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Abstract
Conformance checking is one of the disciplines that best exposes the power of process mining, since
it allows detecting anomalies and deviations in business processes, helping to assess and improve the
quality of these. This is an indispensable task, especially in Big Data environments where large amounts
of data are generated, and where the complexity of the processes is increasing. CC4Spark enables com-
panies to face this challenging scenario in twofold. First, it supports distributing conformance checking
alignment problems by means of a Big Data infrastructure based on Apache Spark, allowing users to im-
port, transform and prepare event logs stored in distributed data sources, and solve them in a distributed
environment. Secondly, this tool supports decomposed Petri nets. This helps to noticeably reduce the
complexity of the models. Both characteristics help companies in facing increasingly frequent scenar-
ios with large amounts of logs with highly complex business processes. CC4Spark is not tied to any
particular conformance checking algorithm, so that users can employ customised algorithms.
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1. Introduction

It is increasingly common that organisations define complex business processes that must be
followed to achieve their objectives [1]. These processes can include different kind of interactions
with humans, third-party services, device’s information, etc. Thereby these interactions can
inadvertently enable unexpected deviations with respect to the expected process model. Further,
this problem can be increased when the interactions come from multiple and heterogeneous
sources, such as Internet-of-Things (IoT) devices or devices involved in Cyber-physical Systems
[2]. Nowadays, conformance checking [3] techniques provide mechanisms to relate modelled
and observed behaviour, so that the deviations between the footprints left by process executions
and the process models that formalise the expected behaviour can be revealed.
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One of the major challenges in conformance checking is the alignment problem: given an
observed trace 𝜎, compute an end-to-end model run that more closely resembles 𝜎. Computing
alignments is an extremely difficult problem, with a complexity exponential in the size of the
model or the trace [4]. Intuitively, computing an alignment requires a search through the
state space of the model which, in certain cases implies an extensive exploration when the
process model is large and/or highly concurrent. Traditionally, alignment problems are solved
in a single node, which can increase the impact of the issue exposed above, especially in two
situations: (i) when the dataset containing the event logs is too large, and (ii) when the model
or Petri net is too complex. In those cases, calculating the alignment of a single trace can be
very expensive in terms of computation time. In both cases, a solution could be distributing the
alignment problems, solving them in parallel. As was demonstrated in [5], the impact in terms
of computation time is reduced when the resolution of the alignment problems is distributed,
since it tends to reduce the bottle-necks. Also, when Petri nets are too complex, the horizontal
decomposition of them helps reduce that complexity.

We propose a tool to tackle the complexity of the alignment problem based on that principle.
Thanks to the use of Apache Spark, CC4Spark can read distributed event logs, and solve
alignment problems in distributed environments.

2. Innovation

CC4Spark 1 is the first tool that allows to distribute conformance checking alignment problems
in big data clusters. This feature is supported by the use of Apache Spark. It offers a highly
scalable way of processing both raw or XES event logs, and solving conformance checking
alignment problems. This tool is the result of a previous study [5]. Next, the innovative features
of this tool are presented:
Distributed event logs. CC4Spark is able to load raw process logs from distributed data

sources, and to transform them into a XES-standard format. This feature allows the processing
of event logs in parallel. CC4Spark is then capable of processing large volumes of event logs
that would not be possible to process by a single machine. CC4Spark is also able to read
non-distributed event logs contained in formatted XES files.
Processing horizontally-decomposed Petri nets. Horizontal decomposition of Petri nets

is proposed in [5], and CC4Spark provides support for processing such models. Horizontal
decomposition produces partial models, which are less complex than their original Petri nets
due to their acyclicity. These partial models are generated by running multiple instances of the
original Petri net. The set of partial models is equivalent to the original model. In this way, the
complexity of cyclical Petri nets is noticeably reduced. In order to horizontally-decompose Petri
nets, an external tool (VIP tool 2) is required.
Solving distributed alignment problems. The alignment problem is distributed between

the nodes of the cluster in partitions of alignment subproblems. Each subproblem consists of a
specific trace and a Petri net (or a partial model if the Petri net is decomposed). In this way,

1CC4Spark source code and documentation: https://github.com/IDEA-Research-Group/
conformancechecking4spark, http://www.idea.us.es/confcheckingbigdata/

2VIP Tool: https://www.fernuni-hagen.de/sttp/forschung/vip_tool.shtml
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all the possible combinations between different traces and Petri nets (or partial models) are
generated and computed, generating partial solutions (i.e., a candidate solution composed of the
trace and the best alignment found for that subproblem). The configuration of the partitions
(i.e., the amount of partitions and the number of subproblems per partition) can be customised
in this tool. CC4Spark also includes a heuristic to avoid computing unnecessary alignment
subproblems. This heuristic consists of the estimation of a lower bound, indicating that the
minimum value of alignment for that subproblem will never be lower than the estimated one.
In that case, if the subproblems related to a certain trace produce a higher estimation than
the last alignment computed for that trace, the rest of the subproblems related to that trace
will be skipped. Finally, partial solutions are combined. The solution for each trace is the best
alignment found for it.

Remark that CC4Spark is not tied to any conformance checking algorithm: user is free to
use its own implementation. Up to now, two approaches have been successfully tested (i.e., the
A* algorithm implemented in the Python library PM4Py, and an approach based on Constraint
Optimisation Paradigm [5]).

3. Case Studies

Case Study A: Computing deviations on distributed event logs. This case study is related to the
milk manufacturing industry. The process describes how milk cans are processed from when
they leave the farm until they pass through the factory and are bottled for sale. Each machine
in the process generates logs, which include the milk can being processed, the timestamp, and
the values read by the sensors (e.g., temperature, pressure). The IoT infrastructure stores these
logs in a MongoDB cluster. Then, CC4Spark reads such data. For the logs to be formatted in a
XES format, the attributes which represent the case ID, the task ID, and the timestamp must be
specified. Then, a path to a Petri net file must be specified. The results of the alignment problem
will be store in the storage system specified by the user. Thanks to CC4Spark, it is possible to
monitor the whole process and detect potential abnormalities in milk bottles.
Case Study B: Computing deviations with complex Petri nets. In this example, we present the

evaluations performed in [5]. Several datasets are tested, each one with a specific XES event log
file, and a Petri net. While the size of the event logs are less than in Example A, the Petri nets are
highly complex. For this reason, in the distributed approaches, the Petri nets were decomposed
by using the technique previously described. The results of the tests are depicted in Figure
1, comparing the best configuration obtained for the A* algorithm standalone (the classical
approach, without distribution), the A* algorithm with the best distributed configuration, and a
novel approach based on Constraint Programming for solving the alignment problems (refer to
[5] for further information). The Elapsed Real Time depicted in the graph represent the average
time of 10 executions. The results demonstrated that distributing the alignment problems and
solving them in parallel improves the execution time. It is especially noticeable for the datasets
M2, M5, CCC20d, and prGm6 (in this case, neither of the other approaches were able to solve
the alignment problems in a reasonable amount of time, being the A* algorithm in distributed
mode the only capable of obtaining the results of the alignments).



Figure 1: Comparison of the best configuration for each algorithm. The abscissa has a logarithmic
scale

4. Tool Packaging and Maturity

CC4Spark is developed on top of PySpark 3.0.1. It requires Python 3.7 and PM4Py 2.2.8. It is
packaged as a Python module which can be downloaded and imported in a PySpark project.
Although this tool facilitates the process of importing event logs, Petri nets models, and cal-
culating the alignments, certain skills in Apache Spark are required for a proper use of this
tool. For this reason, in future releases we intend to extend this tool by including a graphical
user interface. CC4Spark might be run standalone inside a PySpark project in a local computer.
However, for the tool to properly work in distributed environments, a cluster based on Apache
Spark is required. Our manuals include instructions on the deployment in both modes.

Figure 2 depicts the architecture when CC4Spark is deployed in distributed mode. There are
three layers clearly differentiated: (i) Storage layer: It refers to the event log and Petri net models
storage. As mentioned before, the event logs can be in distributed data sources or in a raw format.
From the technical point of view, the storage layer might be any type of distributed database,
distributed or local file system. (ii) Computing layer: It is intended to distribute the event logs
into partitions, transform them into a XES format, generate the alignment subproblems, and
solve them. CC4Spark relies on PySpark for this layer. (iii) Persistence layer: It stores the results
of the alignment problems. It might be any database or starge system supported by PySpark.

5. Conclusion

CC4Spark enables users to perform conformance checking computations with large amounts of
event logs and highly complex Petri nets. As reported in Section 3 and in [5], the scalability of
CC4Spark is shown. It has been tested with distributed event logs, non-distributed event logs,
standard Petri nets and decomposed Petri nets. In those cases, the tool has demonstrated scala-
bility and an improvement with respect to the classical approaches when it runs in distributed
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Figure 2: Architecture of CC4Spark

mode. A demonstration video is available3.

Acknowledgments

Ministry of Science and Technology of Spain: ECLIPSE (RTI2018-094283-B-C33) project; Euro-
pean Regional Development Fund (ERDF/FEDER); MINECO (TIN2017-86727-C2-1-R); University
of Seville: VI Plan Propio de Investigación y Transferencia (VI PPIT-US).

References

[1] M. Dumas, W. M. P. van der Aalst, A. H. M. ter Hofstede, Process-aware Information
Systems: Bridging People and Software through Process Technology, Wiley, 2005. URL:
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471663069.html.

[2] H. Roehm, J. Oehlerking, M. Woehrle, M. Althoff, Model conformance for cyber-physical
systems: A survey, TCPS 3 (2019) 30:1–30:26. URL: https://doi.org/10.1145/3306157. doi:10.
1145/3306157.

[3] J. Carmona, B. F. van Dongen, A. Solti, M. Weidlich, Conformance Checking - Relating
Processes and Models, Springer, 2018. URL: https://doi.org/10.1007/978-3-319-99414-7.
doi:10.1007/978-3-319-99414-7.

[4] A. Adriansyah, Aligning observed and modeled behavior, Ph.D. thesis, Technische Univer-
siteit Eindhoven, 2014.

[5] Á. Valencia-Parra, Á. J. Varela-Vaca, M. T. Gómez-López, J. Carmona, R. Bergenthum,
Empowering conformance checking using Big Data through horizontal decomposition,
Information Systems 99 (2021) 101731. URL: https://linkinghub.elsevier.com/retrieve/pii/
S0306437921000077. doi:10.1016/j.is.2021.101731.

3Demo video: http://tiny.cc/cc4spark-video

http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471663069.html
https://doi.org/10.1145/3306157
http://dx.doi.org/10.1145/3306157
http://dx.doi.org/10.1145/3306157
https://doi.org/10.1007/978-3-319-99414-7
http://dx.doi.org/10.1007/978-3-319-99414-7
https://linkinghub.elsevier.com/retrieve/pii/S0306437921000077
https://linkinghub.elsevier.com/retrieve/pii/S0306437921000077
http://dx.doi.org/10.1016/j.is.2021.101731
http://tiny.cc/cc4spark-video

	1 Introduction
	2 Innovation
	3 Case Studies
	4 Tool Packaging and Maturity
	5 Conclusion

