
Scenario-based Resilience Evaluation and Improvement of
Microservice Architectures: An Experience Report
Sebastian Frank1, Alireza Hakamian1, Lion Wagner1, Dominik Kesim1, Jóakim von
Kistowski2 and André van Hoorn1

1Institute of Software Engineering, University of Stuttgart. Stuttgart, Germany
2DATEV eG, Nürnberg, Germany

Abstract
Context. Microservice-based architectures are expected to be resilient. However, various systems still suffer severe quality
degradation from changes, e.g., service failures or workload variations. Problem. In practice, the elicitation of resilience
requirements and the quantitative evaluation of whether the system meets these requirements is not systematic or not even
conducted. Objective. We explore (1) the scenario-based Architecture Trade-Off Analysis Method (ATAM) for resilience
requirement elicitation and (2) resilience testing through chaos experiments for architecture assessment and improvement.
Method. In an industrial case study, we design a structured ATAM-based workshop, including the system’s stakeholders,
to elicit resilience requirements. We specify these requirements into the ATAM scenario template. We transform those
scenarios into resilience experiments to quantitatively evaluate and improve system resilience. Result. We identified 12
resilience scenarios. We use and extend ChaosToolkit to automate and execute two scenarios. We quantitatively evaluate
resilience requirements and suggest resilience improvements in the scope of both scenarios. We share lessons learned from
the case study. In particular, our work provides evidence that an ATAM-based workshop is intuitive to stakeholders in an
industrial setting. Conclusion. Our approach helps requirement and quality engineering teams in the process of resilience
requirements elicitation.

1. Introduction
An intrinsic quality property of the microservices archi-
tectural style is resilience, i.e., the system meets perfor-
mance and other Quality of Service (QoS) requirements
despite different failure modes or workload variations [1].
However, real-world postmortems [2] show that systems
suffer either unacceptable QoS degradation, or recovery
time. It is necessary to assure system resilience in the
context of microservice-based architectures.

Practitioners use Chaos Engineering [3], including
tools such as CTK [4, 5] or Chaos Monkey1, for resilience
testing. They need to (1) think about hazards [6] as causes
of QoS degradation, (2) set up chaos experiments by spec-
ifying failure mode types and hypotheses of expected
quality behavior, and (3) execute each experiment to de-
tect deviations from the hypotheses. First, this approach
lacks the systematic identification of causes of a hazard
through hazard analysis methods. We contributed to
this problem in our previous work [7], which serves as a
foundation for this paper. Particularly, we now integrate
hazard analysis into a more systematic elicitation process
and use a more formal description of requirements (sce-
narios). Second, the approach lacks a systematic process
of eliciting and refining resilience requirements.

In the context of an industrial case study, our objective
is to explore the application and adoption of the Architec-

ECSA 2021 Companion Volume, Växjö, Sweden, 13-17 September 2021
© 2021 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

1https://github.com/Netflix/chaosmonkey

ture Trade-Off Analysis Method (ATAM) [8] for (1) the
system’s resilience requirement elicitation and (2) re-
silience testing through resilience experiments (aka chaos
experiments) for architecture assessment and improve-
ment. We hypothesize that ATAM has already been used
in practice to elicit and specify quality requirements other
than resilience, e.g., availability, performance, and main-
tainability, and can be adopted for effectively eliciting re-
silience requirements and evaluating them through chaos
experiments. Therefore, our research question is: How
to leverage ATAM to elicit resilience requirements, which
can be utilized to evaluate resilience through resilience ex-
periments and suggest architectural improvements quan-
titatively?

We use an ATAM-based workshop to elicit and specify
resilience requirements by involving system stakehold-
ers. ATAM allows us to describe resilience requirements
as scenarios in semi-structured textual language. The
scenario template consists of the following elements:
(1) source, (2) stimuli, (3) artifact(s), (4) system’s envi-
ronment, (5) its response, and (6) response measure.

The designed structured workshop aims to identify
hazards and architectural design decisions. During the
workshop, we employ a hazard analysis based on the
Fault Tree Analysis (FTA) [6]. The result is a set of 12
resilience scenarios, which we turn into experiments.
Next, we use CTK to automate these experiments, and
conduct a measurement-based resilience evaluation. Fur-
thermore, we improve system resilience by applying a
resilience pattern [9, 1], namely retry. We validate the
improvement by re-executing the respective scenario.

https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org
https://github.com/Netflix/chaosmonkey


To summarize, the paper makes the following contri-
butions:

• Leveraging ATAM and FTA in an industrial system
to elicit resilience requirements, then evaluating the
requirements, and improving system’s resilience.

• Automating scenario execution using CTK for measure-
ment-based evaluation.

• We share lessons learned that benefit both practition-
ers and researchers regarding resilience requirement
elicitation, evaluation, and improvement.

• Artifacts — including scenarios, resilience experiments,
and results of the experimentation — are available on-
line [10].

2. Related Work
A workshop is an effective technique for requirement
elicitation [11]. In our case, the workshop’s prepara-
tion and conduction are based on the scenario template
of Bass et al. [12]. Our difference to existing works on
measurement-based resilience evaluation is that we have
an explicit step on eliciting resilience requirements. In
the next paragraphs, we elaborate on this in more detail.

Cámara et al. [13, 14, 15] propose an approach for
resilience analysis of self-adaptive systems. The core
idea consists of three parts: (1) specification of resilience
properties using Probabilistic Computation Tree Logic,
(2) modeling causes of a hazard, e.g., high-load using ex-
perimentation and collecting traces of system behavior,
and (3) verification of resilience properties using model
checking. In contrast to model checking-based verifica-
tion, we evaluate a resilience scenario’s response measure
by analyzing collected measurements. Furthermore, Cá-
mara et al. do not focus on the elicitation of resilience
requirements using requirement engineering methods.

Chaos Engineering [5, 3] is a technique for evaluating
system resilience through injecting failures [16]. There
are works on both (1) using engineering methods to iden-
tify failure modes [7], i.e., causes of a hazard systemati-
cally before failure injection, and (2) ad-hoc failure injec-
tion with no systematic failure mode identification [2].
However, they do not explicitly specify resilience require-
ments and lack a methodical way for requirement elicita-
tion. Our work is a step toward closing this gap.

In the context of resilience requirement elicitation, Yin
et al. [17] propose a goal-oriented technique for represent-
ing resilience requirements. The high-level idea is to rep-
resent a resilience goal — e.g., all requests are processed
correctly — and identify possible causes of hazards that
act as obstacles for achieving a resilience goal — e.g., node
failure. However, they do not discuss how to identify haz-
ards and their causes. Goal orientation and developing

scenarios are two activities in requirements engineer-
ing [11] that benefit the elicitation process. According
to Pohl [11], scenario development benefits elicitation
by making goals understandable for stakeholders and
may refine or identify new goals. Our work uses sce-
nario development without goal-oriented modeling as all
stakeholders know the system’s high-level quality goal.

To our knowledge, this is the first work using ATAM
for eliciting and specifying resilience requirements before
evaluating the resilience through experiments.

3. Research Methodology
Section 3.1 explains the domain context and describes
the high-level architecture of the case study system. Sec-
tion 3.2 summarizes our research methodology.

3.1. Domain Context
The case study system’s purpose is to calculate payments.
An accounting department’s wage clerks use the pay-
ment accounting system to calculate each registered em-
ployee’s income taxes. The payment accounting system
has to gather data from health insurance providers and
send its results to the corresponding tax office to execute
the calculations. This process presumes that a company
that wants to use the payment accounting system pro-
vides its employee and tax information to the health
insurance provider and tax offices.

All of the payment accounting system’s tasks are cur-
rently taken care of by a monolithic legacy system. In
peak times, up to 13 million calculation requests have to
be handled in a day or single night. Under normal circum-
stances, this number is significantly lower. In order to
handle such varying loads more efficiently, stakeholders
desired a better scaling system. Therefore, the old system
will be replaced by a more scalable microservice-based
Spring application in the coming years. The investigated
part of the system under study, which is still under de-
velopment, consists of seven services. It is deployed to
a Platform as a Service (PaaS), i.e., Cloud Foundry (CF).
Together with the industrial partner, we decided on a
scenario-based approach, as our industrial partner al-
ready employed ATAM for other quality attributes.

3.2. Research Procedure
To answer our research questionHow to leverage ATAM to
elicit resilience requirements, which can be utilized to eval-
uate resilience through resilience experiments and suggest
architectural improvements quantitatively?, we conduct
the following steps:

1. We gather relevant system stakeholders, i.e., product
owners, software architects, and quality engineers,



into an ATAM-based workshop. The objective is to
identify resilience scenarios that lead to QoS degrada-
tion and downtime.

2. We derive resilience experiments from the scenarios.
The experiment description comprises the stimuli, ar-
tifact, and response according to the scenario.

3. We use CTK to automate the execution of the re-
silience experiments. We assess the response measure
by analyzing the QoS metrics measurements.

4. After executing resilience experiments, we apply suit-
able resilience patterns. We re-execute the resilience
experiments to assess the pattern’s effect by compar-
ing QoS-related behavior with and without the re-
silience pattern.

4. Elicitation and specification of
scenarios

This section elaborates on the planning, execution, and
results of the workshop.

4.1. Elicitation through Structured
Workshop

Before the workshop, we received documentation regard-
ing the architecture of the system. This allowed us to
specify an architecture model of the case study system,
including a component diagram and an explanation of
the implemented components. Using ATAM, we required
to know key architectural design decisions. Therefore,
knowing the architecture description in advance allowed
us to focus more on the hazard analysis and developing
resilience scenarios.

The full-day workshop consisted of four sessions lever-
aging different methods, as described next. The modera-
tors explained each technique and method at the begin-
ning of each session. The participants were stakeholders
of the system and comprised two software architects, one
product owner, and one quality assurance engineer.

Session 1: Introduction and Architecture Description for
achieving a common understanding of the workshop
process and the system’s architecture. (1) We resolved
misunderstandings regarding the elicited architecture
description through asking questions, and (2) refined the
prepared architectural models.

Session 2: Hazard Analysis to identify potential causes
for degradation in QoS. Index cards were used as a means
to collect hazards. Afterward, the participants arranged
the hazards and their causes in a fault-tree-like fashion.
To not break the participants’ creative flow, we relaxed
the strict construction rules of fault trees, e.g., we allowed
events having multiple parents, which resulted in a graph.

For this reason, we refer to the result of this session
as a fault graph. Note that the (directed acyclic) fault
graph can be transformed into an equivalent fault tree
by creating duplicate sub-trees for nodes having more
than one parent.

Session 3: Resilience Scenarios for collecting and priori-
tizing resilience scenarios based on the previously identi-
fied hazards. We provided a scenario template based on
the layout used in ATAM. Then, the stakeholders jointly
created scenarios by informally analyzing the fault graph
in a sequence driven by the associated severity (in de-
scending order) of the hazards.

Session 4: Retrospective to collect feedback about the
workshop from the participants and to inform them about
the next steps, which comprise (1) refinement resilience
requirements, and (2) execution of resilience experiments.

4.2. Workshop Results
Elicited Architecture Description: Figure 1 shows the com-
ponent diagram of the system as specified in the first
session of the workshop. It describes a snapshot of the
system as used in the workshop and the subsequent activ-
ities. It represents a typical microservice-based architec-
ture. As such, the system is deployed to a CF and contains
several services. Each service has its own PostgreSQL
database. The only exception is the Calculations service,
which employs a Mongo database. The API-Gateway ser-
vice handles all incoming connections and routes all com-
munications. A Eureka service is employed to provide
service discovery for all internal components. The Fron-
tend service is the only external component that a user
can directly access. The Calculations service is the cen-
tral hub of the system since the calculation of payments
is the system’s main feature. Once this service receives a
calculation request from the gateway, it collects all nec-
essary data asynchronously from the other services. The
Companies service is used to handle data the Frontend
displays, but is not relevant for the calculation.

Hazard Analysis: Figure 2 shows the fault graph cre-
ated in the second workshop session. The stakeholders
agreed on unavailability or long response of settlement
calculations as the main system hazard. Therefore, user’s
settlement can not be calculated is the top event in the
fault graph. We analyzed possible causes from the top
event until we reached basic events that we could not
further decompose. We connected different causes by
logical operators, i.e., AND and OR. For example, users
can not calculate their settlement if it is not processed
in time. This can occur when the assigned instance stalls
OR responds to slow. We argue that the latter can be
experienced if the system receives a sudden (work)load
peak AND its (auto) scaling does not work correctly. The
hazards at the leaf nodes are potential candidates for
fault/failure injection during resilience experiments and



«Service»
Frontend

«Service»
Payments

«Service»
Working-

Hours

«Service»
Taxes

«Service»
Social-

Insureances
«Service»

Companies

«Service»
Employees

«Service»
Eureka

The API Gateway
can communicate
with each Service
directly

«Service»
Calculations

Eureka 
Discovery 

Zone

«Service»
A

PI-G
atew

ay

Figure 1: Component Diagram of Payment Accounting System

User's
Settlement
cannot be
Calculated

(Large) Clients
cannot be

Processed in
Time

Data cannot
be Captured

Calculation
cannot

 be Executed

Incorrect
Calculation

Instance
has too slow
Response

Time

Service
does not
answer

Service answers
with techical

error
Gateway
Service
crashes

Middleware
crashes

external
 Service
does not
Answer

Bad
(auto)

Scaling Load
Peak

Eureka
crashes

Instance
stalled

Database
is full

Instance
dies while

doing work

Instance
gets

mirgrated 

other Types
 of CF-related

Errors

Data Loss
Data is not 

correctly
replicated
between

Datacenters

Data cannot
 be recoverd 
after outage

Outage

Calculation
with

Inconsitent
Data

Caclulation
with Wrong

Version

Technically
Incorrect

Retry

other
Middleware

crashes

OR Gate

Basic Event

AND Gate

Intermediate
Event

Undeveloped
Event

Figure 2: Cleaned Fault Graph

can be initiated by tools such as CTK. The stakeholders
selected and prioritized the set of resilience experiments.

Resilience Scenarios: We gave the participants an empty
table according to the ATAM scenario template with the
columns (1) source, (2) stimulus, (3) artifacts, (4) environ-
ment, (5) response, and (6) response measure. Further,
we explained the meaning of each table column to the
participants. By using index cards again, the participants
steadily added content to the table. We began by iden-
tifying possible sources. The stimuli and artifacts were
then derived from the previously created fault graph. The
environment represents different time periods when the
identified stimuli occur. The responses are the stakehold-
ers’ assumptions about how the system should respond
to the particular stimulus. The response measures are
based on their internal Service Level Objectives (SLOs).
For example, a workload peak resulting in a system fail-
ure was transposed into multiple scenarios. Users of the
system are the source of the scenario since they cause
the load peak. The respective stimulus is the workload
peak itself. A service was chosen as the artifact to repre-
sent that a load peak can influence all service instances.
As the environment, the payslip calculation period was
chosen to imply an existing base workload. At last, the

stakeholders chose the responses and response measures
based on their SLOs.

The stakeholders elaborated 12 resilience scenarios,
summarized in Table 1. Scenarios 01 to 04 are different
variations of an unexpected load peak, including linear
and exponentially increasing loads. Scenario 05 and 06 de-
scribe the failure of a single service instance. Scenario 07
and 08 are about middleware failures. Scenario 09 and 10
revolve around gateway failures. Lastly, Scenario 11 and
12 describe the failure of multiple instances. Actors such
as end-users, elements of the CF platform, different bugs,
and technical issues caused by the middleware or deploy-
ment artifacts and issues intrinsic to individual services
of the system comprise the established sources. In total,
all scenarios can affect all services. The environments
cover different states of the system according to the iden-
tified system domain context, e.g., payslip calculation
periods or simply services being non-idle independent
of the different calculations. The response and response
measures were specified by the stakeholders based on
their internal SLOs.

Retrospection: The brief retrospective at the end of the
workshop showed that the participants were satisfied
with the agenda, content, and outcomes. However, com-
ments were made concerning time management.

5. Resilience Evaluation
This section aims to evaluate the case study system’s
resilience. Therefore, we implemented a subset of the
previously elicited resilience scenarios into resilience ex-
periments using CTK. We compare the system’s behavior
against the expected behavior described in the scenarios’
response part.

5.1. Experiment Setup
5.1.1. Examined Software System

Due to legal constraints and to maintain anonymity, our
industrial partner provided us with a mocked version
as a proxy for the real payroll accounting system. This
version, shown in Figure 3, is used throughout this paper



ID
Sh

or
tN

am
e

So
ur

ce
St

im
ul

us
A

rt
if

ac
t

En
vi

ro
nm

en
t

R
es

po
ns

e
R

es
po

ns
e

M
ea

su
re

01
Pe

ak
(L

in
C

o)
/

Se
r/

A
br

U
se

r
Li

ne
ar

in
cr

ea
si

ng
lo

ad
pe

ak
(c

ol
d

st
ar

t)
Se

rv
ic

e
Pa

ys
lip

ca
lc

ul
at

io
n

pe
ri

od
A

ll
re

qu
es

ts
ar

e
ha

nd
le

d
co

rr
ec

tly
an

d
in

tim
e

W
ag

e
ca

lc
ul

at
io

n
≤

1
s,

in
9
9
%

of
th

e
ca

se
s,

pa
ys

lip
ca

lc
ul

at
io

n
≤

2
0
s

(3
00

Em
pl

oy
ee

s)
02

Pe
ak

(E
xC

o)
/

Se
r/

A
br

Ex
po

ne
nt

ia
lly

in
cr

ea
si

ng
lo

ad
pe

ak
(c

ol
d

st
ar

t)
03

Pe
ak

(L
in

C
o)

/
Se

r/
N

oA
br

Li
ne

ar
in

cr
ea

si
ng

lo
ad

pe
ak

(c
ol

d
st

ar
t)

N
ot

du
ri

ng
pa

ys
lip

ca
lc

ul
at

io
n

pe
ri

od
04

Pe
ak

(E
xC

o)
/

Se
r/

N
oA

br
Ex

po
ne

nt
ia

lly
in

cr
ea

si
ng

lo
ad

pe
ak

(c
ol

d
st

ar
t)

05
Fa

ilu
re

(C
F)

/
In

s/
Be

r
C

lo
ud

Fo
un

dr
y

In
st

an
ce

te
rm

in
at

es
In

st
an

ce
D

ur
in

g
w

ag
e

ca
lc

ul
at

io
n

U
se

r
un

aw
ar

e,
ca

lc
.c

or
re

ct
&

in
tim

e,
≥

1
in

st
an

ce
ru

nn
in

g
06

Bu
g/

In
s/

Be
r

Bu
g

D
ev

el
op

er
ge

ts
no

tifi
ed

D
ev

el
op

er
ge

ts
no

tifi
ed

w
ith

in
5
m
in

07
Fa

ilu
re

(M
W

)/
Ba

c/
Be

r
M

id
dl

ew
ar

e
O

pe
ra

to
r

M
id

dl
ew

ar
e

te
rm

in
at

es
Ba

ck
en

d
D

ur
in

g
w

ag
e

ca
lc

ul
at

io
n

A
bo

rt
ca

lc
ul

at
io

n,
ca

lle
r

w
ill

be
no

tifi
ed

N
ot

ifi
ca

tio
n

ar
ri

ve
s

w
ith

in
1
s

in
9
9
%

of
th

e
ca

se
s

08
Fa

ilu
re

(M
W

)/
Ba

c/
A

br
M

id
dl

ew
ar

e
te

rm
in

at
es

bu
t

re
co

ve
rs

A
sy

nc
.p

ay
sl

ip
ca

lc
ul

at
io

n
Pr

oc
es

s
is

ab
or

te
d

bu
tc

an
be

pi
ck

ed
up

Re
st

ar
ts

an
d

SL
O

s
ar

e
sa

tis
fie

d

09
D

ep
l(G

W
)/

Fr
oB

ac
/N

oI
dl

e
D

ep
lo

ym
en

t
G

at
ew

ay
te

rm
in

at
es

Fr
on

t-
an

d
Ba

ck
en

d
N

ot
Id

le
Fr

on
te

nd
sh

ow
s

er
ro

r,
ga

te
w

ay
re

st
ar

ts
D

ow
nt

im
e

of
ga

te
w

ay
in

st
an

ce
is

be
lo

w
1
m
in

10
Fa

ilu
re

(G
W

)/
Fr

oB
ac

/N
oI

dl
e

Te
ch

ni
ca

lI
ss

ue

11
Fa

ilu
re

(S
er

E)
/

Se
r/

Be
r

Re
ce

iv
in

g
Se

rv
ic

e
Se

rv
ic

e
te

rm
in

at
es

Se
nd

in
g

Se
rv

ic
e

S,
Re

ce
iv

in
g

Se
rv

ic
e

R

D
ur

in
g

w
ag

e
ca

lc
ul

at
io

n,
no

in
st

an
ce

av
ai

la
bl

e
Er

ro
r

m
es

sa
ge

an
d

se
rv

ic
es

R
re

st
ar

ts
D

ow
nt

im
e

is
be

lo
w
1
m
in

12
Fa

ilu
re

(S
er

E)
/

In
s/

Be
r

D
ur

in
g

w
ag

e
ca

lc
ul

at
io

n,
on

e
in

st
an

ce
no

ta
va

ila
bl

e
C

al
cu

la
tio

n
co

rr
ec

ta
nd

in
tim

e
W

ag
e

ca
lc

ul
at

io
n

re
sp

on
se

tim
e

is
be

lo
w
2
s

Ta
bl

e
1:

Sc
en

ar
io

s
cr

ea
te

d
du

ri
ng

th
e

w
or

ks
ho

p

Mock Payroll Accounting System

«Service»
Eureka

«Service»
API-Gateway

«Service»
payslip

«Service»
payslip2

Jollyday API

Figure 3: Mocked Payroll Accounting System

as the system under test. It implements a similar business
logic but with less computational overhead. The system
uses typical patterns of the microservice architectural
style, i.e., API-Gateway-service as a central gateway that
manages all incoming requests and Eureka [18] to provide
service discovery. The payslip-service utilizes an H2 in-
memory database and the third-party API Jollyday. It can
forward requests to the payslip-service2. Requests can
also be sent directly to payslip-service2 using a different
endpoint.

The following six endpoints are used during the exper-
iments:

INTERNAL_DEP. — Calls the payslip-service2 via
payslip-service.

DB_READ — Reads an entry from the database of the
payslip-service.

EXTERNAL_DEP. — Calls the third-party API Jolly-
days via payslip-service.

DB_WRITE — Writes an entry into the database of the
payslip-service.

GATEWAY_PING — Checks whether theAPI-Gateway-
service responds.

UNAFF._SERVICE — Sends a request directly to
payslip-service2.

The actual payment accounting system is deployed to
a paid CF. Due to financial constraints and legal issues,
the mock system is deployed to a local CF environment
[19], which has similar properties as a paid CF. As CF is a
constraint given by the stakeholders, we did not consider
other cloud providers.

5.1.2. Experiment Tools

Figure 4 shows our experiment framework comprising
four tools, i.e., CTK, load generator, hypothesis valida-
tor, and dashboard. During an experiment, these tools
interact with the system to monitor the experiments and
provide detailed insights, e.g., response times of calls to
individual endpoints.

To execute the experiments, we used CTK [20], which
can execute and monitor chaos tests and has drivers for
various PaaS solutions. We leveraged the CF driver to
terminate a service instance at a specific point in time



System Under
Test

Load-
generator InfluxDB

query
results

Hypothesis 
Validation ChaosToolkit

execute experiment

write
 results

generate
load

retrieve
results

Load Profile

Figure 4: Used structure of the experiment framework

and validate the steady-state hypothesis. The load that
the system receives is controlled by an adapted version
of the load generator from the TeaStore microservices
benchmark [21] that monitors response times, number
of successful, dropped, and failed requests. The collected
data is written into an InfluxDB [22] for a time series
based evaluation. During the evaluation, a Spring ser-
vice collects the necessary data from the InfluxDB and
calculates whether a hypothesis holds. We also created a
dashboard application that provides convenient features,
like synchronized starting of CTK and the load gener-
ator, live monitoring, and automated CTK setup. Since
the dashboard does not add functionalities in executing
experiments, it is not part of Figure 4.

5.2. Experiment Execution
Based on Scenarios 04 and 05, we implemented three
resilience experiments. The first experiment investigates
a load peak with an exponential increase (Scenario 04),
while the remaining two investigate instance termina-
tion due to an internal CF error for random instances
(Scenario 05) and specifically the payslip-service (Sce-
nario 05’). The selection of experiments is based on the
industrial partner’s preferences. In all experiments, the
effect on all endpoints is examined. In the following, we
will only discuss the results of a subset of endpoints for
Scenario 05’. The residual results can be found in the
supplementary material [10].

The design of the experiment related to Scenario 05’ is
given in Table 2. The target service of this experiment is
the payslip-service, which holds the core business logic of
the mock system. We use CTK to terminate running CF
application instances to simulate the scenario’s stimulus.
The stimulus refers to an error that occurs in CF, which
leads to a loss of an application instance. We assume that
the blast radius only affects the payslip-service and that
CF registers the loss of the payslip-service instance and
starts a new instance. Our hypothesis is that the response
measure of Scenario 05 still holds.

During the experiments, the system is exposed to an
almost constant, synthetic load. We generated a load
profile with a target load of 20 requests per second and

Target Service payslip-service
Experiment Type Terminate payslip-service

application instance
Hypothesis Response measure of

Scenario 05 holds
Blast Radius payslip-service

Table 2
Resilience experiment design for Scenario 05’

some noise. The requests are evenly distributed over all
six endpoints. To assess whether the system still responds
correctly and in time, we measure response times of the
requests and compute their success rate.

5.3. Experiment Results
Figure 5 shows the steady-state, injection, and recovery
phases of the experiment for endpoints INTERNAL_DEP.,
GATEWAY_PING, and UNAFF._SERVICE. In the steady-
state phase, we assume that the system is working as
expected, i.e., the response times satisfy the SLOs. In the
injection phase, CTK terminates the payslip-service in-
stance. In the recovery phase, we assume that the system
recovers and returns to a steady state, i.e., the response
times satisfy the SLOs. We omitted the load generator’s
warmup and cooldown phase due to readability and anal-
ysis purposes, which refers to the overall first and last
300 s. Further, a 30 s binning was applied, and extreme
outliers (>100ms) are not shown.

The success rates at the endpoints INTERNAL_DEP.
(Figure 5a), DB_READ, EXTERNAL_DEP., and DB_WRITE
drop to 0% as the payslip-service is terminated after
600 s and rises back to 100% as it recovers in about
1.5min. During this downtime, no response times are
recorded since no requests arrive at the payslip-service.
During the steady-state and recovery phase, the response
times are stable at around 20ms and 15ms, respectively.
During the injection phase, there is a slight increase as
the payslip-service has restarted. The results for GATE-
WAY_PING (Figure 5c) and UNAFF._SERVICE (Figure 5e)
show a similar structure. However, the load generator did
not record any successful or failed requests during the
downtime. Therefore, no success rate could be calculated.

5.4. Discussion of Results
As visible in Figure 5 (left side), the response time and
success rate values are almost identical in the steady
state phase and the recovery phase. Furthermore, the
increase in the success rate indicates that the payslip-
service becomes available after 30 s to 60 s. Thus, the CF
platform can re-instantiate the payslip-service quickly,
leading to a quick recovery of the system.

Response times are slightly higher while the payslip-
service is re-instantiated, which was expected as normal
cold-start behavior. Endpoints GATEWAY_PING and



●
●

●

● ●

●

●●

●
●

●

●
●
●

●
●●

●

●●
●

●

●
●●

●

●

●

●●●
●

●
●

● ●

●

●● ●

●

●
●

●●●
●

●
●

●

●

●●●

●

●

●
●

●

●

●

●

●●

●●

●●
●●●

●

●

●

●
●
●
●

●●

●
●

●

●

●

●

●

●

●●
●

●●

●●

●

●
●
●

●

●

●●●
●
●●
●

●●

●●●

●
● ●●

●

●●●
●

●
●●●●●●

●
●●●

●●

●●

●

●
●

● ●
●●

●

●

●
●

●

●
●●●●●

●

●

●

●●
●
●●●●●●
● ●●●

0
25

50
75

10
0

0
25

50
75

10
0

30
0

60
0

80
0

12
00

Experiment Duration (s)

R
es

po
ns

e 
T

im
es

 (
m

s) S
uccess R

ate (%
)

Success Rate

Response times

Experiment Phases

Steady state

Injection

Recovery

S04 Direct Run 1
ID 0 Response Times and Success Rate of 

 HTTP Requests

(a) INTERNAL_DEP. (without retry)

●

●

●

●●● ●
●
●
●

●

●

●
●●●● ●

●
●

●

●

●●
●

●
●
●

●

●

●

●
●

●●● ●
●

●

●●
● ● ●

●

●

●

●

● ●
●●●
●

●

●

●

●

●
●

●

●

●

●

●●

0
25

50
75

10
0

0
25

50
75

10
0

30
0

60
0

80
0

12
00

Experiment Duration (s)

R
es

po
ns

e 
T

im
es

 (
m

s) S
uccess R

ate (%
)

Success Rate

Response times

Experiment Phases

Steady state

Injection

Recovery

S04 Direct Run 2
ID 0 Response Times and Success Rate of 

 HTTP Requests

(b) INTERNAL_DEP. (with retry)

●●
●●

●
●●●●●
●
●
●●

●

●●
●●
●

●

●

● ●●●

●
●●●
●
●●●
●●

●●●●●

●
●●
●
●●
●●●●●

●
●●●●●●●●
●
●

●

●
●●●

●●
●
●
●
●
●

●

●●●●●

●

●●●
●
●●●●●●●●●

●●●●●

●

●

●

●

●●●●●● ●●

●

●●●●●
●●●
●
●●●
●

●

●

●●

●

●● ●●●●
●

●

●
●

●●●●●●

●

●

●●●

●
●●● ●

●
●●●●●●●●●●●

●
●
●●

●
●

●●
●
●●

●

●●●●●
●
●
●
●

●●●
●
●
●●
●
●●●●●●●

● ●● ●
●●

●●
●●
●●●●●●●●●●●
●● ●

●●●●
●●
●●●●

●

● ●
●

●●●
●●
●●●
●●●●

●

●●
● ●●●●●

●

●●●●● ●● ●●●●●

0
25

50
75

10
0

0
25

50
75

10
0

30
0

60
0

80
0

12
00

Experiment Duration (s)

R
es

po
ns

e 
T

im
es

 (
m

s) S
uccess R

ate (%
)

Success Rate

Response times

Experiment Phases

Steady state

Injection

Recovery

S04 Direct Run 1
ID 4 Response Times and Success Rate of 

 HTTP Requests

(c) GATEWAY_PING (without retry)

●
●
●

●
● ●●

●●
●●

●

●

●●
●
●

●
●●

●
●
●●
●●●●
●
●●
●
●●●●●

●●

●

●●●

●

●

●●
●
●●●●●● ●●

●

●

●

●
●●
●●●●
●●

●●●●
●●●●●●●●

●
●
●●●

●

●●

●

●

●

●

●

●●●
●●
●●
●●●

●

●●●
●●●

●●●●●

●

●

●

●●●●
●

● ●●●
●
●●

●●
●●

●

●●●●

●

●●

●

●●●
●●●●●
●
●●
●●● ●●

●

●●
●●
●●●

●●

●
●
●

●●

●●● ●●●●●●●
●
●●●●●

●
●●
●●●

●●
●
●●●●●
●● ●●●

●

●●●

●
●●●●
●
●
●
● ●

●

●

●

●●●
●
●

●

●
●

●
●●

●

●
●
●

●
●

●●●●

●
●●●●●●●●
● ●●●●●●●●●

●
●●
●●
●●●
●●

●
●
●
●●●

●

●
●

●●

●

●●●● ●
●●●●●●●
●●
●
●

●

●

●●●

●
●●●●● ●●

0
25

50
75

10
0

0
25

50
75

10
0

30
0

60
0

80
0

12
00

Experiment Duration (s)

R
es

po
ns

e 
T

im
es

 (
m

s) S
uccess R

ate (%
)

Success Rate

Response times

Experiment Phases

Steady state

Injection

Recovery

S04 Direct Run 2
ID 4 Response Times and Success Rate of 

 HTTP Requests

(d) GATEWAY_PING (with retry)

●

●●
●
●●●
●●●●●●●

●

● ●
●●●●●●

●

●●

●

●
● ●

●●●●●●●

●

●●
●
●●
●
●●

●●●●●
●
●●
●●
●●●● ●●

●●
●●●

●

●
●

●

●●●

●

●

●
● ●●●

●

●●●
●
●●●●●
●
●

● ●

●●
●●●
●
●
●

● ●●●●●●●●
●
●●●●●
●

●●●

●

●
●

●●

●
●●●●●●

●●●●●●●

●

●

●

●

●
●

●●
●

●●
●●
●●●●

●●●●●●●●●
●●●●

●

●
● ●●●

●
●●

●
●●

●

●

●●●●
●●●●●●
●●

●

●●●●
●●●●●●●●
●

●

●●●●●●●●●●●●● ●●●

●

●
●
●
●
●● ●

●

●●
●●
●●●●●
●●●
●

●
●
●●
●

●

●●●●

●●

● ●●●●
●
●
●●
●

●

●●●
●●●●
●
● ●

●
●●
●

●

●

●

●

●●●

●
●
● ●●●●●

●

●
●●●●●
●●
●●

●
●●

●●

●

●●●●●●●
●
●
●●

●
●●
●
●●●

●

●

●●●
●● ●

●

●●●

●
●

●

●
●
●
●●●●●●●●●●●●●

0
25

50
75

10
0

0
25

50
75

10
0

30
0

60
0

80
0

12
00

Experiment Duration (s)

R
es

po
ns

e 
T

im
es

 (
m

s) S
uccess R

ate (%
)

Success Rate

Response times

Experiment Phases

Steady state

Injection

Recovery

S04 Direct Run 1
ID 5 Response Times and Success Rate of 

 HTTP Requests

(e) UNAFF._SERVICE (without retry)

●

●

●
● ●

●
●

●

●● ●●
●
●●

●

●
●
●

●● ●●

●

●
●
●
●
●●

●
●

●

●

●

●
●
●●
●
●
●●
●
●●

●
●●● ●●

●

●●

●

●●●
●●
●

●

●
●●●
●●●

●●●● ●●
●●
●●
●●
●
●
●
●
●●●
●●

●

●

●

●

●
●●●●

●
●
● ●●●●

●● ●
●●

●●●●●

●

●

●
●

●●●●●●●
●●

●
●
●●● ●●

●

●●●

●

●●●●●●
●

●●
●
●

●

●●● ● ●

●
●
●●
●
●●●●●
●●●●● ●

●●
●●
●
●●●●
●●●
●●●

0
25

50
75

10
0

0
25

50
75

10
0

30
0

60
0

80
0

12
00

Experiment Duration (s)

R
es

po
ns

e 
T

im
es

 (
m

s) S
uccess R

ate (%
)

Success Rate

Response times

Experiment Phases

Steady state

Injection

Recovery

S04 Direct Run 2
ID 5 Response Times and Success Rate of 

 HTTP Requests

(f) UNAFF._SERVICE (with retry)

Figure 5: Comparison of experiment results at different endpoints with and without the implemented retry pattern

UNAFF._SERVICE should remain unaffected during the
injection because the payslip-service is not required to
answer the requests. Nevertheless, response times at end-
point GATEWAY_PING are affected, which indicates a
propagation of the failure effects from the payslip-service
to the API-Gateway-service.

After the injection started, the success rate drops to
0% at the endpoints INTERNAL_DEP., DB_READ, EX-
TERNAL_DEP., and DB_WRITE. The CTK terminates
the single payslip-service instance. The load generator
flags all requests as failed, leading to a success rate of
0%. The plots show neither successful nor failing re-

quest responses at the endpoints GATEWAY_PING and
UNAFF._SERVICE during injection, which indicates no
requests exist in the system. Another possibility is that
requests have been dropped. Looking at the raw data
tables disproves this argument as there are no dropped
requests. Another explanation is that no requests arrived
at the system, which leads to a lack of data in the time
frame between approximately 600 s and 660 s.

We hypothesized that the response measure of Sce-
nario 05 holds, i.e., requests are answered in time (99% in
less than 1 s) and correctly. As the response times are far
below 1 s, our hypothesis regarding the response times



Steady State Injection Recovery
w/o Pattern w Pattern w/o Pattern w Pattern w/o Pattern w Pattern

Endpoint 𝑝5 �̃� 𝑥 𝑝99 𝑝5 �̃� 𝑥 𝑝99 𝑝5 �̃� 𝑥 𝑝99 𝑝5 �̃� 𝑥 𝑝99 𝑝5 �̃� 𝑥 𝑝99 𝑝5 �̃� 𝑥 𝑝99
INTERNAL_DEP. 19 22 22.5 33 19 22 24.0 51 19 21 22.4 32 19 22 24.6 90 19 21 22.1 31 19 22 23.0 34

DB_READ 11 12 13.3 21 11 12 13.0 24 11 12 13.1 20 11 12 13.2 30 11 12 12.9 20 11 12 12.8 19
EXTERNAL_DEP. 11 12 12.6 21 10 12 13.3 23 11 12 12.5 21 10 12 14.1 31 11 12 12.3 19 10 12 12.2 19

DB_WRITE 11 13 13.4 21 11 12 13.1 22 11 12 13.1 20 11 12 13.3 27 11 12 13.0 20 11 12 12.7 19
GATEWAY_PING 11 12 13.3 21 11 12 13.3 24 11 12 13.1 20 11 12 13.6 32 11 12 12.9 19 11 12 12.9 21
UNAFF._SERVICE 10 11 11.9 19 10 11 11.6 19 10 11 11.7 18 10 11 11.6 19 10 11 11.8 18 10 11 11.5 19

Table 3
Statistical summaries of the three experiment phases. 𝑝𝛼: 𝛼-th percentile; �̃�: median; and 𝑥: mean. Values are given in ms.

is technically fulfilled. However, several requests are not
answered at all, which is indicated by the dropped success
rate. We consider these as incorrect response. Therefore,
we assume that the hypothesis regarding correctness is
not fulfilled.

6. Resilience Improvement
The previous section’s experiments showed that the sys-
tem does not respond as described in Scenario 05 to a
failure of an instance of the payslip-service. While the
response times are technically below 1 s in 99% of all
cases, requests are temporarily not answered at all, and
thus, not correctly. Therefore, we aim to improve the
system’s success rate concerning Scenario 05 by applying
resilience pattern(s). We then determine the efficacy of
improvements to the system’s resilience by re-executing
the experiments.

6.1. Architectural Modifications
The system under test was fortified with a retry pat-
tern [9], i.e., the API-Gateway-service sends another re-
quest to the payslip-service if a request fails or remains
unanswered. The retry pattern seems to be a reasonable
choice since response times are far below the threshold
of 1 s, as indicated by the previous experiment. Due to its
specific purpose, the system has to accept requests near
real-time and always answer correctly. Thus, resilience
patterns that rely on backup or restricting behavior, like
circuit breakers or flow limiters, are unsuited. To avoid
bad retry behavior, we configured the Spring-Retry as
follows. We set the maximum number of retries of each
payslip-service request to be 4, the initial delay to 10ms,
the factor for the exponential increase to 3, and the max-
imum delay to 150ms— resulting in retries after 10ms,
30ms, 90ms, and 150ms.

6.2. Experiment Results and Discussion
Each plot on the right side of Figure 5 visualizes the
system’s response times and success rates with the retry
pattern for an endpoint. As in the experiment presented

in Section 5, each plot is divided into the steady state
phase, injection phase, and recovery phase. Table 3 shows
the associated statistical values.

In general, similar behavior can be observed at all the
endpoints. Comparing the plots at left and right of the
Figure 5, shows that the mean response times in the
steady state phase do not vary significantly when the
retry pattern is activated. Although, at the beginning of
the injection phase, far more high response times can be
observed. In addition, the boxplots show a slightly higher
interquartile range in the plot where the retry pattern is
integrated.

The plots also show that the success rate does not
drop to zero anymore when the pattern is active. For
the endpoints INTERNAL_DEP., the success rate drops
to approximately 70%. For the two endpoints GATE-
WAY_PING and UNAFF._SERVICE, requests are arriving
and the success rate remains at 100%.

The application of the retry pattern can explain the re-
sponse time spikes during the injection (see the Figure 5).
Requests sent shortly before the restart of the payslip-
service fail, but are retried by the API-Gateway-service
until the payslip-service recovered after approximately
10 s. However, as several retries have been aggregated,
the payslip-service will have to handle a high amount of
requests upon recovery, resulting in a visible spike in
response times.

The endpoints UNAFF._SERVICE and GATEWAY_PING
do not depend on the payslip-service. This explains the
high success rate at these endpoints.

In contrast to the experiment without the retry pat-
tern, the success rate does not drop entirely. Therefore,
the retry pattern improves the scenario satisfaction as
it increased the percentage of correct responses while
keeping the response times below 1 s.

7. Discussion

7.1. Key Lessons Learned
Lesson 1: Elicitation of resilience requirements in-
volves hazard analysis. It is essential to include stake-
holders with different roles and particular expertise in



the business domain to quickly prepare a list of relevant
hazards. Other roles, such as software developers and in-
frastructure engineers, help to identify causes of hazards
that stem from software and its running environment.

Lesson 2: ATAM is a useful method to adopt re-
silience elicitation. Stakeholders of the software project
were already familiar with scenario development for qual-
ity requirements. Therefore, the structure of the scenario
template of Bass et al. [12] was intuitive for the stake-
holders.

Lesson 3: Loose adoption of formalisms is already
good enough. Researchers and practitioners have used
fault tree formalism for both qualitative and quantitative
hazard analysis in safety engineering. To identify the
causes of a hazard, we did not have to comply with fault
tree formalism rigorously. The informal way of construct-
ing a fault tree was easy to understand for stakeholders.

Lesson 4: The ATAM workshop requires consid-
erable refinement that can be done “offline”. The
outcome of the well prepared one-day workshop needed
further refinement. In particular, it was necessary to re-
fine the stimulus and response measures parts of each
scenario, e.g., we modeled the workload and tried to ex-
press the scenarios in temporal logic. This revealed that
the initial requirements were partially ambiguous and im-
precise, which was easy to resolve through clarification
requests to the stakeholders. Therefore, we hypothesize
that formalization benefits both validation and quanti-
tative evaluation of resilience requirements and that an
explicit (offline) formalization step could complement the
proposed workshop well.

Lesson 5: A tightly planned one-day workshop is
sufficient. We managed to collect resilience scenarios in
a one-day workshop because it was well prepared (know-
ing the architecture description) and well-conducted (strict
time management). Refinement can be done offline by
more skilled engineers in formalizing stimuli and re-
sponse measures (similar to writing SLOs). However,
it is important to ask for feedback to check the validity
of the requirements.

Lesson 6: The resilience elicitation helps to re-
fine “classical” QoS requirements. All response mea-
sures are based on non-resilience specifications that make
them imprecise. For example, maximum degradation and
time to recovery was not specified. Thus, it is unclear
whether experimentation shows acceptable or unaccept-
able degradation in performance or availability quality.

7.2. Threats to Validity
We discuss the threats to validity for the workshop and
our experiment design.

7.2.1. Workshop

Conclusion validity One threat is the reliability of
measures, which means repeating the workshop yields
the same resilience requirements list. Elicitation of re-
silience requirements involves human judgment. Hence,
it is a subjective measure. Therefore, we can not entirely
rule out this threat.

Internal validity One threat is instrumentation, which
means our tools and techniques were not suitable. We
conducted a one-day structured workshop and used the
scenario template of Bass et al. [12] for eliciting resilience
requirements. We refined all the resilience requirements
through several iterations after the workshop and vali-
dated them against the workshop participants.

Construct validity For us, the main threat in this
category is mono-method bias, which means we did not
use other elicitation methods. Therefore, there is a threat
that elicited resilience requirements are biased. We can
not entirely rule out this threat as we did not apply other
methods and cross-check the results.

External validity The heterogeneity poses a threat,
i.e., different roles and expertise of participants. Work-
shops with less heterogeneity in the stakeholders could
lead to no resilience requirements. We can not entirely
rule out this threat.

7.2.2. Experiment design

We used the mock system for quantitative evaluation
of resilience requirements that are based on the actual
system. There is a threat that evaluation results are in-
accurate. However, the purpose of the experiments is to
exemplary show how elicited requirements and derived
experiments can help to improve the system — we do not
claim the accuracy of the quantitative results. Further-
more, due to legal issues, we used CF Dev [19]. We faced
instability, e.g., resource drainage of Dev nodes, in the
environment during experimentation. There is a threat
of a negative impact on results due to this instability. To
counteract this threat, we re-executed experiments to
gain insight into approximate measurements, ensuring
reliable data with no unintended node or service crash.

8. Conclusion
The successful development of resilience scenarios de-
pends on the outcome of the hazard analysis. Our ap-
proach to scenario-based resilience evaluation assumes
a business domain expert to derive an initial list of haz-
ards. FTA can then be a means to analyze the hazards
and derive resilience scenarios. We plan to (1) extend our
process with an explicit formalization step after the work-
shop for refinement of the scenarios, (2) formally verify



response measures of resilience scenarios, and (3) create
processes for continuous hazard analysis when a system
faces changes, e.g., updates and refinement/development
of resilience scenarios.

Acknowledgments
This work has been supported by the Baden-Württemberg
Stiftung (ORCAS — Efficient Resilience Benchmarking
of Microservice Architectures) and the German Federal
Ministry of Education and Research (Software Campus
2.0 — Microproject: DiSpel).

Data Availability
Our artifacts [10] comprise (i) the resilience scenarios
and (ii) the data and R scripts as a CodeOcean capsule.
We are working on making parts of the created/modified
experiment tools available as open-source software. For
confidentiality reasons, the system under test cannot be
published.

References
[1] S. Newman, Building Microservices, O’Reilly, 2015.
[2] V. Heorhiadi, S. Rajagopalan, H. Jamjoom, M. K.

Reiter, V. Sekar, Gremlin: Systematic resilience
testing of microservices, in: Proc. 36th IEEE Int.
Conf. on Distributed Computing Systems (ICDCS),
2016, pp. 57–66.

[3] A. Basiri, N. Behnam, R. de Rooij, L. Hochstein,
L. Kosewski, J. Reynolds, C. Rosenthal, Chaos engi-
neering, IEEE Softw. 33 (2016) 35–41.

[4] Chaos toolkit, 2020. URL: https://github.com/
chaostoolkit.

[5] R. Miles, Learning Chaos Engineering – Discover-
ing and Overcoming System Weaknesses through
Experimentation, O’Reilly Media, Inc., 2019.

[6] N. G. Leveson, Safeware — System Safety and Com-
puters: A Guide to Preventing Accidents and Losses
Caused by Technology, Addison-Wesley, 1995.

[7] D. Kesim, A. van Hoorn, S. Frank, M. Häussler, Iden-
tifying and prioritizing chaos experiments by using
established risk analysis techniques, in: Proc. 31st
Int. Symposium on Software Reliability Engineer-
ing (ISSRE), 2020.

[8] R. Kazman, M. Klein, M. Barbacci, T. Longstaff,
H. Lipson, J. Carriere, The architecture tradeoff
analysis method, in: Proc. 4th IEEE Int. Conf. on En-
gineering of Complex Computer Systems (ICECCS),
1998, pp. 68–78.

[9] M. T. Nygard, Release It!: Design and Deploy
Production-ready Software, Pragmatic Bookshelf,
2018.

[10] S. Frank et al., Supplementary material, 2020.
Artifacts: https://doi.org/10.5281/zenodo.5142006
(Scenarios); https://doi.org/10.24433/CO.0520280.v1
(Code Ocean capsule).

[11] K. Pohl, Requirements Engineering - Fundamentals,
Principles, and Techniques, Springer, 2010.

[12] L. Bass, P. Clements, R. Kazman, Software Architec-
ture in Practice, 2 ed., Addison-Wesley Longman
Publishing Co., Inc., USA, 2003.

[13] J. Cámara, R. de Lemos, Evaluation of resilience
in self-adaptive systems using probabilistic model-
checking, in: Proc. 7th Int. Symposium on Software
Engineering for Adaptive and Self-Managing Sys-
tems (SEAMS), 2012, pp. 53–62.

[14] J. Cámara, R. de Lemos, M. Vieira, R. Almeida,
R. Ventura, Architecture-based resilience evalua-
tion for self-adaptive systems, Computing 95 (2013)
689–722.

[15] J. Cámara, R. de Lemos, N. Laranjeiro, R. Ventura,
M. Vieira, Robustness-driven resilience evalua-
tion of self-adaptive software systems, IEEE Trans-
actions on Dependable and Secure Computing 14
(2017) 50–64.

[16] R. Natella, D. Cotroneo, H. Madeira, Assessing de-
pendability with software fault injection: A survey,
ACM Computing Surveys (CSUR) 48 (2016) 44:1–
44:55.

[17] K. Yin, Q. Du, W. Wang, J. Qiu, J. Xu, On
representing and eliciting resilience requirements
of microservice architecture systems, CoRR
abs/1909.13096 (2020). URL: https://arxiv.org/abs/
1909.13096v3. arXiv:1909.13096.

[18] Netflix Inc., Eureka, 2020. URL: https://github.com/
Netflix/eureka.

[19] Cloud Foundry Foundation, Cloud foundry dev
documentation, 2020. URL: https://github.com/
cloudfoundry-incubator/cfdev.

[20] Chaos Toolkit, Chaos toolkit documentation, 2020.
URL: https://chaostoolkit.org.

[21] J. von Kistowski, S. Eismann, N. Schmitt, A. Bauer,
J. Grohmann, S. Kounev, Teastore: A micro-service
reference application for benchmarking, modeling
and resource management research, in: Proc. IEEE
26th Int. Symp. on Modeling, Analysis, and Simula-
tion of Computer and Telecommunication Systems
(MASCOTS), 2018, pp. 223–236.

[22] InfluxData Inc., InfluxDB website, 2020. URL: https:
//www.influxdata.com/.

https://github.com/chaostoolkit
https://github.com/chaostoolkit
https://doi.org/10.5281/zenodo.5142006
https://doi.org/10.24433/CO.0520280.v1
https://arxiv.org/abs/1909.13096v3
https://arxiv.org/abs/1909.13096v3
http://arxiv.org/abs/1909.13096
https://github.com/Netflix/eureka
https://github.com/Netflix/eureka
https://github.com/cloudfoundry-incubator/cfdev
https://github.com/cloudfoundry-incubator/cfdev
https://chaostoolkit.org
https://www.influxdata.com/
https://www.influxdata.com/

	1 Introduction
	2 Related Work
	3 Research Methodology
	3.1 Domain Context
	3.2 Research Procedure

	4 Elicitation and specification of scenarios
	4.1 Elicitation through Structured Workshop
	4.2 Workshop Results

	5 Resilience Evaluation
	5.1 Experiment Setup
	5.1.1 Examined Software System
	5.1.2 Experiment Tools

	5.2 Experiment Execution
	5.3 Experiment Results
	5.4 Discussion of Results

	6 Resilience Improvement
	6.1 Architectural Modifications
	6.2 Experiment Results and Discussion

	7 Discussion
	7.1 Key Lessons Learned
	7.2 Threats to Validity
	7.2.1 Workshop
	7.2.2 Experiment design


	8 Conclusion

