒𝑑∇∇∘𝐵𝑜𝑜𝑘 contains the union of the features of 𝐵𝑜𝑜𝑘 and 𝑅𝑒𝑑∇∇. We also
have that 𝑅𝑒𝑑∇∇∘𝐵𝑜𝑜𝑘 ≡ 𝐵𝑜𝑜𝑘∘𝑅𝑒𝑑∇∇, more specifically, they have the same ∇∇-definition.

Red Apple and Red Brick. Assume 𝑌 𝑒𝑙𝑙𝑜𝑤 ⊔𝑅𝑒𝑑 (or, more generally, a color-feature 𝐹𝑐𝑜𝑙

such that 𝑅𝑒𝑑 ⊑ 𝐹𝑐𝑜𝑙) is a feature of 𝐴𝑝𝑝𝑙𝑒. 𝑅𝑒𝑑 is a strongly necessary feature of 𝑅𝑒𝑑∇∇ there-
fore, assuming it is compatible with all the features of 𝐴𝑝𝑝𝑙𝑒, it belongs to sft¯ (𝑅𝑒𝑑∇∇∘𝐴𝑝𝑝𝑙𝑒).
It follows that 𝑌 𝑒𝑙𝑙𝑜𝑤 ⊔𝑅𝑒𝑑 is a (non-strongly) necessary feature of 𝑅𝑒𝑑∇∇∘𝐴𝑝𝑝𝑙𝑒 (because
𝑅𝑒𝑑 ⊑ 𝑌 𝑒𝑙𝑙𝑜𝑤 ⊔ 𝑅𝑒𝑑). By assuming that KB contains 𝑌 𝑒𝑙𝑙𝑜𝑤 ⊑ ¬𝑅𝑒𝑑, the instances of
𝑅𝑒𝑑∇∇∘𝐴𝑝𝑝𝑙𝑒 cannot be yellow because they would lack the necessary feature 𝑅𝑒𝑑. Again
𝐴𝑝𝑝𝑙𝑒∘𝑅𝑒𝑑∇∇ ≡ 𝑅𝑒𝑑∇∇∘𝐴𝑝𝑝𝑙𝑒.

The case of Red Brick is similar to the one of Red Apple but now we have that 𝐹𝑐𝑜𝑙 ⊑ 𝑅𝑒𝑑
where 𝐹𝑐𝑜𝑙 is the color feature of Brick, i.e., the color of bricks is a specialization of 𝑅𝑒𝑑. If 𝐹𝑐𝑜𝑙

is a necessary feature of 𝐵𝑟𝑖𝑐𝑘, then all the instances of 𝑅𝑒𝑑∇∇∘𝐵𝑟𝑖𝑐𝑘 have the color 𝐹𝑐𝑜𝑙 and
𝑅𝑒𝑑∇∇∘𝐵𝑟𝑖𝑐𝑘 ≡ 𝐵𝑟𝑖𝑐𝑘, i.e., 𝑅𝑒𝑑∇∇ has no impact on 𝐵𝑟𝑖𝑐𝑘. If 𝐹𝑐𝑜𝑙 is a non-necessary feature
of 𝐵𝑟𝑖𝑐𝑘, then 𝑅𝑒𝑑 is (strongly) necessary for 𝑅𝑒𝑑∇∇∘𝐵𝑟𝑖𝑐𝑘 but it is still possible to have red
bricks that do not have the color 𝐹𝑐𝑜𝑙. In both cases 𝐵𝑟𝑖𝑐𝑘∘𝑅𝑒𝑑∇∇ ≡ 𝑅𝑒𝑑∇∇∘𝐵𝑟𝑖𝑐𝑘.

Red Fish. According to the previous tooth definition, 𝐺𝑟𝑒𝑦 is a non-necessary feature of
𝐹𝑖𝑠ℎ. Assume now that KB contains the axiom 𝑅𝑒𝑑 ⊑ ¬𝐺𝑟𝑒𝑦. 𝑅𝑒𝑑∇∇∘𝐹𝑖𝑠ℎ would then have
the strongly necessary feature 𝑅𝑒𝑑 which overrules the original feature 𝐺𝑟𝑒𝑦. Also in this case
𝐹𝑖𝑠ℎ∘𝑅𝑒𝑑∇∇ ≡ 𝑅𝑒𝑑∇∇∘𝐹𝑖𝑠ℎ.

Pink Elephant. This case is similar to the one of Red Fish: 𝐺𝑟𝑒𝑦 is a feature of 𝐸𝑙𝑒𝑝ℎ𝑎𝑛𝑡
and KB contains 𝑃𝑖𝑛𝑘 ⊑ ¬𝐺𝑟𝑒𝑦. However, 𝐺𝑟𝑒𝑦 is now a necessary feature of 𝐸𝑙𝑒𝑝ℎ𝑎𝑛𝑡
incompatible with 𝑃𝑖𝑛𝑘. In 𝐸𝑙𝑒𝑝ℎ𝑎𝑛𝑡∘𝑃𝑖𝑛𝑘∇∇, 𝐺𝑟𝑒𝑦 would be overruled by 𝑃𝑖𝑛𝑘 while
𝑃𝑖𝑛𝑘∇∇∘𝐸𝑙𝑒𝑝ℎ𝑎𝑛𝑡 ≡ 𝐸𝑙𝑒𝑝ℎ𝑎𝑛𝑡, i.e., by being the Modifier,𝑃𝑖𝑛𝑘∇∇ has no impact on𝐸𝑙𝑒𝑝ℎ𝑎𝑛𝑡.

These examples show that some expected characteristics of the adjective-noun combinations
are obtained in our framework. For instance, when 𝑅𝑒𝑑∇∇ plays the modifier role, 𝑅𝑒𝑑 is a
(strongly) necessary features of 𝑅𝑒𝑑∇∇∘𝐵𝑜𝑜𝑘, 𝑅𝑒𝑑∇∇∘𝐴𝑝𝑝𝑙𝑒, and 𝑅𝑒𝑑∇∇∘𝐹𝑖𝑠ℎ. The case of
the Pink Elephant is less satisfactory because 𝑃𝑖𝑛𝑘 overrules 𝐺𝑟𝑒𝑦 only when 𝑃𝑖𝑛𝑘∇∇ is the
head concept (and not the modifier as expected). Probably, the weakest aspect concerns the
fact that 𝑅𝑒𝑑∇∇∘𝐵𝑜𝑜𝑘 ≡ 𝐵𝑜𝑜𝑘∘𝑅𝑒𝑑∇∇, 𝑅𝑒𝑑∇∇∘𝐴𝑝𝑝𝑙𝑒 ≡ 𝐴𝑝𝑝𝑙𝑒∘𝑅𝑒𝑑∇∇, and 𝑅𝑒𝑑∇∇∘𝐹𝑖𝑠ℎ ≡
𝐹𝑖𝑠ℎ∘𝑅𝑒𝑑∇∇. These equivalences show that our algorithm does not take into account the



strong asymmetry in the behaviour of adjectives vs. nouns, i.e., it is more tuned to noun-noun
combinations where this asymmetry is less pronounced.

6. Discussion and Related Work

We proposed an algorithm for concept combination able to deal, within a logical framework,
with some of the phenomena observed in cognitive and experimental psychology. The algorithm
consists of three phases. First, it selects all the features needed for the combination, based on the
logical distinction between necessary and impossible features. Second, it assigns new weights
to the features of the combined concept trying to preserve the relevance of features. Finally,
it determines the threshold to assure that the consistent and strongly necessary features are
preserved in the combination.

Different assignments of weights and threshold can, however, be considered. A first alternative
consists in strengthening the relevance of the necessary features. In order to do that, we can
maintain the original weights of the necessary feature, collect the original weights of the non-
necessary features, and then normalise them so that their sum remains strictly lower than the
weight of any of the necessary features. To preserve the necessary features, it suffices to set the
threshold in the interval between the sum of the weights of the necessary features and the sum
of the weights of all the features, minus the highest weight of the non-necessary features.

Considering again the example about 𝐺𝑎𝑚𝑒 and 𝑆𝑝𝑜𝑟𝑡, we obtain (where 𝑡 ∈ (3, 5.1)):

𝐺𝑎𝑚𝑒∘𝑆𝑝𝑜𝑟𝑡 = ∇∇𝑡((𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦, 3), (∃𝑑𝑜𝑛𝑒𝐹𝑜𝑟.𝐹𝑢𝑛, 0.5), (𝐼𝑠𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑒, 0.3),
(∃𝑑𝑜𝑛𝑒𝐹𝑜𝑟.𝐻𝑒𝑎𝑙𝑡ℎ, 0.3), (∃𝑛𝑒𝑒𝑑𝑠.𝐴𝑡ℎ𝑙𝑒𝑡𝑖𝑐𝐴𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠, 0.3),
(𝐼𝑠𝐸𝑥𝑐𝑖𝑡𝑖𝑛𝑔, 0.4), (¬∃ℎ𝑎𝑠.𝑆𝑒𝑟𝑖𝑜𝑢𝑠𝐺𝑜𝑎𝑙, 0.4),
(∃𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠.𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛, 0.4))

.

When 𝑡 = 3 (the minimal value) the necessary features become also sufficient for the classifica-
tion under 𝐺𝑎𝑚𝑒∘𝑆𝑝𝑜𝑟𝑡. Being inspired by the work in [1], our model accounts mostly for the
kind of combinations analysed there, namely conjunctive, noun-noun combinations such as a
Sport which is a Game or a Tool which is a Weapon. This does not exhaust the whole spectrum of
combinations. According to [25], there exist at least two other types of noun-noun combinations.
Let’s consider a robin snake [25, p. 168]: it may be interpreted simply as a snake with a red
under-belly, namely in terms of a property interpretation. In these cases, only a single (maybe
very salient) property of the Modifier applies to the Head. Our algorithm can be modified to
deal with this kind of combinations by exploiting the flexibility of the weights assignment and
by strengthening the role of the Head. Still, our procedure would return essentially a ‘mesh-up’
of the concepts being combined. Besides, a robin snake may be interpreted also as a snake that
eats robin, i.e., according to a relation-linking interpretation, where the eat-relationship holding
between the snake and the robin is crucial. To account for this kind of interpretations, our
algorithm would require additional contextual information, or possibly the reference to specific
background ontologies.7

In a formal context, noun-noun combinations have been analysed in [7] and [8]. [7] proposes
a model for concept combination based on conceptual spaces (as firstly introduced in [24]).

7The example of Brick Red where we assume that Brick Red (but not Red Brick) represents a color (the color
of bricks) seems to require a relation-linking interpretation.



Exploiting the idea of a hierarchy of conceptual spaces, the approach proposed in [7] is able
to merge different spaces (corresponding to different concepts) to account for some of the
phenomena observed in [1]. As acknowledged by the authors themselves, however, many of
the analyzed combinations strongly rely on the probability distribution’s choice associated
to membership function for the combining concepts, which can in some cases lead to quite
unexpected results (e.g., a tree being classified as a Pet Fish with a probability of 0.2). Also, any
appeal to a logical inference mechanism being lacking in their model, the analysis of the notion
of impossibility and necessity is based exclusively on the role of negation: the necessity of a
dimension (a feature, in our setting) 𝐿 corresponds to the impossibility of ¬𝐿. To account for
this notion, a direct negation of the features involved is needed, and it is unclear how this idea
may be exploited in more complex scenarios, e.g., the Pet Fish example analyzed in Sect. 5.1.

[8] introduces a nonmonotonic Description Logic of typicality. Two kinds of properties can
be associated to a concept 𝐶: (𝑖) rigid properties define 𝐶 (e.g., 𝐶 ⊑ 𝐷); while (𝑖𝑖) typical
properties with form 𝑝 :: T(𝐶) ⊑ 𝐷 represent the degree of belief of the typicality inclusion of
𝐶 into 𝐷. Distinguishing between a head concept 𝐻 and a modifier concept 𝑀 the proposed
algorithm outputs the set of typical (and rigid) properties of 𝑀∘𝐻 . To determine the properties
of 𝑀∘𝐻 , the algorithm selects the most probable scenario (i.e., a selection among the union of
the typical properties of 𝑀 and 𝐻) satisfying three conditions: (𝑖) it is consistent (including
the rigid properties); (𝑖𝑖) it is non trivial, i.e., it does not include all the typical properties of 𝐻 ;
(𝑖𝑖𝑖) in case of couples of typical properties with form 𝑝 :: T(𝐻) ⊑ 𝐷 and 𝑝′ :: T(𝑀) ⊑ ¬𝐷,
the second one is discarded. Applied to 𝑃𝑒𝑡 and 𝐹𝑖𝑠ℎ the algorithm shows that 𝐺𝑟𝑒𝑦𝑖𝑠ℎ is
a typical property of 𝐹𝑖𝑠ℎ but not of 𝑃𝑒𝑡∘𝐹𝑖𝑠ℎ. However, first notice that condition (𝑖𝑖) is
established a priori, i.e., it is not the result of a general combination mechanism. Our algorithm
guarantees this property only when some non-necessary features of 𝐻 are inconsistent (in
KB) with the necessary features of 𝑀 (which are consistent with all the necessary features of
𝐻). However, our algorithm can be easily modified to always discard some feature of 𝐻 , even
though this sounds quite artificial to us. Second, in our framework, condition (𝑖𝑖𝑖) somewhat
corresponds to the rule discarding the necessary features of 𝑀 inconsistent with the necessary
features of 𝐻 . However incompatible non-necessary features are not dicarded by our algorithm.
Third, in [8] the possibility to rule out 𝐺𝑟𝑒𝑦𝑖𝑠ℎ depends not only on the degree of belief about
T(𝐹𝑖𝑠ℎ) ⊑ 𝐺𝑟𝑒𝑦𝑖𝑠ℎ but also on the number of typical properties of 𝐹𝑖𝑠ℎ with a lower degree
of belief. In our approach 𝐺𝑟𝑒𝑦𝑖𝑠ℎ is discarded only when it is inconsistent with the conjunction
of the necessary feature of 𝑃𝑒𝑡 (which are consistent with all the necessary features of 𝐹𝑖𝑠ℎ).

The approach proposed here is plunged in the Prototype Theory paradigm, both in terms
of general inspiration and in terms of strategies adopted for the combination of concepts. At
the same time, appealing to an external KB, most of the examples proposed here are also in
debt with the so called Theory View on concepts, namely that idea that concepts cannot stand
in isolation, but should be represented as micro-theories, expressing our knowledge about the
world. To deal with this, we mostly exploited the KB in terms of TBox axioms, expressing the
background knowledge needed to carry out the combinations. By taking into account ABox
statements, expressing particular knowledge over individuals, we may also take into account
the Exemplar View on concepts—namely the idea that the categorization under a concept is
based on the exemplars stored in memory. This may be particularly useful in the context of
the weights assignment in the combination procedure: as mentioned above, we could tune the



weight of a feature according to the number of instances, within our ABox, satisfying that
feature. This may be considered a sophistication of the phase 2 of our algorithm, exploiting
what has been done in [14]. This is, however, matter for future work.
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