
Applicability of Machine Learning Architectural
Patterns in Vehicle Architecture: A Case Study
Vasilii Mosin1,2, Darko Durisic1 and Miroslaw Staron2

1Division of Research & Development, Volvo Car Corporation, Sweden
2Department of Computer Science and Engineering, Chalmers | University of Gothenburg, Sweden

Abstract
Machine learning (ML) has grown in importance in the last decade and has become one of the mainstream
software technologies used. Together with containerization, data-driven development and microservices,
it has also been used in the automotive industry, mainly for autonomous driving functions, but also, for
example, for interior driver state monitoring or voice control speech recognition. The goal of this case
study is to document experiences of which of the emerging ML architectural patterns are used in modern
cars already, which are planned for the future and how they are used. We study the software architecture
of a modern car product line based on existing patterns and workshops with software architects. The
results show that many ML-specific patterns are used or planned to be used in the near future. Only a
handful of patterns are not applicable or not planned to be used. However, we have also found that the
established description of the patterns is not suited for the automotive software architectures, which can
jeopardize its correct broad usage in the industry. We conclude that the patterns should be described
more clearly and that they are more used than we could have anticipated based on the literature.

Keywords
architectural patterns, machine learning, automotive software

1. Introduction

Software in modern cars has evolved tremendously in the last two decades, driven by the
new possibilities related to connectivity, autonomous driving and electrification [1, 2]. Up
until the last decade, the automotive software architectures were based on the principles of
distribution, where software components were deployed on separate ECUs (Electronic Control
Units) connected by the communication buses. This approach provided the benefits of sepa-
ration of concerns and reuse. However, with the growing number of functions depending on
the software, the number of ECUs grew, the communication overhead increased and so did
the difficulty in validation of the entire system. In the modern cars, software architects use
the overarching styles of centralized architectures or federated software architectures. The
centralized architectures are based on the principle of using one large computing node with
several supporting nodes and services and containers for the separation of executable code.
In the federated architectures, the entire vehicles is divided into few separated domains with
domain controllers (larger computing units) and software organized accordingly. These two

15th European Conference on Software Architecture (ECSA 2021), 13-17 September 2021
Envelope-Open vasilii.mosin@volvocars.com (V. Mosin); darko.durisic@volvocars.com (D. Durisic); miroslaw.staron@cse.gu.se
(M. Staron)

© 2021 Copyright © 2021 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY
4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:vasilii.mosin@volvocars.com
mailto:darko.durisic@volvocars.com
mailto:miroslaw.staron@cse.gu.se
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


architectural styles open up new possibilities of using ML in modern cars and thus the possibility
of using new architectural patterns/styles for the design of these systems.

In order to understand how this is done in practice, we conducted a case study of the
modern software architecture in a car line that is intended for the market in the near future.
We considered 12 architectural patterns for ML application systems and software from the
systematic literature review of Washizaki et al. [3]. We set off to investigate the following
research question: How applicable are the architectural patterns for machine learning in vehicle
software architecture in practice? In this context, we operationalized the applicability as a degree
to which the pattern is either applied, is considered to be applied, applicable, but not applied yet
or not at all applicable. We collected the data through a workshop with 11 architects from Volvo
Car Corporation (VCC) – one of the Swedish vehicle manufacturers. Finally, we also studied
the software design database to understand how the patterns were represented in practice. The
results show that four patterns are already applied, and one is under design. The patterns of Data
Lake, Microservice Architecture, Daisy Architecture and Parameter-Server Abstraction have
already been applied. At the same time, we also found that the pattern Distinguish Business
Logic from ML Models is not applicable in practice in the architecture of a modern car.

The remaining of the paper is structured as follows. Section 2 presents the most important
related work for our study. Section 3 describes the design of our case study, Section 4 explains
the considered architectural patterns and Section 5 presents the results. Section 6 discusses the
threats to validity. Finally, Section 7 presents the conclusions from our study.

2. Related Work

There is a noticeable trend in moving from decentralized architectures to centralized architec-
tures due to the increasing complexity of software in modern vehicles. Bandur et al. [4] describe
the advantages and disadvantages of decentralized and centralized architectures and report
that many automotive companies have started to adopt centralized solutions to their vehicle
architectures. Cvijetic and Tomazin [5] claim that centralization in the car will make it easier to
integrate and update advanced software features as they are developed. The emerging use of
service-oriented architectures is another trend in vehicle software associated with centralization.
Kugele et al. [6] conclude that uniformity, separation of concerns, and enabling computational
techniques for validation and conformity testing are the main goals of a service-oriented ap-
proach in automotive architectural work. Connected to the service-orientation trend, there
is increasing popularity of microservices in automotive architectures. Lotz et al. [7] show
that microservice architectures, which follow service-oriented principles, can reduce system
complexity and time-consuming process steps.

Automotive software architecture nowadays also needs to accommodate ML components
requiring changes in the design patterns. Kläs et al. [8] show that one of the main challenges of
introducing ML into the software is bringing inherent uncertainty from ML to the system, that
can jeopardize the system’s quality attributes. Rahman et al. [9] claim that the overall system
should be built by the integration of interacting modules since ML applications are expected to
be modular in design. The design of ML components needs to be lightly coupled because of their
fast evolvement, and the design must accommodate the appropriate data handling mechanism



in the system as long as a large volume of data is required for ML application. Castanyer et al.
[10] show that the trade-off between the accuracy and complexity of ML system is an important
aspect to consider in the context of low computational power.

Due to the challenges described above, it is important to understand how to design the
systems with ML components in the right way. Washizaki et al. [3] provide the systematic
review of ML application system design identifying 12 architectural patterns, 13 design patterns,
and 8 anti-patterns used in ML systems. Similarly, Serban and Visser [11] have done the
systematic literature review demonstrating that traditional software architecture challenges
(e.g., component coupling) still play an important role when using ML components. They
also claim that ML-related attributes, such as privacy, are considered marginally important
comparing to traditional attributes, such as scalability or interoperability, when designing a
system software. Yokoyama [12] presents a new architectural pattern for ML systems that aims
to separate components for application business logic and components for ML, which is helpful
for quick troubleshooting. Kugele et al. [13] outline the importance of comparing ML patterns
in terms of their training effort, hardware and safety requirements, and explainability in the
context of critical applications such as automotive.

3. Research Methodology

We address the following research question: ”How applicable are the architectural patterns
for machine learning in vehicle software architecture?”. To answer this research question we
conduct a case study accessing the adaptation of ML architectural patterns to the automotive
software. We focus on architectural patterns for ML application systems and software from the
systematic literature review by Washizaki et al. [3], where they have identified 12 architectural
patterns as practically used and published in either academic or gray literature. For data
collection we have organized a workshop in VCC. To mitigate the bias related to the selection of
the participants, we have identified and invited 3 architects who, as we know, are working with
ML, and we have asked these architects to invite more people who, as they think, are relevant
for the discussion. In total, 11 people out of 26 invited were able to participate in the workshop.

During the workshop, one author was leading the discussion, one author was presenting
the architectural patterns, and one author was taking notes. We have been discussing each
architectural pattern at a time. Firstly, a pattern was presented to the architects to make sure
that everybody understands the pattern and how the pattern works. Then, we’ve asked the
architects to rate the pattern’s applicability in vehicle software architecture according to the
following scale: 1 - not applicable, 2 - applicable in the future with major modifications, 3 -
applicable in the future without modifications, 4 - applicable directly, 5 - already implemented.
We’ve tried to facilitate the discussion between the architects by asking them to provide the
reasoning behind their ratings and give examples from the automotive domain where possible.

For each pattern, we have recorded its applicability score provided by the architects, which
was actually a consensus score that the architects agreed on together. Additionally, we have
kept track of the discussion by taking notes during the workshop, helping us understand the
architects’ opinions better. We have collected both the quantitative ratings of the patterns’
applicability and their qualitative assessment summarized from the workshop notes.



4. Considered ML Architectural Patterns

Washizaki et al. [3] have identified the following 12 architectural patterns used inML application
systems: (1) Data Lake, (2) Distinguish Business Logic from ML Models, (3) Gateway Routing
Architecture, (4) Microservice Architecture, (5) Event-Driven ML Microservice, (6) Lambda
Architecture, (7) Kappa Architecture, (8) Parameter-Server Abstraction, (9) Federated Learning,
(10) Data-Algorithm-Service-Evaluator, (11) Closed-Loop Intelligence, (12) Daisy Architecture.

(1) A Data Lake is a centralized data repository that can store a multitude of data ranging
from structured or semi-structured data to completely unstructured data [14]. Contrary to more
traditional data warehouses, where the data is stored in an already preprocessed format, the
data in Data Lakes should be stored in ”raw” format. The motivation behind using this pattern
is that it is not always possible to know what kind of analysis will be performed on the data.
Therefore, the ”raw” format is preferred allowing to apply different frameworks for the analysis.

(2) Yokoyama [12] proposes an architectural pattern to Distinguish Business Logic from ML
Models. It is based on multi-layer architectural patterns, and each layer is divided into elements
that have different responsibilities. Using this pattern facilitates the simpler changing of ML
models by separating the business logic from the ML pipeline.

(3) Gateway Routing Architecture has the same goal, but the business logic and ML pipeline
are implemented as services [12]. It is difficult to manage individual services if there are many
in the system. Gateway installed before the services allows to use application layer routing
requests to the appropriate instance.

(4) Microservice is an architectural pattern structuring an application as a collection of services
that should be loosely-coupled. It is emerging as the data science architectural pattern that
focuses on creating standard interfaces for all data extraction, manipulation, and visualization
operations [15]. Moreover, ML applications may be confined to already existing ML frameworks
and miss opportunities for more appropriate frameworks. Therefore, data scientists working
with, or providing, ML frameworks can make these frameworks available through microservices.

(5) Event-Driven ML Microservice architectural pattern is based on the microservice pattern.
Each service publishes an eventwhenever it updates its data, and other services subscribe to these
events. This pattern aims to build ML pipelines by chaining together multiple microservices,
each of which listens for the arrival of some data and performs its designated task. Event-driven
AI can lead to immediate insights by reducing the time to under a second between when an
event occurs and the data needed to drive action [16].

(6) Lambda is a data processing architectural pattern. It consists of three layers [17]: the batch
layer, the speed layer and the serving layer. The batch layer receives arriving data, combines it
with historical data, and processes the entire combined dataset. The batch layer produces the
most accurate processing results since it operates on the full data. The speed layer works only
on arriving data and produces real-time results. The serving layer enables various queries of
the results sent from the batch and speed layers.

(7) Kappa is also a data processing architectural pattern. It has only the stream and the
serving layers. This pattern was invented to avoid maintaining two separate code bases for the
batch and speed layers as in Lambda architecture [17]. The key idea is to handle both real-time
data processing and continuous data reprocessing using a single stream processing engine.

(8) Parameter-Server Abstraction architectural pattern consists of server groups to facilitate



running of multiple algorithms in the system [18]. This pattern is used for distributed learning.
Both data and workloads are distributed across worker nodes, while the server nodes maintain
globally shared parameters.

(9) Another pattern for distributed learning is Federated Learning [19]. Standard ML ap-
proaches require centralizing the training data on one machine or in a datacenter. Federated
learning decentralizes ML by removing the need to pool data into a single location. Instead, the
model is trained in multiple iterations at different sites.

(10) Data-Algorithm-Service-Evaluator architectural pattern originates from Model-View-
Controller (MVC) pattern. MVC pattern is based on separation of concerns principle [20]. It
separates an application into three main logical components: the model, the view, and the
controller. Each of these components are built to handle specific development aspects of
an application. Similarly, Data-Algorithm-Service-Evaluator pattern separates the data, the
algorithm, the serving, and the evaluator.

(11) Closed-Loop Intelligence architectural pattern is about creating a virtuous cycle between
the intelligence of a system and the usage of the system [21]. It is designed to improve the
learning of the system after its deployment. As the intelligence gets better, users get more
benefit from the system (and presumably use it more), and as more users use the system, they
generate more data to make the intelligence better. It is needed to establish the interactions
between the users and ML components, so they produce useful training data.

(12) Daisy Architecture is an architectural pattern for which an application architecture
resembles a flower. All the product streams, both manual and automated with ML, are connected
through some central repository. These product streams pull and push the data from and to the
central repository, so they are connected in this way. Daisy architecture evolves as organizations
acquire the ability to scale their premium content production processes via the use of ML, text
analytics, and annotation techniques, and then extend the coverage of that tooling over as much
of their remaining content geography as possible [22]. It is based on utilizing Kanban, scaling,
and microservices to realize pull-based, automated, on-demand, and iterative processes.

5. Results

Figure 1 presents the summary of the results from the workshop. Each of the patterns was
discussed, and below, we present how these patterns are applied, could be applied or why
they cannot be applied in the architecture of modern cars. The patterns are presented in the
figure according to their applicability, while we describe them in the order in which they were
presented and discussed during the workshop.

(1) Data Lakes are already used in vehicle software for data collection using a customer
fleet, which is a pool of cars the customers drive, and also test cars. Engine control, emission
monitoring, and road condition together with images and videos for autonomous driving are
the examples of different types of data that are collected in vehicles. The data from sensors,
such as cameras, radar, LiDAR, and various tracking sensors, is stored in a raw format in Data
Lakes, but some additional preprocessing and enrichment can be done. Data Lakes usually
constitute the central part of the software, but prioritizing what data should be saved is required
due to cost reasons. Therefore, there is still some structure on top of the data in the form of



Figure 1: Architectural patterns according to their applicability scores.

catalogs and extracted meta-data for deciding on which data should be kept further. Data Lakes
are also already used on servers for training and validation of in-vehicle algorithms.

(2) Distinguish Business Logic from ML Models pattern is not used in the current vehicle
architecture and is not considered. The architects have understood that this pattern has a
similar goal of modularization as the next Gateway Routing architectural pattern, which is more
interpretable according to their opinion. Therefore they attributed Distinguish Business Logic
from ML Models architectural pattern as not applicable.

(3) Gateway Routing architectural pattern is not used today but can be directly applied in
vehicle software for perception-related functions implementation. It is considered as one of
the approaches to modularization where perception is a part of a component. As a practical
example, in the rear emergency brake function, the auto-brake feature will be separated from
different sensors pipelines in the perception module through the gateway routing. This makes
managing ML algorithms in the perception module easier since they will be separated from the
auto-brake feature logic.

(4) Microservice Architecture is already applied in vehicle software. In general, automotive
software development is moving towards more centralized service-oriented solutions that
employ microservices as we have discussed in Section 2 ([4], [5], [6], [7]). For example, a vision
stack is implemented using this pattern where communication between different services is done
through messages. There are separate services, e. g. for cameras, videoframes, videoservices,
and object detection, communicating with each other. In practice, due to the limited resources
in the car, a hybrid approach is used as a trade-off between monolithic and microservice
architectures. For example, a neural network with multiple heads as a multi-task algorithm
for object detection and semantic segmentation may contain a shared monolithic backbone
structure but different prediction layers providing separate services.

(5) Event-Driven ML Microservice architectural pattern is applicable in the future with
modifications. Chaining different microservices is possible, and, to some extent, it is already
done today, but the current implementations are based on working with the constant data flow,
which does not contain any events. The area where this pattern is considered for application is
camera pipelines, which are used for perception. The camera pipelines could be event-driven as
they are based on periodically taken images. It becomes the event-driven microservice once



the events from the camera service are incorporated into the pipeline. For example, this could
be useful when some anomalous object is detected on the road by the camera service, and this
event is sent to the trajectory planning service to keep a safe distance or maybe even stop the
car.

(6) Lambda Architecture is applicable in the future without modifications. Batch data process-
ing is already used in vehicle software. However, it is rather implicit batching in time, so the
historical batch information is accumulated inside an algorithm (for example, recurrent neural
networks). ML inference will be performed on a continuous stream of data, then combining
the streaming processing with the batch processing will result in Lambda data processing
architecture. A potential use-case could be a combination of object detection based on the
continuous streaming data and trajectory prediction based on the historical batch data.

(7) Kappa Architecture is less applicable than Lambda Architecture according to the architects’
opinion. It will require modifications if it is used in the future. The reason is that data processing
pipelines in vehicle software will still need to have historical information for few past timesteps
to perform inference, therefore the batch layer will still be necessary. However, adding a
batch layer to Kappa Architecture will result in Lambda Architecture. So, the architects agree
that having a single stream layer for data processing in vehicle software will not be enough.
Therefore Lambda Architecture has more potential than Kappa in future vehicle architecture.

(8) Parameter-Server Abstraction architectural pattern is already in use, but outside of the
vehicle’s architecture. It is used for distributed offline training of deep learning algorithms. The
data and the workload are distributed across available resources, and the training results are
aggregated on the central computer. This allows reducing the training time for computationally
consuming models having several compute nodes.

(9) The usage of Federated Learning is currently being investigated. It will be applicable in the
future without modifications for a fleet of cars and on data centers when it is impossible to take
data between the countries. The legislature, like privacy rules, will cause more processing on the
edge (i. e. in vehicle computers) because it will allow decreasing the amount of data transferred
from cars to servers and from servers to servers or eliminate it at all. An example application
can be an end-to-end ML model learning to drive from the recorded images, steering angle, and
acceleration. It is possible to federatively train the model in vehicles without transferring the
recorded data and then aggregate the results by sharing only the trained model weights.

(10) Data-Algorithm-Service-Evaluator architectural pattern is considered to be used (score 3
in Figure 1) to design ML components in vehicle software, but it is not yet fully implemented at
the studied company. It is considered in the autonomous driving functions area, as it combines
safety, separation, and redundancy. The plan is that each component in the autonomous drive
stack would have its own evaluator to increase safety. In particular, perception, planning,
and decision-making will have their own input data pipelines, processing algorithms, ML
inference engines, and separate evaluators. These evaluators should control the execution of
each component in the stack instead of monitoring the autonomous driving function as a whole.

(11) Closed-Loop Intelligence architectural pattern can be applied in the future to improve
the car’s functionality by, post-deployment, learning driver’s personal preference. For example,
the car’s software can check if everything in the environment is detected correctly, and if not, it
would require triggering a data recording. This process can be considered as a probe sourcing.
To implement Closed-Loop Intelligence pattern, it will be required to add an oracle to the system,



which will be used for collecting the feedback from the driving.
(12) Daisy Architecture is currently being used offline outside of vehicle architecture for

training perception algorithms. Different perception microservices would require the same
data for the training but with different annotations. Then, they can pull this data from the
shared repository and then push the results back there. Such architecture is used for developing
perception pipelines consisting of both traditional and ML-based algorithms.

6. Threats to Validity

The fact that the set of discussed architectural patterns was limited á priori could affect con-
struct validity. There is a risk that the selection does not cover all applicable patterns, but we
intentionally limit ourselves to the most known patterns according to the published systematic
literature review to facilitate deeper discussions with the architects.

We have organized the workshop only in one company, which affects external validity of our
study. The selection of the company for the workshop is motivated by the authors’ affiliation and
our ability to study the application of the patterns in a real car’s architecture (post-workshop).
This meant that we increased the construct validity (ability to study the patterns deeper) instead
of studying more companies that can affect the ability to generalize our results to the whole
industry. However, we believe that VCC being a big well-known automotive company is
representative enough to judge about the industry state in software architecture area to some
extent. The selection of people inside the company for the workshop is also concerned by
external validity. We have invited all the company architects working with ML. The size of
the group itself is dealing with significance of the results and conclusion validity. We had 11
people in the group with 3 people most actively participating in the discussion. So, the group
was small, but it was dictated by the number of architects working with ML in the company.

The used applicability score for presenting our results can be subjected to question its
reliability and conclusion validity as a consequence. We tried to make it as clear as possible for
the architects to eliminate any potential bias due to misunderstanding the metric. However, it
is still based on the knowledge of the architects participating in the workshop. In our future
studies, we plan to count how many times a particular pattern is used in the car’s architecture
to understand how widely spread the pattern is.

Internal validity of our study is affected by maturation, history, and instrumentation threats.
The workshop was long and took about 2 hours, without any breaks, that leads to maturation
threat. On the one hand, people could be tired and bored by the end of the workshop, which
could negatively affect the results. On the other hand, the architects could start to understand
the idea of the workshop better as the workshop was going further, that could bring a positive
effect. There is also a risk that the opinions of the architects could be affected by the previous
answers, which is a history threat. We tried to eliminate this threat by abstracting and dis-
cussing each architectural pattern separately. Instrumentation threat is related to the architects’
understanding of the patterns from our presentation and explanation. Imprecise descriptions
could negatively affect the architects’ ability to identify the patterns. However, even if the
architects did not understand some patterns, then it means that they do not use them explicitly
in their work, so we just do not count them.



7. Conclusions

In this work, we have studied the applicability of ML architectural patterns in vehicle software
architecture. Based on the results of the organized workshop in VCC, we have found that
four patterns (Data Lake, Microservice Architecture, Daisy Architecture and Parameter-Server
Abstraction) are already implemented in some way in vehicle software, and one pattern (Distin-
guish Business Logic from ML Models) is not seen as applicable. The rest of the patterns are
applicable directly or in the future vehicle architecture according to the architects. We have also
observed that the description of the studied patterns is not well suited for use in the automotive
domain that can be potentially addressed and improved in further work. Nevertheless, the
provided case study results with ML architectural patterns description and examples from
the automotive company’s perspective is a good basis for further research in the area of ML
automotive software architecture.

Despite that the considered patterns are positioned as ML architectural patterns, they actually
appear as an adaptation of the existing architectural patterns to the use with ML components.
In essence, there are no really core ML concepts presented in these patterns. However, there
are many important aspects to consider when describing the usage of ML in a car, such as
data preprocessing, model selection and training, parameter tuning, probability nature of the
algorithms, etc. Therefore, in our future work, we will focus on bringing these aspects to vehicle
software architecture based on the needs of pure ML components. Additionally, it is worth
analyzing the quality attributes associated with ML architectural patterns. We should also
consider traditional software architectures, such as, for instance, layered and multi-tier patterns,
and investigate how they can be combined with the principles of ML in the automotive domain.

Acknowledgments

This work was carried out within DeVeLop project financed by Vinnova, FFI, Fordonsstrategisk
forskning och innovation under the grant number 2018-02725.

References

[1] M. Staron, Automotive software architectures, An Introduction, 2nd edition, Springer,
2021.

[2] C. Ebert, J. Favaro, Automotive software, IEEE Annals of the History of Computing 34
(2017) 33–39.

[3] H. Washizaki, H. Uchida, F. Khomh, Y.-G. Guéhéneuc, Machine learning architecture and
design patterns, 2020.

[4] V. Bandur, G. Selim, V. Pantelic, M. Lawford, Making the case for centralized automotive
e/e architectures, IEEE Transactions on Vehicular Technology 70 (2021) 1230–1245. doi:10.
1109/TVT.2021.3054934 .

[5] N. Cvijetic, T. Tomazin, Developing a centralized compute architecture for autonomous
vehicles, ATZelectronics worldwide 16 (2021) 10–15. URL: https://doi.org/10.1007/
s38314-020-0573-8. doi:10.1007/s38314- 020- 0573- 8 .

http://dx.doi.org/10.1109/TVT.2021.3054934
http://dx.doi.org/10.1109/TVT.2021.3054934
https://doi.org/10.1007/s38314-020-0573-8
https://doi.org/10.1007/s38314-020-0573-8
http://dx.doi.org/10.1007/s38314-020-0573-8


[6] S. Kugele, P. Obergfell, M. Broy, O. Creighton, M. Traub, W. Hopfensitz, On service-
orientation for automotive software, in: 2017 IEEE International Conference on Software
Architecture (ICSA), 2017, pp. 193–202. doi:10.1109/ICSA.2017.20 .

[7] J. Lotz, A. Vogelsang, O. Benderius, C. Berger, Microservice architectures for advanced
driver assistance systems: A case-study, in: 2019 IEEE International Conference on
Software Architecture Companion (ICSA-C), 2019, pp. 45–52. doi:10.1109/ICSA- C.2019.
00016 .

[8] M. Kläs, A. M. Vollmer, Uncertainty in machine learning applications: A practice-driven
classification of uncertainty, in: B. Gallina, A. Skavhaug, E. Schoitsch, F. Bitsch (Eds.),
Computer Safety, Reliability, and Security, Springer International Publishing, Cham, 2018,
pp. 431–438.

[9] M. S. Rahman, E. Rivera, F. Khomh, Y.-G. Guéhéneuc, B. Lehnert, Machine learning software
engineering in practice: An industrial case study, 2019. arXiv:1906.07154 .

[10] R. C. Castanyer, S. Martínez-Fernández, X. Franch, Integration of convolutional neural
networks in mobile applications, 2021. arXiv:2103.07286 .

[11] A. Serban, J. Visser, An empirical study of software architecture for machine learning,
2021. arXiv:2105.12422 .

[12] H. Yokoyama, Machine learning system architectural pattern for improving operational
stability, in: 2019 IEEE International Conference on Software Architecture Companion
(ICSA-C), 2019, pp. 267–274. doi:10.1109/ICSA- C.2019.00055 .

[13] S. Kugele, C. Segler, T. Hubregtsen, Architectural patterns for cross-domain personalised
automotive functions, in: 2020 IEEE International Conference on Software Architecture
(ICSA), 2020, pp. 191–201. doi:10.1109/ICSA47634.2020.00026 .

[14] A. Singh, Architecture of data lake, https://datascience.foundation/sciencewhitepaper/
architecture-of-data-lake, 2019.

[15] D. Smith, Exploring development patterns in data science, https://www.theorylane.com/
2017/10/20/some-development-patterns-in-data-science, 2017.

[16] How serverless platforms could power an event-driven ai pipeline, https://thenewstack.io/
how-serverless-platforms-could-power-an-event-driven-ai-pipeline/, 2019.

[17] J. Forgeat, Data processing architectures – lambda and kappa, https://www.ericsson.com/
en/blog/2015/11/data-processing-architectures--lambda-and-kappa, 2015.

[18] Parameter server for distributed machine learning, https://medium.com/coinmonks/
parameter-server-for-distributed-machine-learning-fd79d99f84c3, 2018.

[19] N. Rieke, What is federated learning?, https://blogs.nvidia.com/blog/2019/10/13/
what-is-federated-learning/, 2019.

[20] R. D. Hernandez, The model view controller pattern – mvc architec-
ture and frameworks explained, https://www.freecodecamp.org/news/
the-model-view-controller-pattern-mvc-architecture-and-frameworks-explained/,
2021.

[21] G. Hulten, Closed-loop intelligence: A design pattern for machine learn-
ing, https://docs.microsoft.com/en-us/archive/msdn-magazine/2019/april/
machine-learning-closed-loop-intelligence-a-design-pattern-for-machine-learning, 2019.

[22] G. Everett, An architecture pattern for pull-based, automated content enrichment in media
organisations., https://datalanguage.com/blog/daisy-architecture, 2018.

http://dx.doi.org/10.1109/ICSA.2017.20
http://dx.doi.org/10.1109/ICSA-C.2019.00016
http://dx.doi.org/10.1109/ICSA-C.2019.00016
http://arxiv.org/abs/1906.07154
http://arxiv.org/abs/2103.07286
http://arxiv.org/abs/2105.12422
http://dx.doi.org/10.1109/ICSA-C.2019.00055
http://dx.doi.org/10.1109/ICSA47634.2020.00026
https://datascience.foundation/sciencewhitepaper/architecture-of-data-lake
https://datascience.foundation/sciencewhitepaper/architecture-of-data-lake
https://www.theorylane.com/2017/10/20/some-development-patterns-in-data-science
https://www.theorylane.com/2017/10/20/some-development-patterns-in-data-science
https://thenewstack.io/how-serverless-platforms-could-power-an-event-driven-ai-pipeline/
https://thenewstack.io/how-serverless-platforms-could-power-an-event-driven-ai-pipeline/
https://www.ericsson.com/en/blog/2015/11/data-processing-architectures--lambda-and-kappa
https://www.ericsson.com/en/blog/2015/11/data-processing-architectures--lambda-and-kappa
https://medium.com/coinmonks/parameter-server-for-distributed-machine-learning-fd79d99f84c3
https://medium.com/coinmonks/parameter-server-for-distributed-machine-learning-fd79d99f84c3
https://blogs.nvidia.com/blog/2019/10/13/what-is-federated-learning/
https://blogs.nvidia.com/blog/2019/10/13/what-is-federated-learning/
https://www.freecodecamp.org/news/the-model-view-controller-pattern-mvc-architecture-and-frameworks-explained/
https://www.freecodecamp.org/news/the-model-view-controller-pattern-mvc-architecture-and-frameworks-explained/
https://docs.microsoft.com/en-us/archive/msdn-magazine/2019/april/machine-learning-closed-loop-intelligence-a-design-pattern-for-machine-learning
https://docs.microsoft.com/en-us/archive/msdn-magazine/2019/april/machine-learning-closed-loop-intelligence-a-design-pattern-for-machine-learning
https://datalanguage.com/blog/daisy-architecture

	1 Introduction
	2 Related Work
	3 Research Methodology
	4 Considered ML Architectural Patterns
	5 Results
	6 Threats to Validity
	7 Conclusions

