
Summary: Identifying architectural technical debt,
principal and interest in microservices – A
multiple-case study1

Saulo S. de Toledo2, Antonio Martini3 and Dag I.K. Sjøberg4

2University of Oslo, Oslo, Norway
3University of Oslo, Oslo, Norway
4University of Oslo, Oslo, Norway

Abstract
Background: Using a microservices architecture is a popular strategy for software organizations to

deliver value to their customers fast and continuously. However, scientific knowledge on how to manage
architectural debt in microservices is scarce.

Objectives: In the context of microservices applications, this paper aims to identify architectural
technical debts (ATDs), their costs, and their most common solutions.

Method: We conducted an exploratory multiple case study by conducting 25 interviews with practi-
tioners working with microservices in seven large companies.

Results: We found 16 ATD issues, their negative impact (interest), and common solutions to repay
each debt together with the related costs (principal). Two examples of critical ATD issues found were
the use of shared databases that, if not properly planned, leads to potential breaks on services every time
the database schema changes and bad API designs, which leads to coupling among teams. We identified
ATDs occurring in different domains and stages of development and created a map of the relationships
among those debts.

Conclusion: The findings may guide organizations in developing microservices systems that better
manage and avoid architectural debts.

Keywords
Cost of software, Cross-company study, Software quality, Software maintainability, Qualitative analysis

1. Introduction

The microservices architectural style is becoming increasingly popular in the industry. Microser-
vices are small and independent components, each with a single responsibility and developed
for scalability [1]. Despite several advantages, microservices are still an emerging technology.
There are drawbacks, and companies are still learning how to migrate their previous solutions
to microservices properly [2]. The challenges involved in such an architectural style lead to

1Use the original publication when citing this work: S. S. de Toledo, A. Martini, D. I. K. Sjøberg, Identifying
architectural technical debt, principal, and interest in microservices: A multiple-case study, in: Journal of Systems
and Software, vol. 177, Jul. 2021. URL: https://doi.org/10.1016/j.jss.2021.110968.
15th European Conference on Software Architecture (ECSA 2021), 13-17 September 2021 (virtual)
Envelope-Open saulos@ifi.uio.no (S. S. de Toledo); antonima@ifi.uio.no (A. Martini); dagsj@ifi.uio.no (D. I.K. Sjøberg)
Orcid 0000-0002-0747-4052 (S. S. de Toledo); 0000-0002-0669-8687 (A. Martini)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

https://doi.org/10.1016/j.jss.2021.110968
mailto:saulos@ifi.uio.no
mailto:antonima@ifi.uio.no
mailto:dagsj@ifi.uio.no
https://orcid.org/0000-0002-0747-4052
https://orcid.org/0000-0002-0669-8687
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


Architectural Technical Debt (ATD), a metaphor used to describe architectural sub-optimal
decisions that have a benefit in the short term but increase the overall costs in the long run [3].

We conducted a multiple-case study in seven international Europe-based companies to inves-
tigate ATD in some of their microservices projects through the following research questions:

• RQ1: What are the most critical ATD issues in microservices?
• RQ2: What are the negative impacts of such ATD issues?
• RQ3: What are possible solutions to repay or avoid such ATD issues?

We aimed to support practitioners’ decision-making in projects involving microservices. This
article is a continuation of a previous single case study [4] by adding six additional companies,
reorganizing the originally proposed five debts, and adding several other debts.

2. Background

2.1. Microservices

The most accepted definition of the microservices architecture was proposed by Lewis and
Fowler [5]: an approach to developing a single application as a suite of small services, each
running in its own process and communicating with lightweight mechanisms, often an HTTP
resource API [5]. Microservices may also be considered a way of implementing Service Oriented
Architecture (SOA) [6]. They have both advantages, such as being easier to scale and having
shorter cycles for testing, build and release, and disadvantages, such as the additional operational
complexity [7].

2.2. Architectural Technical Debt

Architectural Technical Debt (ATD) is a type of technical debt (TD) related to software ar-
chitecture. ATD is considered the most challenging type of TD to be unveiled and managed,
mostly because of the lack of research and tool support [8]. As any TD, the term involves three
main concepts: the debt, which is the sub-optimal solution with short-term benefits, but that
generate future additional costs; the interest, which is the extra cost generated by the debt;
and the principal, that is the cost of developing a solution that avoids the debt or the cost of
refactoring such debt [9]. Accumulating the debt might be useful in some circumstances [10].
Understanding the debt and the costs involved might help in the decision-making process.

• Debt: The debt is the sub-optimal solution with short-term benefits, but that generates
future additional costs (the interest). A solution that was suitable before might also
become a debt later.

• Interest: The interest is the extra cost that must be paid because of a debt or the amount
that will be saved if there is no such debt.

• Principal: The principal is the cost of developing a solution that avoids the debt or the
cost of refactoring such debt.

Accumulating the debt might be useful in some circumstances [10]. Understanding the debt
and the costs involved might help in the decision-making process.



Table 1
Companies context

Context Company
A B C D E F G

Application
domain

Finance Cloud IoT Health Public
services

Trans-
port

Trans-
port

Approx. num.
employees

> 30000 > 7000 > 30000 > 30000 > 30000 320 > 20000

Approx. num.
employees on
IT

> 2000 20000 1200 250 150

Approx. num.
employees in
the case

2000 200 500 250 150 150

Approx. num.
unique mi-
croservices

1000 50 80 40 400 600 3000

Age of the
product

>10
years

>2 years >2 years >1.5
years

>10
years

>4 years >10
years

3. Methodology

This study identified the most common and critical ATD issues in projects using microser-
vices. We also identified the interests and principals related to those ATDs. We conducted an
exploratory multiple-case study in seven different software products, each one developed in a
distinct company in a different context. Table 1 shows a summary of the studied companies
and project contexts. We identify the companies by letters from A to G.

We prepared an interview guide and performed 25 interviews with 22 employees in different
roles. New aspects emerged as we progressed with the interviews. Therefore, we updated the
interview guide and updated themissing details from previous interviews during complementary
interviews with the previous companies.

4. Results and Conclusions

We found 16 ATDs and discussed their interest and principal. Table 2 presents the ATDs found
and the respective companies. We also discussed the interests and principals of each of those
ATDs. Distinct companies have different ATDs. Not all companies have the solution for the
issues found. Thus, the experiences from other companies might be helpful for them. Some
ATDs seem to be more common than others.

Some of the ATD found caused substantial interest. Some were related to cascading breaks,
unnecessary complexity, coupling, and dependencies among teams. Our results should help
practitioners manage ATD by learning from the experience of other companies.



Table 2
The ATDs found and the respective companies

ID Debt Companies
1. Insufficient metadata in the messages
1.1. Insufficient message traceability A, E
1.2. Poor dead letter queue growth management A, E

2. Microservice coupling A, B, C, E, F
3. Lack of communication standards among microservices A
4. Inadequate use of APIs
4.1. Poor RESTful API design B, C, D
4.2. Use of complex API calls when messaging is a simpler solution D

5. Use of inadequate technologies to support the microservices architec-
ture

A, C

6. Excessive diversity or heterogeneity in the technologies chosen across
the system

A, E, F, G

7. Manual per service handling of network failures when target services
are unavailable

B, C

8. Unplanned data sharing and synchronization among services
8.1. Sharing persistence or database schema C, D, G
8.2. Unplanned database synchronization C

9. Use of business logic in communication among services A
10. Reusing third-party implementations
10.1. Many services using different versions of the same internal shared

libraries
A, D, E, F

10.2. External dependencies with various licenses requiring approval B
11. Overwhelming amount of unnecessary settings in the services A, B, C, D, E, F, G
12. Excessive number of small products B, E

References

[1] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi, R. Mustafin, L. Sa-
fina, Microservices: Yesterday, today, and tomorrow, Springer International Publishing,
Cham, 2017, pp. 195–216. URL: https://doi.org/10.1007/978-3-319-67425-4_12. doi:10.1007/
978- 3- 319- 67425- 4_12 .

[2] J. Bogner, J. Fritzsch, S. Wagner, A. Zimmermann, Assuring the Evolvability of Microser-
vices: Insights into Industry Practices and Challenges, in: IEEE International Conference
on Software Maintenance and Evolution (ICSME), Cleveland, Ohio, USA, 2019, pp. 546–556.
URL: https://ieeexplore.ieee.org/document/8919247. doi:10.1109/ICSME.2019.00089 .

[3] R. Verdecchia, I. Malavolta, P. Lago, Architectural technical debt identification: The
research landscape, in: Proceedings - International Conference on Software Engineering,
2018, pp. 11–20. URL: https://dl.acm.org/doi/10.1145/3194164.3194176. doi:10.1145/3194164.
3194176 .

[4] S. S. de Toledo, A. Martini, A. Przybyszewska, D. I. Sjoberg, Architectural Technical Debt
in Microservices: A Case Study in a Large Company, in: 2019 IEEE/ACM International
Conference on Technical Debt (TechDebt), IEEE, Montreal, Quebec - CA, 2019, pp. 78–87.

https://doi.org/10.1007/978-3-319-67425-4_12
http://dx.doi.org/10.1007/978-3-319-67425-4_12
http://dx.doi.org/10.1007/978-3-319-67425-4_12
https://ieeexplore.ieee.org/document/8919247
http://dx.doi.org/10.1109/ICSME.2019.00089
https://dl.acm.org/doi/10.1145/3194164.3194176
http://dx.doi.org/10.1145/3194164.3194176
http://dx.doi.org/10.1145/3194164.3194176


URL: https://ieeexplore.ieee.org/document/8786035/. doi:10.1109/techdebt.2019.00026 .
[5] J. Lewis, M. Fowler, Microservices: a definition of this new architectural term, 2014. URL:

https://www.martinfowler.com/articles/microservices.html.
[6] O. Zimmermann, Microservices tenets: Agile approach to service development and

deployment, Computer Science - Research and Development 32 (2017) 301–310. URL:
http://link.springer.com/10.1007/s00450-016-0337-0. doi:10.1007/s00450- 016- 0337- 0 .

[7] M. Fowler, Microservice Trade-Offs, 2015. URL: https://martinfowler.com/articles/
microservice-trade-offs.html.

[8] P. Kruchten, R. L. Nord, I. Ozkaya, Technical debt: From metaphor to theory and practice,
IEEE Software 29 (2012) 18–21. URL: https://ieeexplore.ieee.org/document/6336722. doi:10.
1109/MS.2012.167 .

[9] P. Avgeriou, P. Kruchten, I. Ozkaya, C. Seaman, Managing Technical Debt in Software
Engineering (Dagstuhl Seminar 16162), Dagstuhl Reports 6 (2016) 110–138. URL: http:
//drops.dagstuhl.de/opus/volltexte/2016/6693. doi:10.4230/DagRep.6.4.110 .

[10] T. Besker, A. Martini, R. Edirisooriya Lokuge, K. Blincoe, J. Bosch, Embracing Technical
Debt, from a Startup Company Perspective, in: 2018 IEEE International Conference
on Software Maintenance and Evolution (ICSME), IEEE, 2018, pp. 415–425. URL: https:
//ieeexplore.ieee.org/document/8530048/. doi:10.1109/ICSME.2018.00051 .

https://ieeexplore.ieee.org/document/8786035/
http://dx.doi.org/10.1109/techdebt.2019.00026
https://www.martinfowler.com/articles/microservices.html
http://link.springer.com/10.1007/s00450-016-0337-0
http://dx.doi.org/10.1007/s00450-016-0337-0
https://martinfowler.com/articles/microservice-trade-offs.html
https://martinfowler.com/articles/microservice-trade-offs.html
https://ieeexplore.ieee.org/document/6336722
http://dx.doi.org/10.1109/MS.2012.167
http://dx.doi.org/10.1109/MS.2012.167
http://drops.dagstuhl.de/opus/volltexte/2016/6693
http://drops.dagstuhl.de/opus/volltexte/2016/6693
http://dx.doi.org/10.4230/DagRep.6.4.110
https://ieeexplore.ieee.org/document/8530048/
https://ieeexplore.ieee.org/document/8530048/
http://dx.doi.org/10.1109/ICSME.2018.00051

	1 Introduction
	2 Background
	2.1 Microservices
	2.2 Architectural Technical Debt

	3 Methodology
	4 Results and Conclusions

