
Model and Formalism Driven Development of
Collaborative Applications

Bertrand DAVID, René CHALON
LIESP Lab

Ecole Centrale de Lyon
69134 Ecully Cedex France

Tel. ++33 472 186581

Bertrand.David@ec-lyon.fr, Rene.Chalon@ec-lyon.fr

ABSTRACT
In this position paper, we explain our approach for collaborative
systems development based on a model of cooperative
applications and a formalism called ORCHESTRA allowing to
express collaborative situations to take into account and a
transformation process allowing to “project” ORCHESTRA
description on different execution plate-forms elaborated in
respect with a generic architecture.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications –
Methodologies, D.2.2 [Software Engineering]: Design Tools and
Techniques – User interfaces. D.2.11 [Software Engineering]:
Domain-specific architectures, description languages H.1.2
[Models and Principles]: User/Machine Systems – Human factors
H.5.1 [Multimedia Information Systems] Artificial, Augmented
and virtual realities, H.5.2 [User Interfaces]: User-Centered
Design, H.5.3 [Group and Organization Interfaces] Computer-
Supported Cooperative Work

General Terms
Management, Design, Experimentation, Human Factors.

Keywords
CSCW, Specific description language, MDA inspired elaboration
process, transformation process, formalism meta-model.

1. INTRODUCTION
CSCW [1] is a field of interactive computer-based systems which
objective is to allow several participants (actors) to work together
via a computer-based system to complete cooperatively a task
which can be of different natures (design, management,
production, learning, etc). Design of this kind of systems is
relatively complex because it is not limited to individual
activities, but also and mainly to cooperative work of several
actors, which can be classified in co-operation, coordination and
conversation activities in respect with the definition initially
proposed by Ellis [10] and adapted by several other authors [9].
This cooperative work can be done in several cooperative
situations characterized initially by Johansen and enhanced by
Ellis [11]. At the moment CSCW systems are becoming more and
more mobile, context-aware and proactive. We called this kind of
cooperative systems Capillary Cooperative Systems (CCS) [7].
We use this term by analogy with the network of blood vessels.

The purpose of the Capillary CS is “to extend the capacities
provided by co-operative working tools in increasingly fine
ramifications, hence they can use fixed workstations and handheld
devices". These systems become also pervasive, proactive and
ubiquitous. Our final goal is to allow them to evolve in mixed
reality environment (mixture of real and digital objects and tools)
and to put into practice Ambient Intelligence (AmI) concepts.

2. OUR APPROACH
We are studying design of CSCW systems and we propose an
approach and a process, called CoCSys (Collaborative Capillary
System) engineering process [8]. Main reason for this more
comprehensive process is related to the necessity to collect
requirements of the system as appropriate as possible and allow
the evolution of this kind of system during its use in relation with
the users’ skills, expertise, and the evolution of their perception
and the mastery of the system. Our approach is based on Model-
Based approach [15], which is characterized by a different way of
development: “Rather than programming an interface using a
toolkit library, developers would write a specification of the
interface in a specialized, high-level specification language. This
specification would be automatically translated into an executable
program, or interpreted at run-time to generate the appropriate
interface.” This approach is used in HCI for several years and
become more generally used in other development application
fields. OMG adapted a similar approach as new paradigm of
development which is called MDA Model-driven architecture
[13]. Other acronyms describing similar ways are MDE (Model-
Driven Engineering) or MDD (Model Driven Development). In
each case specification at concrete, abstract or meta level is
privileged before studying the way to produce an executable code.
The production is done more or less automatically by
transformation or translation of these models. The objective of our
approach is to adapt this trend to CSCW. We are proposing a
framework for design, implementation and evolution of CCS. As
described deeply in [8] this approach is based on 3 main parts:
1/Scenarios Collection, 2/Cooperative Behavior Model (CBM),
and 3/Collaborative Architecture; and 3 transformation phases:
I/CBM Model Construction, II/CBM Projection on the
Collaborative Architecture and III/Evolution.

2.1 Cooperative Behavior Model
We consider that a scenario based approach allows to final users
and designers to meet them and discuss together about
functionalities of the system to be developed. A scenario

describes repetitive activity that should activate an adaptation
mechanism which will be recorded and reused. This analytical
perception of working situations seems to be possible to catch and
to express observers or actors needs. We are asking to give as
precise description as possible, i.e. to indicate, if possible, all
actors evolving, artifacts used, activities executed and contexts
characterizing them (devices used, geographical location,
temporal situation …). The designers are in charge to study
different scenarios and to construct gradually the Cooperative
Behaviour Model (CBM). In the model we find comprehensive
collections of actors, artifacts, activities and contexts and also all
relations which allow materializing all necessary elements for
each activity. Different processes are also explained carrying out
dependencies between tasks and their temporal and organizational
constraints. This comprehensive model is able to manage the
cooperative system behavior and will be used during the
implementation process i.e. projection of this model on a
particular hardware, network and software architectures. Main
elements of the CBM model are:

An actor, as instantiation of one or several roles, a role is a
basic element of human behavior in the system, which can be
qualified as Acting (A), Observing (O) or Editing (E) i.e.
observing and acting.

An activity, describing an identified work which a role can
do, this activity can be also A, O or E, i.e. acting, observing or
editing activity.

A process expressed as a network composed of process
states (PS) and process transitions, which can also be qualified by
A, O or E.

An artifact can be either a tool or an object. The tool is an
instrument used in the task; the object is either input, support or
output of the task, qualified by A, O or E.

A context is a collection of three aspects: platform, situation
(often logical, physical or geographical location) and user
preferences characterizing the context. We take into account
several platform examples and elements: laptop, PDA, cellular
phone, and also active environmental object (active RFID tag),
passive environmental object (passive tag).
In the CBM model all these elements are expressed and
interconnected. We can take as example a user’s role, which is
identified by a name, a type, its participation in different actors,
the activities which can be done, the process states and transitions
in which their can occur, the artifacts (tools and objects)
manipulated and the contexts (platform, situations and user
preferences) which applies the role. These interrelations are also
needed for other elements of the model. They are explicitly or
implicitly described and can change during the system life
expressing its adaptation and evolution. List of activities is one of
the main components of CBM. This list is obtained from the task
tree which can be expressed by CTT [14], an interesting task
formalism, and its environment (CTTE) proposed by Paterno. Its
extension for cooperative activities [12] aims to express
cooperative situations. In CTT, collaboration is expressed by
individual task trees and by a collaborative task tree. That is
interesting to express tasks, but is insufficient for the more
comprehensive view of collaboration, that we need. We consider
that tree view of tasks is interesting during the task design phase.
However, during the activities organization (definition of
effective collaborations), mainly effective activities (leaves of the
task tree) are important and their individual or collaborative scope
is essential, in relation with effective actors, objects, tools,

process states and transitions and contexts. To express this more
comprehensive view we propose a formalism called Orchestra.

2.2 ORCHESTRA
The objective of ORCHESTRA [6] is to propose a more
comprehensive formalism which is able to express together all
main aspects of the CBM. ORCHESTRA adapts musical score
notation [16] to our problem of CBM description. For us, the 5
lines of a staff are expressing 5 main aspects of the CBM (Fig. 1),
which are: user’s role, activity concerned, process state or
transition, artifacts involved in the activity and the context. These
aspects are expressed on each of their respective line by situating
one or several “notes” containing their names. Each note can
receive a stem which indicates the participation of the element
(acting, observing or editing). We distinguish main actor (double
arrow) and secondary actor (simple arrow) as well as active role
and passive role: A bar line indicates the separation between
independent cooperation episodes. To express repetition of an
episode we propose four options: an explicit number of repetitions
(n), an undetermined number of iterations (+/*), a contextual end
(logical condition), a time dependent end of iteration (relative or
absolute time limit). Each cooperation episode expresses a state or
a transition in the cooperation process description network. For
each cooperation episode, sequential ordering from left to right is
implicit temporal option, another order, must be expressed
explicitly either by a jump from current period to another one
which is named, or by a “procedure call” jump to a named
episode then the back to the previous one.
By different types of parenthesis, we indicate explicit relations
between participating notes. These parentheses are used to
express different situations:

(…) alternatives,
{…} mandatory participation,
[….] optional participation.

Different key signatures or annotations are expressing
collaboration properties like synchronous or asynchronous
collaborations, collaboration modes and styles of coordination
(computational or social , implicit or explicit ---):

@ - Asynchronous with infinite answer delay
@@ - Asynchronous with limited answer delay corresponding
to “on call” participation
& - Synchronous “in-meeting” cooperation
&& - Synchronous “in-depth” cooperation

In synchronous collaboration two different participations must be
distinguished:
• instantaneous, short term collaboration, called also implicit

and expressed by i.e. vote activity,
• long term participation, long term collaboration, called also

explicit and expressed by gg i.e. sketching activity.
In the first case (vote activity) an implicit collaboration is
appropriate (short exclusive access to the shared space), in the
second case (sketching) explicit participation must be asked and
allowed (long-term access to the shared space) either by social
coordination (), i.e. one of human actors is in charge of this
coordination or a computational () one i.e. the computer fulfil
it. We express graphically instantaneous collaboration by a dot
over concerned chords and for long term collaboration we use a
horizontal line gg and a symbol expressing social or
computational coordination (,) i.e. coordination made by one

of the actors or by interaction (asking for, receiving and returning
exclusive access right to shared space).

. . . .

N/* E1 E2 E3

Acting
Observing
Editing

Role
Activity
Process
Artifact
Context

R-Name R-Name

PS/PT-Name

AT/AO-Name

L-Name

R-Name

A-Name

P-Name U-Name

Role
Activity
Process
Artifact
Context

E3

Fig. 1. ORCHESTRA main concepts

Another important notion in CSCW is awareness. Its objective is
to allow to different actors to know (or not) what has been done
by an actor. It is important to decide statically (by the designer) or
dynamically by the actor himself the scope of information
propagation to other actors. For static way we propose to express
awareness in ORCHESTRA formalism. Special marks are
proposed:

• � for no awareness,
• � for partial awareness (for specific actors),
• v for overall awareness (for all actors).

 Role

Activity
Process
Artifact
Context

Student

Question writing

Question sheet

PC

Question writing
f l i

PDA

Role
Activity
Process
Artifact
Context

Test-State

Test sheet

Student

Test answering

PC PDA

&

Role
Activity
Process
Artifact
Context

Teacher

Test-State

Test sheet

PC

Test submission

&

A – Individual activity: question to teacher writing

B – Collaborative activity - In-depth view: test
preparation, submission and evaluation

Role
Activity
Process
Artifact
Context

Teacher Teacher

Test-State

Test sheet

PC

Student

Test answering

PDA

C - Collaborative activity - Synthetic view

&

@

Teacher

Test-evaluation

PC

Test-State

Result sheet

Test submission

Test-evaluation

Test-evaluation

Result sheet

�

�

� v

v � �

 Fig. 2. Different ORCHESTRA descriptions: individual,
cooperative, in-depth or synthetic views

In fig. 2 we show an example of description. To explain more
deeply ORCHESTRA formalism, we give in annex 1 its
metamodel.

3. Transformational process
From ORCHESTRA the target of our process is a generic

software architecture composed of three layers decomposition as
a generic framework for cooperative mobile pervasive systems.
The top layer corresponds to the collaborative application level. It
contains all the cooperative software used by the actors. This
level is totally user-oriented, which means that it manages
interaction control and proposes interfaces for notification and
access controls. It uses multi-user services provided by a second
layer. This one is a generic layer located between application
layer and the distributed system layer. This layer contains
common reusable elements of groupware activities and acts as an
operating system dedicated to groups. It supports collaborative
work by managing sessions and users, provides generic
cooperative tools (e.g. telepointer) and is responsible for
concurrency control. It also implements notification protocols and
provides access control mechanisms. The last layer is essentially
in charge of message multicast and consistency control. Usually,
it is a computer-oriented layer which provides transparent
mechanisms for communication and synchronization of
distributed components.
We developed a cooperative middleware called SMAC (Services
for Mobile Applications and Collaborations) that implements the
two lower layers (groupware services and distributed system) of
this conceptual cooperative architecture (see Fig.3).

Fig. 3. Three layer collaborative architecture structure.

As we target mobile devices, we have strong constraints for the
choice of technology for the Distributed System Layer. On one
hand, synchronous cooperation is hard to implement with
lightweight clients, and on the other hand heavy distributed
objects systems such as Corba or J2EE are not available on
mobile devices. Currently we choose to base SMAC on the
Virtual Synchrony distributed programming model [3, 5], by
using a version of JGroups [2] specially implemented for the
J2ME / CDC Java Virtual Machine. Although the Virtual
Synchrony programming model does have some limitations
regarding specific mobile CSCW scenarios (mainly: it does not
scale well to a large number of concurrent users, and it is not very

adapted to situations involving lots of connections and
disconnections), it does fit well with the kind of scenarios that we
are experimenting, and it provides convenient and powerful
abstractions of cooperating processes that need to keep coherent
states. Above this layer, the Groupware Services Layer is
composed of a core framework of Java classes onto which we can
plug specific groupware services as needed. Currently, only a
subset of these services is implemented, mainly the classes
corresponding to the notions of collaboration, cooperation episode
and session, and the classes representing users and groups. This
provides a minimal system that handles synchronous
collaboration, as well as persistence of collaboration states
between sessions. The relation between ORCHESTRA and the
generic architecture is the following: Information coming from
the ORCHESTRA description concerning roles, activities,
process, artefacts and context is “projected” on this architecture.
This projection concerns either application layer or collaborative
layer, whose core classes are summarized in annex 2. Information
about role and actors is manipulated at the collaborative layer, as
well as at the application layer, where the corresponding user
interface is proposed. ORCHESTRA concept of activity is
translated to SMAC in two different ways. An application specific
activity, called semantic activity, is located at the application
layer, for generic activity its location is naturally at the
collaborative layer. Concerning cooperation processes
management expressed in ORCHESTRA by episodes and their
orchestration, their corresponding SMAC classes are using an
adaptive workflow engine. ORCHESTRA artefacts are either
tools or objects, generic or semantic. Their mapping to SMAC is
done either at application layer (for semantic artefacts) or at
collaborative layer for generic ones. Tools are used or activated at
application layer and objects are manipulated by services located
either at application layer or at collaboration layer depending of
their specificity or genericity. Context description expressed by
ORCHESTRA is used at physical level concerning hardware
platform description, at distribution layer concerning software
level description and either at collaborative layer or application
layer concerning location adjustment and user preferences. Main
mechanisms used during this transformation are XML encoding
and decoding of information manipulated in ORCHESTRA editor
and interpretation engine, which is able to read these XML files
and execute appropriate code either generated from this
description or corresponding attachments doing the link with
existing code at collaboration layer or specifically developed code
at application layer. According to platform adaptation
mechanisms we are able to produce appropriate interfaces in
regard with hardware platform used i.e. laptop, PDA or
Smartphone.

4. CONCLUSION
In this paper, we outlined a new formalism called ORCHESTRA,
which objective is to provide a graphical expression of
Cooperative Behavior Model. CBM, elaborated from a collection
of scenarios, as a reference for the transformation process
allowing different implementations. As it is important to associate
different actors to this constructive process, we propose a
formalism which could be used during initial discussions as well
as during the implementation and adaptation process. We
elaborated a set of reusable patterns which are useful to accelerate
and do design process more powerful. We propose to use them in

a pattern oriented walkthrough, in which patterns are considered
as best practices, as a collection constituting an inspiration
sourcebook and as a use guide. Of course ORCHESTRA explains
a global view of cooperation. An in-depth view is necessary to
describe completely the content of “notes” with the help of an
editor. ORCHESTRA has been tested in several case studies and
we may continue to upgrade it by new concepts as result of these
tests. The connection with mixed reality has not been described in
this paper, even if we are currently working on it [4].

5. REFERENCES
[1] Andriessen, J.H.E.: Working with Groupware:

Understanding and Evaluating Collaboration Technology.
Springer, CSCW Series (2003) 206 p.

[2] Ban B. Design and Implementation of a Reliable Group
Communication Toolkit for Java. Cornell University (1998)

[3] Birman K. Reliable Distributed Systems: Technologies, Web
Services, and Applications. Springer (2005)

[4] Chalon, R., David, B.: IRVO: an Interaction Model for
designing Collaborative Mixed Reality Systems, HCI
International 2005, Las Vegas, USA, 22-27 July (2005)

[5] Chockler G.V., Keidar I. and Vitenberg R.. Group
Communication Specifications: A Comprehensive Study.
ACM Computing Surveys, 4(33):1-43, December (2001)

[6] David, B., Chalon, R., Delotte, O., Masserey, G., Imbert, M.:
ORCHESTRA: formalism to express mobile cooperative
applications. LNCS, Vol. 4154, Springer, (2006) 163-178

[7] David, B., Chalon, R., Vaisman, G., Delotte, O.: Capillary
CSCW. In Proceedings of HCI International, Crète (2003)

[8] David, B., Delotte, O., Chalon, R.: Model-Driven
Engineering of Cooperative Systems. In proceedings of HCI
International 2005, Las Vegas, USA, 22-27 July (2005)

[9] David, B., IHM pour les collecticiels. In Réseaux et
Systèmes Répartis, Hermès, Paris, vol. 13 (2001) 169–206

[10] Ellis, C., Gibbs, S.J., Rein, G.L.: Groupware: some issues
and experiences. In Communications of the ACM, vol. 34, n°
1, (1991) 38–58

[11] Ellis, C., Wainer, J.: A conceptual model of Groupware, In
Proceedings of CSCW'94, ACM Press, (1994) 79–88

[12] Mori, G., Paternò, F., Santoro, C.: CTTE: Support for
Developing and Analyzing Task Models for Interactive
System Design. In IEEE Transactions on SE, vol. 28, n. 9.

[13] Object Management Group, http://www.omg.org/mda/
[14] Paternò, F.: Model-Based Design and Evaluation of

Interactive Applications. Applied Computing Series,
Springer -Verlag (2000)

[15] Szekely, P.: Retrospective and Challenges for Model-Based
Interface Development. In: Vanderdonckt, J. (eds):
CADUI'96, 5-7 June 1996, Namur (1996)

[16] Stewart, D., The Musician’s Guide to Reading and Writing
Music. Backbeat (1999) 117 p.

Annex 1: ORCHESTRA metamodel. Main ORCHESTRA classes are in yellow (light gray in black and white) and CBM classes are in
green (dark gray in black and white).

Annex 2. SMAC and Cooperative Application Layer core classes.

SMAC

