
Enhancing System Quality Attributes via
Microservices Adoption
Roberta Capuano1

1University of L’Aquila, L’Aquila 67100, Italy

Abstract
In the last decade, industries and the research community have increasingly focused their attention on
systems migration. System migration aims to modernize existing monolithic systems into modern and
more scalable microservices-based architectures. Such migration consists of two phases: architectural
refactoring and system deployment. Unfortunately, quality attributes did not receive enough attention
during the architectural refactoring phase. Nevertheless, migration can be an instrument to improve
the quality of the system. In this research, we propose a process that aims to enhance a set of system
quality attributes during the system migrating to microservices. The proposed approach helps software
architects to fulfill non-functional requirements qualities during the migration process.

Keywords
system migration, system modernization, monolithic architecture, microservices architecture, quality
attributes, architectural refactoring

1. Introduction and Motivations

Nowadays, millions of applications are based on monolithic systems [1]. In the last decade,
industries have started to migrate their systems into modern microservices-based architecture.
The motivation for such evolution is to keep up with modern technologies and to maintain
better business value. At the same time, the research community started studying this new
trend trying to support companies in this challenge [2]. System migration refers to the process
of refactoring an existing software and is composed of two phases: architectural refactoring
and system deployment. The architectural refactoring consists of changing the structure of the
system without altering its features and it is composed of i) comprehension of the system,
and ii) microservices identification [3]. Unfortunately, in the architectural refactoring phase,
functional and non-functional requirements can differ from the original specification [4]. The
system deployment consists of microservices packaging using a containerization technology,
e.g., Docker. The state of the art propose different sets of attributes for assessing the quality of
the system after migration [5][6][7]. However, none of them put enough attention to quality
attributes in the architectural refactoring phase. This research project aims to define a process
to enhance a set of system quality attributes using migration to microservices. The following
research questions will guide our goal:

• RQ1 How to guide the architectural refactoring phase by using quality attributes?

ECSA’21: Doctoral Symposium, September 13–17, 2021, Växjö, Sweden
" roberta.capuano@graduate.univaq.it (R. Capuano)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:roberta.capuano@graduate.univaq.it
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


• RQ2 How to chose the proper microservices identification approach considering a set of
quality attributes in the migration to microservices scenario?

• RQ3 How to find a tradeoff to combine quality attributes in the decomposition of the
system into microservices?

2. Related work

In the literature, different researches address the problem of migration to microservices from
monolithic systems. In [8], the authors present a program analysis-based method to migrate
monolithic applications to a microservices architecture using static and dynamic analysis of the
system. Their method has high accuracy and low performance cost. The authors in [3], propose
an approach for automatic identification of microservices from Object Oriented source code,
measuring both the structural and behavioural validity of the identified microservices and their
data autonomy. In [9], a tool to continuously streaming down performance data, analyzing
them and feeding back to the migration process the results of the analysis is presented. This
approach guarantee that the new system does not fall short in terms of performance. The
authors in [10] consider five quality criteria observed as relevant by practitioners for system
migration. Compared with a baseline approach that considers just coupling and cohesion, their
approach reinforced the need for adopting more criteria than traditional ones. In [11], the
authors decompose a monolith application into independent microservices. The functionality
distribution is optimized to guarantee a system with high cohesion, low coupling and good-sized
services focused on core functionality. The authors in [12] propose the Functionality-oriented
Service Candidate Identification (FoSCI) framework for the identification of service candidates
from a monolithic system. Both the dynamic analysis and search-based functional atom grouping
algorithm serves to service candidates extraction. The service candidate evaluation suite uses 8
different metrics, measuring functionality, modularity, and evolvability of the identified service
candidates. In [13] the authors provide a validation framework for microservices resulted from
(semi-)automatic decomposition of monoliths validated through an open-source framework.

3. Proposed Approach

The goal of this research project is to define a process for system quality improvement by migrat-
ing to microservices. This process will also guide software architects migrating their systems
to microservices while preserving or achieving predefined non-functional requirements. The
proposed approach matches the common system migration to microservices process focusing
on a set of system quality attributes. Below, the proposed process shown in Figure 1 is described.

• P1: System’s Comprehension. This phase includes all the activities aiming to under-
stand the system by using different artefacts: models, code, traces, and logs. In our process,
this stage is quality-driven and matches the static and dynamic analysis carried-out by
using the above-mentioned artefacts. Since architects may or may not know the quality
aspects to improve, a preliminary system analysis is required. The resulting set of quality
attributes is the baseline for the migration. For each identified quality attribute, we pro-
vide a set of architectural anti-patterns supporting architects in recognizing the elements



Figure 1: Proposed Process.

degrading the systems quality. This core operation is called anti-patterns detection and its
output is the instances number of the specified anti-patterns and a set of related patterns.

• P2: Microservices Identification: this stage is quality driven since it directly inherits
the quality aspects by the system’s comprehension phase. P1 result is a list of patterns
aiming to solve the associated anti-patterns. A pattern consists of several tactics [14]. Our
goal is to augment each pattern with a tactic consisting of a well-defined microservices
identification strategy based on a static or dynamic view of the system. Consequently,
the microservices identification is performed according to the augmented pattern. The
new system is simulated and analysed to check if the quality attribute is achieved. These
steps are repeated until the most suitable tactic is added to the pattern. The microservices
identification phase gives as output one possible decomposition for each quality attributes
to be improved.

• P3: Microservices Packaging: from P2 we inherited a collection of possible decom-
position where each of them refers to a single quality attribute to be improved. Since
our goal is to suggest the optimal system decomposition strategy according with a set of
quality attributes, this phase needs a pre-processing step. To this end, we will provide a
multi-objective optimization algorithm to find the optimal decomposition. The output of
this algorithm will be the set of microservices to be packaged and deployed.

4. Proposed Research Plan

• S1: Systematic Literature Review on migration to microservice considering qual-
ity attributes aspects. This step focuses on the identification of microservices consider-



ing quality attributes. The result will be a set of quality attributes that forms the baseline
for the next steps. Moreover, it will allow us to identify, for each quality attribute con-
sidered, a set of microservices identification approaches. The tactics provided by our
approach will be built on top of this collection. This phase answers to RQ1 and RQ2.

• S2: Review, collection and categorization of architectural anti-patterns degrad-
ing systems quality. While investigating both research works and industrial perspec-
tives, this step considers the set of quality attributes retrieved previously. The output will
be a set of anti-patterns for each quality attribute identified in S1 and their counterpart.

• S3: Definition of tactics for quality improvement. We define a set of tactics for each
pattern classified in S2. Those tactics consist of a collection of microservices identification
strategies. The results of RQ2 will guide the outline of this step. Moreover, S1 and S2 of
this research plan will answer to RQ1.

• S4: Implementation of the multi-objective optimization algorithm. Our process
allows to find the optimal system decomposition according to a predefined set of quality
attributes. Thus, after performing a review, the chosen optimization algorithm will be
implemented. It will take into consideration both the selected tactics and the decomposed
microservices. This step answer to RQ3.

• S5: Evaluation of results. Finally, the process will be applied on a real-world applica-
tions. This phase will serve to assess the validity of the proposed process.

We are currently working on S1 and S5. For S1 following the Systematic Literature Review
Protocol defined in [15], we carried-out the planning phase setting up i) the research questions,
ii) the search string, iii) the digital libraries for the search and iv) inclusion and exclusion
criteria. Currently, we are involved in the data extraction and monitory phase.For S5, we are
collaborating with a national company that is migrating their monolithic system to microservices
by considering mainly performance. Unfortunately, they did not considered performance during
the architectural refactoring phase. Thus, our goal is to i) study the design decisions behind
the microservices identification they carried-out ii) analyse the monolith according to a set of
quality attributes concerted with the company including performance iii) use our process to
suggest a different decomposition strategy to evaluate its validity.

Acknowledgments

The authors research is supervised by Prof. Henry Muccini. The research program is supported
by the Italian PON (National Operational Programme on Research and Innovation).

References

[1] R. C. seacord, D. Plakosh, G. A. Lewis, Modernizing Legacy Systems: Software Technologies,
Engineering Process and Business Practices, Addison-Wesley Longman Publishing Co.,
Inc., 2003.

[2] P. D. Francesco, I. Malavolta, P. Lago, Research on architecting microservices: Trends,
focus, and potential for industrial adoption, in: 2017 IEEE International Conference on
Software Architecture (ICSA), 2017, pp. 21–30. doi:10.1109/ICSA.2017.24.

http://dx.doi.org/10.1109/ICSA.2017.24


[3] A. Selmadji, A.-D. Seriai, H. Bouziane, C. Dony, R. Mahamane, Re-architecting oo software
into microservices: A quality-centred approach, Lecture Notes in Computer Science (2018)
65–73. doi:10.1007/978-3-319-99819-0_5.

[4] O. Zimmermann, Architectural refactoring for the cloud: A decision-centric view on cloud
migration (2017) 129–145. doi:10.1007/s00607-016-0520-y.

[5] M.-D. Cojocaru, A. Uta, A.-M. Oprescu, Attributes assessing the quality of microservices
automatically decomposed from monolithic applications, in: 2019 18th International
Symposium on Parallel and Distributed Computing (ISPDC), 2019, pp. 84–93. doi:10.
1109/ISPDC.2019.00021.

[6] S. Ghayyur, A. Razzaq, S. Ullah, S. Ahmed, Matrix clustering based migration of system
application to microservices architecture, International Journal of Advanced Computer
Science and Applications (2018) 284–296. doi:10.14569/IJACSA.2018.090139.

[7] N. Alshuqayran, N. Ali, R. Evans, A systematic mapping study in microservice architec-
ture, in: 2016 IEEE 9th International Conference on Service-Oriented Computing and
Applications (SOCA), 2016, pp. 44–51. doi:10.1109/SOCA.2016.15.

[8] Z. Ren, W. Wang, G. Wu, C. Gao, W. Chen, J. Wei, T. Huang, Migrating web applications
from monolithic structure to microservices architecture, in: Proceedings of the Tenth
Asia-Pacific Symposium on Internetware, Association for Computing Machinery, 2018.
doi:10.1145/3275219.3275230.

[9] A. Janes, B. Russo, Automatic performance monitoring and regression testing during
the transition from monolith to microservices, in: 2019 IEEE International Symposium
on Software Reliability Engineering Workshops (ISSREW), 2019. doi:10.1109/ISSREW.
2019.00067.

[10] L. Carvalho, A. Garcia, T. E. Colanzi, W. K. G. Assunção, M. J. Lima, B. Fonseca, M. a.
Ribeiro, C. Lucena, Search-based many-criteria identification of microservices from legacy
systems, in: Proceedings of the 2020 Genetic and Evolutionary Computation Conference
Companion, 2020. doi:10.1145/3377929.3390030.

[11] F.-D. Eyitemi, S. Reiff-Marganiec, System decomposition to optimize functionality distri-
bution in microservices with rule based approach, in: 2020 IEEE International Conference
on Service Oriented Systems Engineering (SOSE), 2020. doi:10.1109/SOSE49046.2020.
00015.

[12] W. Jin, T. Liu, Y. Cai, R. Kazman, R. Mo, Q. Zheng, Service candidate identification from
monolithic systems based on execution traces, IEEE Transactions on Software Engineering
(2021). doi:10.1109/TSE.2019.2910531.

[13] M. Cojocaru, A. Uta, A.-M. Oprescu, Microvalid: A validation framework for automatically
decomposed microservices, in: 2019 IEEE International Conference on Cloud Computing
Technology and Science (CloudCom), 2019. doi:10.1109/CloudCom.2019.00023.

[14] L. Bass, P. Clements, R. Kazman, Software Architecture in Practice, 3rd ed., Addison-Wesley
Professional, 2012.

[15] B. Kitchenham, S. Charters, Guidelines for performing systematic literature reviews in
software engineering, 2007.

http://dx.doi.org/10.1007/978-3-319-99819-0_5
http://dx.doi.org/10.1007/s00607-016-0520-y
http://dx.doi.org/10.1109/ISPDC.2019.00021
http://dx.doi.org/10.1109/ISPDC.2019.00021
http://dx.doi.org/10.14569/IJACSA.2018.090139
http://dx.doi.org/10.1109/SOCA.2016.15
http://dx.doi.org/10.1145/3275219.3275230
http://dx.doi.org/10.1109/ISSREW.2019.00067
http://dx.doi.org/10.1109/ISSREW.2019.00067
http://dx.doi.org/10.1145/3377929.3390030
http://dx.doi.org/10.1109/SOSE49046.2020.00015
http://dx.doi.org/10.1109/SOSE49046.2020.00015
http://dx.doi.org/10.1109/TSE.2019.2910531
http://dx.doi.org/10.1109/CloudCom.2019.00023

	1 Introduction and Motivations
	2 Related work
	3 Proposed Approach
	4 Proposed Research Plan

