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Abstract
The Web Ontology Language OWL 2 DL is the language used to build ontologies for a wide range
of domains including the life sciences, the financial industry and the domain of energy simulations.
Many of these domain ontologies are built beneath upper ontologies (such as DOLCE or BFO), which
themselves are written in more expressive logics than OWL 2 DL, in particular first-order logic (although
they may provide truncated versions in OWL). In this paper we present FOWL, a tool that enables the
translation of OWL ontologies into FOL, and thereby the integration of OWL domain ontologies with
first-order logic ontologies. One use case for this tool is the ability to validate OWL domain ontologies
against their upper-level ontology. FOWL also allows reasoning over the translation using the VAMPIRE
reasoner.
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1. Introduction

In the applied ontology community the two most popular ontology languages are the Web
Ontology Language (OWL) [1], more precisely OWL 2 DL and more restrictive OWL 2 profiles,
and first-order logic (FOL). Both languages have their advantages and disadvantages – FOL is
more expressive than OWL 2 DL, but the satisfiability problem for FOL ontologies is undecidable.
In contrast, the direct semantics for OWL 2 DL [2] is based on the description logic SHROIQ
[3] and, thus, it is decidable whether an OWL 2 ontology is satisfiable. Further, the OWL
Manchester syntax [4] for OWL 2 DL is relatively easy to learn for domain experts.

Often, FOL is used for upper level ontologies, where additional expressivity is needed. Exam-
ples of such are DOLCE [5] and BFO [6]. This leads to the unfortunate situation that domain
ontologies, which are supposed to be based on upper level ontologies, are written in OWL,
while the canonical versions of these upper level ontologies are written in FOL. Therefore, the
consistency of the domain ontologies with respect to the FOL-versions of their associated upper
level ontologies cannot be verified. For this a tool is needed that supports the integration of
OWL ontologies with FOL ontologies.

Another use case for the integration of OWL and FOL ontologies is the extension of a OWL
ontology with FOL axioms. For example, in [7] an OWL ontology was complemented by a
Common Logic ontology (a variant of FOL) to supplement the OWL ontology with knowledge
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that cannot be expressed in OWL. However, without tool support it is not possible to integrate
both into a whole that can be reasoned with.

In this paper we present FOWL, a tool that enables the automatic translation of OWL
ontologies into FOL (in particular, the TPTP syntax for first-order theories). We start by
describing our approach to the translation on a theoretical level. Afterwards we take a look at
how FOWL works and can be used in practice. We also evaluate the performance of FOWL and
discuss related work as well as future tasks.

2. Approach

Our tool translates OWL 2 DL to TPTP. The TPTP syntax [8] has been selected because of its
widespread use among FOL reasoners. This gives us the opportunity to connect FOWL directly
to reasoners such as VAMPIRE [9] or E [10]. OWL 2 has two different semantics: The RDF-based
Semantics [11] and the Direct Semantics [2]. The RDF-based Semantics is an extension of the
semantics of RDFS with datatypes. The Direct Semantics provides a model theory for OWL
2 DL, which is compatible with the description logic SROIQ [3]. Since SROIQ is a decidable
fragment of FOL, a translation from OWL 2 to FOL based on the Direct Semantics is more
straightforward than using the RDF-based Semantics. For this reason, FOWL’s translation is
based on the Direct Semantics.

The OWL 2 Direct Semantics distinguishes between the object domain and the (disjoint) data
domain. The object domain is the extension of owl:Thing; individuals are elements and classes
are subsets of the object domain. The data domain is the extension of rdfs:Literal; literals are
elements and datatypes are subsets of the data domain. Thus, one natural way to translate OWL
2 DL to FOL is to use a typed first-order logic, and to treat owl:Thing and rdfs:Literal as different
types. An alternative approach is to use untyped FOL, to treat owl:Thing and rdfs:Literal as
unary predicates and to introduce axioms that capture the information that would otherwise be
represented by the type system. TPTP provides formats for both typed and untyped FOL. Since
the untyped fof-format is supported by a wider range of FOL reasoners, we decided to use the
second approach and translate OWL 2 formulae into the untyped fof-TPTP.

3. The Translation of OWL to FOL

For our translation, we have defined a mapping [ ]𝑝𝑞 which maps OWL 2 DL axioms and OWL
expressions that are part of axioms to sets of FOL expressions. It has two parameters 𝑝, 𝑞, which
are used to keep track of substitutions that need to be made. When the translation function is
called on an axiom, the parameters are empty, i.e. 𝑝 = 𝑞 = ∅. If a parameter is empty, we omit
it and, for example, write [𝐸]𝑝 instead of [𝐸]𝑝∅.

With this mapping, we have determined a translation for each type of OWL expression. The
mapping can then be applied recursively in order to translate an OWL axiom that consists of
several OWL expressions into a corresponding FOL expression or a set of such. E.g., OWL
axioms of the form 𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑂𝑓(𝐴,𝐵) are translated with a FOL sentence ∀𝑥([𝐴]𝑥 → [𝐵]𝑥).
In natural language this means, that, if 𝐴 is a subclass of 𝐵, then every individual which belongs
to class 𝐴 also belongs to class 𝐵. Note that 𝐴 and 𝐵 themselves are not yet translated, but



are OWL class expressions and we need to apply our translation function again using the
parameter 𝑥 wherever a variable is required. The complete translation function can be found on
the project’s wiki page1. For the sake of brevity we just illustrate it in this paper with a short
example:

[𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑂𝑓(𝐹𝑖𝑠ℎ,𝑂𝑏𝑗𝑒𝑐𝑡𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑂𝑓(𝐴𝑛𝑖𝑚𝑎𝑙, 𝑆𝑜𝑚𝑒𝑉 𝑎𝑙𝑢𝑒𝑠𝐹𝑟𝑜𝑚(ℎ𝑎𝑠𝑃𝑎𝑟𝑡,𝐺𝑖𝑙𝑙𝑠)))]

⇔ ∀𝑥([𝐹𝑖𝑠ℎ]𝑥 → [𝑂𝑏𝑗𝑒𝑐𝑡𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑂𝑓(𝐴𝑛𝑖𝑚𝑎𝑙, 𝑆𝑜𝑚𝑒𝑉 𝑎𝑙𝑢𝑒𝑠𝐹𝑟𝑜𝑚(ℎ𝑎𝑠𝑃𝑎𝑟𝑡,𝐺𝑖𝑙𝑙𝑠))]𝑥)

⇔ ∀𝑥([𝐹𝑖𝑠ℎ]𝑥 → ([𝐴𝑛𝑖𝑚𝑎𝑙]𝑥 ∧ [𝑆𝑜𝑚𝑒𝑉 𝑎𝑙𝑢𝑒𝑠𝐹𝑟𝑜𝑚(ℎ𝑎𝑠𝑃𝑎𝑟𝑡,𝐺𝑖𝑙𝑙𝑠)]𝑥))

⇔ ∀𝑥([𝐹𝑖𝑠ℎ]𝑥 → ([𝐴𝑛𝑖𝑚𝑎𝑙]𝑥 ∧ ∃𝑦([ℎ𝑎𝑠𝑃𝑎𝑟𝑡]𝑥𝑦 ∧ [𝐺𝑖𝑙𝑙𝑠]𝑦))

⇔ ∀𝑥(𝐹𝑖𝑠ℎ(𝑥) → (𝐴𝑛𝑖𝑚𝑎𝑙(𝑥) ∧ ∃𝑦(ℎ𝑎𝑠𝑃𝑎𝑟𝑡(𝑥, 𝑦) ∧𝐺𝑖𝑙𝑙𝑠(𝑦))))

As this example illustrates, the translation function is the result of a straightforward translation
of the Direct Semantics into FOL. In this example we use both substitution parameters, since a
second variable is needed to translate the existential restriction. For the purpose of translating
OWL to FOL it is sufficient to keep track of only two variables as parameters (as our translation
function illustrates). This might be counter-intuitive, since SROIQ contains features beyond the
two-variable fragment of FOL like, for example, transitivity axioms and counting quantifiers.
However, the translation of these axioms only requires to use additional new variables, and does
not require the reuse of more than two variables that have been introduced before. Therefore,
two substitution parameters suffice.

An OWL ontology is translated to FOL by translating all of its axioms and adding some
background axioms. Some of them axiomatise the distinction between objects and data in OWL
and provide a kind of ‘soft-typing’ as discussed in Section 2. For example, for any class 𝐶 in the
signature of the OWL ontology, a background axiom ∀𝑥(𝐶(𝑥) → owl:Thing(𝑥)) is added to the
FOL translation. Other background axioms capture assumptions of the Direct Semantics (e.g.,
the extension of owl:Thing and rdfs:Literal are nonempty). A third kind of background axiom
provides the axiomatisation for the OWL reserved vocabulary (e.g., ∀𝑥¬owl:Nothing(𝑥)).

4. FOWL – Architecture and Implementation

The structure of our implementation as shown in Figure 1 is based on the two tools we used,
namely the OWL API and Gavel. The OWL API is a Java toolkit to create, load and change
OWL ontologies. It represents the ontology as objects that can be traversed when working
with the ontology. It also provides access to OWL reasoners such as Hermit [12]. Gavel 2 is a
Python tool to create and work with FOL files. It provides functions to create new FOL axioms
and objects and methods to export them in TPTP or string format. It provides access to FOL
reasoners such as VAMPIRE [9].

The goal of our tool is to translate OWL ontologies into first order logic. This means both
the OWL tools of the OWL API and the FOL tools of Gavel provide important functionality for
FOWL. Because the OWL API is only available in Java and Gavel only in Python, FOWL uses
both languages. FOWL is started and stopped from Python. The Python script then starts a
Java server that handles the OWL ontology and communicates with Python via Py4J 3.

1https://github.com/gavel-tool/python-gavel-owl/wiki/OWL-to-FOL-mapping
2https://github.com/gavel-tool/python-gavel
3https://www.py4j.org/



Figure 1: The FOWL pipeline

When the Python script starts the Java server, it specifies as a parameter the ontology which
is to be translated. This can be a local file or an IRI. The ontology then gets loaded by the OWL
API, along with any imported ontologies. The visitor pattern, an easy and efficient way to visit
each object of the ontology, is used to traverse recursively through the ontology and create the
FOL translation. The translation is then saved in classes that mirror Gavel’s FOL classes and
can be identified by their name function. These classes are provided to the Python script, which
iterates through the sentences provided by the Java server and translates them in a 1:1 style to
the appropriate Gavel classes. For reasoning over the translation, the sentences are then parsed
into the TPTP format.

By providing a text file with conjectures in TPTP format, the VAMPIRE reasoner can then
reason over those conjectures. Gavel provides access to the reasoning result, as well as the steps
leading to it. The proof status is classified by using the SZS ontologies 4.

FOWL can be accessed via a command line interface. It features functions that translate
ontologies and provide access to OWL reasoner Hermit as well as FOL reasoners VAMPIRE and
E. More detailed instructions on how to install and use FOWL can be found on the project’s
Github page 5. FOWL can be used according to the GNU Affero General Public License.

5. Evaluation

Performance We evaluated the performance of FOWL for translating different OWL ontolo-
gies to TPTP. The ontologies are Basic Formal Ontology (BFO) [6], Pizza Ontology 6, Open
Energy Ontology (OEO) [13], Ontology for Biomedical Investigations (OBI) [14], Financial
Industries Business Ontology [15], Drosophila Anatomy Ontology (DAO) [16], Uberon [17],
Gene Ontology (GO) [18, 19] and Chemical Entities of Bioglogical Interest (ChEBI) [20].

The results are shown in Figure 2. BFO and the Pizza Ontology, which are the smallest
ontologies in our evaluation, have a significantly higher time-per-axiom-ratio than the larger
ontologies. This is possibly a result of the overhead due to background axioms and function
calls which is unaffected by the ontology size. Figure 2b also shows that strongly axiomatized
ontologies such as OBI do not lead to a significant performance loss compared to weakly

4http://www.tptp.org/Seminars/SZSOntologies/Summary.html
5https://github.com/gavel-tool/python-gavel-owl
6https://protege.stanford.edu/ontologies/pizza/pizza.owl



(a) Absolute performance (b) Relative performance

Figure 2: Translation times for different ontologies. 2a shows the seconds taken for the complete
translation, 2b the seconds per axiom. The ontologies are sorted from smallest to largest.

axiomatized ontologies. This implies that the type of axioms does not have a big influence on
the translation performance.

Consistency If FOWL’s translation is correct, it should preserve the (in)consistency of an
ontology across the translation. Thus, in order to evaluate the quality of the translation of
FOWL, we ran the following experiment: We created a set of consistent and a set of inconsistent
OWL ontologies, translated them with FOWL to FOL, and evaluated the consistency of the
result using VAMPIRE.

For this purpose we extracted modules of ChEBI based on randomly chosen classes using
ROBOT 7. Since ChEBI is consistent, all of its modules are consistent. In our experiment we
considered 168 consistent ontologies. To create inconsistent ontologies, we used modules of
ChEBI as starting point, but added additional axioms that lead to an inconsistency. For this
purpose an OWL reasoner was utilised to classify a given ChEBI module, and a random theorem
was selected for the purpose of generating a contradiction. E.g., if for a given ChEBI module
a theorem Subclass(𝐴,𝐵) was selected, then the ontology consisted of the original ChEBI
module plus axioms asserting an individual that instantiates 𝐴, but not 𝐵. (Disjointness was
used analogously.) Using this approach 1261 inconsistent ontologies were created. Thus, the
experiment involved 1429 ontologies. In all cases VAMPIRE evaluation of the consistency of the
translated ontology matched the original OWL ontology.

In conclusion, the conducted experiments support that consistency of an ontology is preserved
across the translation.

6. Related Work

FOWL translates OWL 2 DL axioms into first-order axioms in TPTP format [8]. The Syntax of
OWL 2 DL is specified in [21]. FOWL’s translation is based on OWL’s Direct Semantics [2],

7http://robot.obolibrary.org/



which is itself based on the description logic SROIQ [3]. The comparison of OWL and FOL
reasoning was investigated in [22, 23]. These papers include a discussion of the translation from
OWL DL, which is based on the description logic SHOIND−

𝑛 , to FOL. The translation follows
the model theoretic semantics of SHOIND−

𝑛 , datatypes are translated as predicates and data
values as constants. FOWL applies the same design decisions to the translation of OWL 2 DL.
As far we can tell, this previous implementation of the translation from OWL DL to FOL has
not been made available publicly.

The Heterogeneous Tool Set, Hets, supports the translation of OWL 2 DL ontologies into
FOL theories in various a number of formats including TPTP [24].8 One significant difference
between FOWL and Hets is that Hets is a stand-alone tool written in Haskell, which is feature-
rich with a wide range of functionality. FOWL, in contrast, is specifically developed for the
task of translating OWL to FOL, and is therefore more lightweight and easy to use and install.
FOWL is deployed as a Python library and, thus, is easier to integrate in Python tool chains.

7. Conclusion and Future Work

Enabling the translation of OWL ontologies into first order logic gives ontology designers the
ability to combine the strengths of both languages. The OWL language is relatively easy to use
and is well supported by tools, thus it has been widely adopted for ontology engineering projects.
Nevertheless, it is common that nuances and axiomatic complexities of domain knowledge can
remain outside the reduced expressiveness of OWL as compared to the full FOL. The presented
tool can translate OWL ontologies into FOL in order to enable modular addition of and reasoning
with FOL-native axioms.

The tool allows export of the translation result in TPTP syntax. Additional conjectures can
then be added, using TPTP syntax, to be reasoned over in combination with the translation,
and the ontology can be checked for consistency both in OWL and in FOL. FOWL has been
tested on different ontologies and has been shown to preserve the consistency properties of
ontologies during translation.

Further work will include improving the performance of the tool as well of adding features
of convenience. For example, currently the predicate symbols of the FOL translations are based
on the IRIs in the OWL file. This works well for ontologies that use meaningful IRIs, but is
inconvenient for ontologies that use alphanumeric IRIs as class and property names.Hence,
we are planning to provide an option that uses a given annotation property (like rdfs:label)
for the generation of predicates. In addition, we will define a vocabulary for annotating OWL
ontologies with FOL axioms. FOWL will recognise these annotations and enrich the OWL
translation with these additional FOL axioms.

Although, in general, FOL model finders do not scale well, the performance may be signifi-
cantly increased by techniques like optimal definition elimination [25]. Since the ontologies
generated by FOWL only utilise a small fragment of the expressivity of FOL, it is an open
question how FOL model finders perform on ontologies that FOWL creates. We furthermore
plan to check the consistency of ontologies using BFO as an upper level with the BFO FOL
version.

8http://www.hets.eu/
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