CEUR-WS.org/Vol-2978/saerocon—paper7.pdf

A Preliminary Study on the Use of Keywords for Source
Code to Architecture Mappings

Tobias Olsson, Morgan Ericsson and Anna Wingkvist

Department of Computer Science and Media Technology, Linnaeus University, Kalmar/Vix;jo, Sweden

Abstract

We implement an automatic mapper that can find the corresponding architectural module for a source code file. The mapper
is based on multinomial naive Bayes, and it is trained using custom keywords for each architectural module. For prediction,
the mapper uses the path and file name of source code elements. We find that the needed keywords often match the module
names, but also that ambiguities and discrepancies exist. We evaluate the mapper using nine open-source systems and find
that the mapper can successfully create a mapping with perfect precision, but in most cases, it cannot cover all source code
elements. Other techniques can, however, use the mapping as a foothold and create further mappings.

Keywords

Orphan Adoption, Software Architecture, Source Code Clustering, Naive Bayes

1. Introduction

The modular software architecture captures major design
decisions regarding reuse, maintainability, changeability,
and portability [1]. During system evolution, the source
code must conform to the architecture, or the system
risks accumulating technical debt and finally lose the
desired qualities.

Static Architecture Conformance Checking (SACC) meth-
ods, such as Reflexion modeling [2], statically analyze
source code to ensure that it does not introduce archi-
tectural violations [3, 4]. These methods require an ar-
chitecture model, with modules and dependencies, and a
source code model, with entities (e.g., source code files)
and concrete dependencies (e.g., due to inheritance or
method invocations). They also require a mapping from
the source code model to the architecture model to de-
tect convergent, absent, or divergent dependencies in the
implementation.

Despite the importance of architecture conformance,
SACC has not reached widespread use in the software
industry [1, 3, 5, 6]. The necessary tools and methods
for using SACC exist. However, practitioners perceive
the mapping from source code to architectural modules
as a significant hindrance; it is often outdated or nonex-
istent. Many tools address this by combining manual
mapping and regular expressions to filter file, module,
and package names. Still, such are considered to be both
time-consuming and error-prone [3, 5, 6, 7].

Automatic mapping techniques aim to minimize the

ECSA2021 Companion Volume
& tobias.olsson@lnu.se (T. Olsson); morgan.ericsson@lnu.se
g

(M. Ericsson); anna.wingkvist@Inu.se (A. Wingkvist)

@ 0000-0003-1154-5308 (T. Olsson); 0000-0003-1173-5187

(M. Ericsson); 0000-0002-0835-823X (A. Wingkvist)

© 2021 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

=== CEUR Workshop Proceedings (CEUR-WS.org)

manual effort needed to create a mapping by using infor-
mation available in the source code and intended modular
architecture. For example, dependencies between source
code entities can be used to create a mapping. A problem
with current automatic techniques is that they require an
initial set of mapped entities that the technique infers the
automatic mappings from. Depending on the technique
and system to be mapped, an initial set needs to consists
of approximately 15-20% of the entities before reaching
acceptable performance. In our experience, the physi-
cal structure of files on disk is often in part or wholly
reflected in the intended modular architecture. Effective
use of this information can present an attractive option
to create an initial set. However, structure and naming
are not always mapped one to one to a module, and there
are discrepancies, ambiguities, or simply missing terms
in the naming.

We investigate how well a multinomial naive Bayes
classifier trained using simple keywords derived from
ground truth mappings can be used to automatically cre-
ate an initial set. We pose the following questions:

1. Can the mapper construct an initial set based on
a simple set of keywords for each module?

2. How well does this initial set perform if used in
combination with mapping based on dependen-
cies?

3. How well does the above combination perform
compared to the NBAttract (with a random initial
set) and InMap approaches?

We evaluate the mapper using nine open-source sys-
tems with known mappings to a specified modular ar-
chitecture and find that the keywords are often the same
as the module names, but more and different keywords
are needed in some cases. After the initial set is cre-
ated, we run another automatic mapper that can map

mailto:tobias.olsson@lnu.se
mailto:morgan.ericsson@lnu.se
mailto:anna.wingkvist@lnu.se
https://orcid.org/0000-0003-1154-5308
https://orcid.org/0000-0003-1173-5187
https://orcid.org/0000-0002-0835-823X
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Tobias Olsson et al. CEUR Workshop Proceedings

any remaining entities. We compare the results with a
traditional automatic mapping technique [8] and an inter-
active mapping technique [7]. We find that the keywords-
based approach can, in some cases, provide a complete
mapping and that the keywords-based approach plus the
automatic mapping approach performs very well.

2. Background and Related Work

Tzerpos and Holt describe the general problem of map-
ping (or remapping) a source code entity to an architec-
tural module [9]. They collectively call both the mapping
and remapping of an entity the orphan adoption prob-
lem. They find four major criteria for solving the problem:
naming, structure, style, and semantics and device an algo-
rithm that they evaluate in three case studies [9]. Tzerpos
and Holt regard the naming criteria as the first option
to use in an orphan adoption scenario and suggest using
per system regular expressions to determine a mapping.
However, they also mention that naming criteria is not
enough as they may be lacking or that naming standard
is not always adhered to by developers.

Garcia et al. discuss the use of package and naming
information in software architecture recovery [10]. In
general, they found that their ground truth components
often spanned or shared several packages. They could
not find a correlation between components and single
package or directory names. One of their four cases pre-
sented a reasonably good correlation, and in one system,
they could find a repeating pattern of directories. The
ground truth architectures recovered in their study are
possibly at a lower level than the modular architectures
we study. Still, there is likely variation in what dimension
or view of an architecture is expressed in the package
structure. This variation is further supported by Buckley
et al., where one out of five studied systems did not have
any clear correlation between packages and modules.
This presented difficulties and significant effort when
performing manual mapping [11].

Anquetil and Lethbridge, on the other hand, propose
a method for architecture recovery of legacy systems
using filenames [12]. Their approach focuses on the
assumptions that files have short names with many ab-
breviations and are placed in a single directory. This is
due to their focus on recovering legacy systems. Nev-
ertheless, they present some interesting findings. First,
they identify several forces that shape a filename, i.e.,
what influences it. There seem to be several examples of
such forces also in more modern implementations, e.g.,
from the subject system Ant, we find the feature imple-
mented (ant.taskdefs.SendEmail), the algorithms or steps
of algorithms (ant.types.resources.Sort), or data processed
(ant.taskdefs.email.Header), as suggested in [12]. Much of
the approach revolves around the problematic abbrevia-

tions found in the relatively short filenames. While this is
not a technical problem in modern development, the use
of abbreviations is still common practice. For example,
one of the subject systems, ArgoUml, defines a module
reverseEngineering, and the corresponding directory map-
ping is the abbreviation reveng. Finally, Anquetil and
Lethbridge successfully use filenames to create a cluster-
ing that corresponds well to an expert’s view of a system.

2.1. Semi-Automatic Mapping

Christl et al. introduced the Human Guided clustering
Method (HuGMe), an approach to semi-automatic map-
ping of source code entities to modules of the intended
architecture [9]. Itis an iterative approach that, at its core,
uses an attraction function to compute the attraction be-
tween a source code entity and a module. If the attraction
is considered valid, an automatic mapping is made; if not,
the attractions can be used as a suggestion for a human
user. Two attraction functions based on dependencies
are presented, CountAttract and MQAttract [13, 6].

Bittencourt et al. present two new attraction func-
tions based on information retrieval techniques [5]. They
use semantic information in the source code, including
module- and filenames. The attractions are calculated
based on cosine similarity (IRAttract) and latent semantic
indexing (LSIAttract). They make a quantitative compari-
son between the performance of their attraction functions
with CountAttract and MQAttract in an evolutionary set-
ting (where a few new files are to be assigned a mapping).
They find that combining attraction functions (e.g., if
CountAttract fails, try IRAttract) performs best. They
find that CountAttract usually misplaces entities on mod-
ule borders. MQAttract performs better when mapping
entities with dependencies to many different modules.
IRAttract and LSIAttract perform better when mapping
entities in libraries or entities on module borders, but
worse if there are modules that share vocabulary but are
not related [5].

We have created an attraction function that uses ma-
chine learning techniques and introduced the Concrete
Dependency Abstraction (CDA) method [8]. In short,
CDA produces textual representations of dependencies
at the level of architectural modules and lets a machine
learning technique learn the patterns of dependencies
from the actual source code and combine these with in-
formation retrieval techniques. We implement this ap-
proach using naive Bayes as an attraction function for
the HuGMe method, NBAttract. We have compared the
automatic mapping performance of CountAttract, IRAt-
tract, LSIAttract and NBAttract over several systems us-
ing s4rdm3x, our open-source tool suite for automatic
mapping experiments [8, 14].

The main limitations for the techniques that build on
HuGMe are the need for an initial set and, in some cases,

Tobias Olsson et al. CEUR Workshop Proceedings

low-quality mappings. The initial set needs to be man-
ually created and be of good quality for the attraction
functions to perform well. We estimate that a randomly
composed initial set needs to include approximately 15-
20% of the source code entities. Based on this, we con-
clude that creating the initial set is likely a significant
effort. Automated techniques will probably not result in
a perfect mapping except when they use a large initial
set and only map a few entities. In the best of cases, the
automated technique leaves hard to map instances to the
user (creating more manual work), but misclassifications
are problematic. There has not been much research in the
manual mapping steps of HuGMe except for the original
studies [13, 6]. Handling of misclassification and manual
support in these methods are still open issues.

2.2. Interactive Mapping

Sinkala and Herold present InMap, which is not an auto-
mated approach to mapping per se, but instead suggest
mappings to the end-user, who can then choose to ac-
cept the suggested mapping (or not) [7]. It is an iterative
approach that iteratively presents a suggested mapping
for a fixed number of entities. The end-user chooses to
accept or reject the suggestions. InMap uses the accepted
mappings to improve the suggested mappings further in
the next iteration. It also uses the negative evidence of
a rejected mapping and does not suggest this mapping
again. InMap produces the suggested mappings similar
to Bittencourt et al., with the addition of a descriptive
text for each architectural module. InMap also includes
the path and filename used in the Java class and package
names. It treats the source code entities as a database of
documents and uses Lucene to search this database using
module information as a query. Sinkala and Herold eval-
uate InMap using six open source systems. For the best
combination (in terms of highest F1 score) of informa-
tion, InMap can suggest mappings for most of a system’s
entities with a mean recall of 0.95, a mean precision of
0.84, and a mean F1 score of 0.89.

The main limitations of InMap are its highly interactive
nature and that architectural documentation needs to ex-
ist for every module. The documentation provided needs
to be of good quality, i.e., as short as possible but con-
taining good keywords. Noisy documentation will likely
not help in producing high-precision suggestions. The
interactiveness of InMap is in some way double-edged,;
the technique often seems to require more interaction
(accepting or rejecting a suggested mapping) than there
are entities in the source code. On the other hand, if
not minor mapping errors can be tolerated, a mapping
validation is needed anyway.

3. Keywords and File-Based
Mapping

File naming and structure seem to reflect the intended
modular architectures we have studied quite well. For
example, module names tend to map to the directory
structure of the source code. However, the naming is
often not perfect. In some cases, module names are not
used, or shorter or slightly different terms are used. In
other cases, several module names exist in the structure
or naming of a file. A simplistic approach is thus not
appropriate. Instead, the file naming patterns need to be
fully defined, e.g., using regular expressions or a heuristic.
For regular expressions to work, there is often a need to
maintain several expressions that can be conflicting and
overlapping. A more attractive option would be to use
machine learning and train a classifier using a good set
of keywords. The classifier’s task is to produce a good
enough initial set. An automatic mapping technique can
then use this initial set for further mappings.

In this work, we implement a proof of concept map-
per using a multinomial naive Bayes classifier. It is a
simple, probabilistic approach that uses word frequen-
cies to compute the probability of each class. While it
is conceptually simple, naive Bayes often produce good
results, especially if the training data is small. As the
goal is to create a good enough mapping using a small
set of predefined keywords, naive Bayes is thus a good
candidate for a proof of concept study.

We base our implementation on the Weka library [15]
and train the classifier using the custom keywords for
each module. Note that the same keyword can be spec-
ified multiple times, increasing the importance of that
particular keyword.

We derive the prediction data from the path of each
source code entity, including the filename. The filename
is split into words based on common camel-, kebab, and
snake-case rules. In addition, we value later parts of the
path more and add these words multiple times. Intuitively
allowing for a deeper nested folder mapping to "override”
a higher level mapping. For example, the file:

net/sf/jabref/logic/util/io/FileHistory.java
will produce the following words:

net sf jabref logic util io filehistory file history sf jabref
logic util io jabref logic util io logic util io util io io

Note the six occurrences of io reflecting the nesting
depth of the word in the path.

To generate a useful initial set, it is more important that
the mappings are precise rather than complete. There
needs to be a high difference between the best mapping
probability and the second best. By trial and error, we

Tobias Olsson et al. CEUR Workshop Proceedings

found a factor of 1.99 to work well, i.e., the highest prob-
ability needs to be 1.99 times higher than the second-
highest probability for mapping to occur.

We have implemented the mapper described above in
our open-source tool suite s4rdm3x [16].

4. Method

We use nine open-source systems where the ground truth
mappings are known. We create a keyword set for each
module based on the ground truth mappings. We make
sure that these keywords will successfully map at least
some entities to each module.

After we have determined the keywords, we run our
keywords-based mapper and create an initial set. This
initial set is then used as the input to another mapper,
NBAttract, which also uses multinomial naive Bayes but
instead forms training- and prediction words using de-
pendency information in the form of concrete depen-
dency abstractions (CDA) [8]. We compare the perfor-
mance to NBAttract with a random initial set. In this
configuration, we use file information (not including the
module keywords) and CDA. In addition, we compare to
the interactive approach InMap [7].

We collect precision, recall, and combined F1 scores
for each approach. When a random initial set is used,
several sets of different sizes and compositions are needed
to cover a large range of combinations. We will present
the performance metrics numerically and visually as the
effect of the initial set size is essential.

We use nine open-source systems implemented in Java.
Ant! is an API and command-line tool for process au-
tomation. ArgoUML? is a desktop application for UML
modeling. Jabref® is a desktop application for managing
bibliographical references. K9* is an open-source email
client for Android. Lucene’ is an indexing and search
library. ProM® is an extensible framework that supports
a variety of process mining techniques. Note that we
use the ProM framework and not the full ProM system.
Sweet Home 3D’ is an interior design application. Team-
Mates® is a web application for handling student peer
reviews and feedback.

A documented software architecture and a mapping
from the implementation to this architecture exist for
each system. Jabref, TeamMates, and ProM have been
the study subjects at the Software Architecture Erosion
and Architectural Consistency Workshop (SAEroCon)

'https://ant.apache.org
*http://argouml.tigris.org
*https://jabref.org
*https://k9mail.app/
Shttps://lucene.apache.org
®http://www.promtools.org
"http://www.sweethome3d.com
8https://teammatesv4.appspot.com

2016, 2017, and 2019 respectively. A system expert has
provided both the architecture and the mapping for these
systems. The architecture documentation and mappings
are available in the SAEroCon repository’. ArgoUML,
Ant, and Lucene has been previously studied [17, 18],
and the architectures and mappings were extracted from
the replication package of Brunet et al. [17]. K9 has been
preliminary mapped by ourselves based on architecture
documentation provided in [19]'°. We have not validated
this mapping with system experts but include it since it
is an interesting case with a more complex file structure.

5. Results and Analysis

We use the existing ground truth mappings to construct
a set of keywords for each system. Table 1 shows the
manually extracted keywords. Note that a single key-
word is sufficient in many cases, and many keywords
are the same as or some variation of the module name.
K9 presents an interesting exception where several key-
words are needed. We relied on a high-level architectural
description when creating the mapping for K9, where
allowed dependencies were the most clearly defined. The
keywords used reflect the sub-modules of the high-level
modules. Note that our mapping has not been validated
by systems experts.

Using the generated initial sets, we ran the NBAttract
mapper with CDA information only. We ran 1530 experi-
ments with random initial sets for the NBAttract mapper
where the mapper used filename and CDA information
(no module keywords). Finally, we use the best-reported
performance metrics from [7]. Table 2 shows the compar-
ison of the four approaches. Using the keywords-based
mapping, we can create an initial set with perfect preci-
sion and recall in Commons Imaging, ProM, and Sweet
Home 3D. The keywords for these systems are straight-
forward and are often directly reflected in the module
name. For the other systems, keywords can generate
an initial set with perfect precision. However, recall is
suffering.

Using the keywords-based initial sets and NBAttract
using CDA performs very well, with precision scores
over 0.95 in all cases and almost perfect scores for recall,
cf. Table 2).

Figures 1, 2, and 3 shows the running median F1 score,
precision, and recall for each system. The figures focus
on showing the running median for random initial sets
and NBAttract. This configuration seems to lack preci-
sion in Commons Imaging and Sweet Home 3D, and the
recall is suffering in Ant. The naming and dependency
information are possibly conflicting in these systems. Ta-

*https://github.com/sebastianherold/SAEroConRepo
Ohttp://oss.models-db.com/Downloads/EASE2019_
ReplicationPackage/

https://ant.apache.org
http://argouml.tigris.org
https://jabref.org
https://k9mail.app/
https://lucene.apache.org
http://www.promtools.org
http://www.sweethome3d.com
https://teammatesv4.appspot.com
https://github.com/sebastianherold/SAEroConRepo
http://oss.models-db.com/Downloads/EASE2019_ReplicationPackage/
http://oss.models-db.com/Downloads/EASE2019_ReplicationPackage/

Tobias Olsson et al. CEUR Workshop Proceedings

Table 1

Keywords for each system and module.

System Module Keywords System Module Keywords
Ant compilers 2 compiler JabRef globals globals
2 * compilers preferences preferences prefs
condition condition model model shared dbms
rmic rmic logic logic shared
cvslib cvslib gui gui
email email cli cli
taskdefs taskdefs Lucene queryparser queryparser
listener listener search search
types types index index
ant ant store store
util util analysis analysis
zip zip util util
tar tar document document
mail mail K9 business controller service
bzip2 bzip2 mail k9 power
AUML application 2 " application search migrations
diagrams 2" diagram presentation activity ui notification
notation notation fragment view list
explorer explorer widget helper crypto
codeGeneration 3 * language code service provider action extra
generation dataaccess mailstore util
javaCodeGeneration language code crosscutting crypto autocrypt
generation 2 * java cache helper
reverseEngineering 3" reveng ProM framework framework
persistence persistence contexts contexts
moduleLoader moduleloader 2 * api models models
module modules plugins plugins
gui ui SH3D sH3DModel model
model model sH3DTools tools
internationalization i18n sH3DPlugin plugin
swingExtensions swingext sH3DViewController viewcontroller
ocl ocl sH3DSwing swing
critics 2 * cognitive sH3DJava3D j3d
Clmg base imaging sH3DIO io
color color sH3DApplet applet
common common sH3DApplication sweethome3d
bmp bmp TMates common.util util
dex dex common.exception exception
gif gif common.dataTransfer datatransfer
icns icns ui.automated automated
ico ico ui.controller controller
jpeg jpeg ui.view ui page
pex pcx logic.core core
png png logic.api logic api
pnm pnm logic.backdoor backdoor
psd psd storage.entity entity
rgbe rgbe storage.api storage api
tiff tiff storage.search search
wbmp wbmp testDriver 27" test
xbm xbm client.remoteAPI remoteapi
xpm xpm client.scripts 2 * scripts
icc icc
internal internal
palette palette

Tobias Olsson et al. CEUR Workshop Proceedings

Table 2
Precision, Recall and F1 score for each mapping technique. For Random + NBAttract, the median metrics are shown.
Keywords Keywords + NBAttract Random + NBAttract InMap

System P R F1 P R F1 P R F1 P R F1
Ant 1.00 097 099 099 1.00 0.99 094 0091 0.94 0.73 1.00 0.84
AUML 1.00 067 080 097 1.00 0.98 0.95 1.00 0.97 0.78 0.98 0.87
Clmg 1.00 1.00 1.00 0.84 0.99 0.90
JabRef 1.00 095 098 098 1.00 0.99 0.91 0.98 0.94 0.96 1.00 0.98
K9 1.00 0.81 090 096 1.00 0.98 092 1.00 0.96
Lucene 1.00 099 1.00 1.00 0.99 1.00 097 1.00 0.98
ProM 1.00 1.00 1.00 0.99 1.00 1.00 0.81 0.87 0.84
SH3D 1.00 1.00 1.00 0.83 1.00 0.91
TMates 1.00 0.60 075 097 1.00 0.99 097 1.00 0.98 0.95 0.97 0.96
Mean 1.00 0.89 093 098 1.00 0.99 092 0.99 0.95 0.846 0.964 0.90

ble 2 shows mean values; they can vary quite a bit in the
actual cases depending on the size and composition of
the initial set.

Finally, InMap lacks in precision but performs well re-
garding the recall. Note that InMap is a highly interactive
approach to mapping. The aim is not to automate the
mapping but rather give good advice to a human user that
interactively maps the source code iteratively. If there
is a need to check an automatic mapping thoroughly, an
interactive approach is attractive regardless of precision.

6. Discussion and Validity

Keywords can be effectively used and provide an excel-
lent initial set, even a perfect mapping in some cases. It
is an attractive approach compared to manually mapping
an initial set. Hypothetically, it should be easier to ex-
tract the keywords and specify the corresponding module
and weight of the keyword than mapping several tens or
hundreds of files manually. The main challenge in this
area is, of course, to find a high precision and minimal
set of keywords. We used the already established ground
truth mappings to do this in this preliminary evaluation,
but this approach is not feasible in a real case. However,
analyzing the directory structure and looking for words
in the module names could provide a starting point in
many cases. Possibly using a deeper level in the directory
hierarchy or looking for repeating patterns could be fruit-
ful. Semantic analysis using, e.g., WordNet could be an
approach to find related words in the directory structure.
In addition, information from, e.g., method names and
identifiers could be used.

It would arguably be easier to create and maintain a
small set of keywords compared to, e.g., regular expres-
sions, even if done entirely manually.

Using a large random initial set seems to give a very
high performance of NBAttract in some cases, e.g., Ar-
goUML, Commons Imaging, Lucene, ProM, Sweet Home

3D (cf. Figure 1). This indicates that when the mapping is
established, NBAttract often performs well when only a
few new source code entities are introduced (e.g., during
software evolution). However, in some cases, the F1 score
is declining as the initial set becomes larger, e.g., JabRef,
K9, and TeamMates (cf. Figure 1). A preliminary anal-
ysis seems to point towards overfitting, i.e., the model
becomes too specific, and as a result, the recall drops
(cf. Figure 3). It can also be an effect of randomness; the
1530 data points per system are pretty low considering
the combinatorial complexity of random initial set sizes
and compositions. However, it is sufficient to indicate
the overall performance in a preliminary study such as
this. The very high recall in ProM (cf. Figure 3) can be
explained by the fact that the ProM framework has a very
straightforward mapping, and as before, the number of
data points may be too small.

We are limited to systems in Java, where the file struc-
ture often reflects the modular design of our subject sys-
tems well. While we could handle discrepancies and am-
biguities well enough to create an initial set, this may not
be the case in a system where the file structure is entirely
different. However, we also show that these cases can
use the file information. Current mapping methods, e.g.,
NBAttract and InMap, should likely give file information
more attention.

7. Conclusions and Future Work

We found that we could construct relatively simple key-
words for a majority of the 96 modules in all nine systems.
Ten modules (9.6%) required weights for keywords, and
15 (15.6%) required two or more different keywords. Our
mapper could successfully create an initial set using the
keywords, and in some cases, this resulted in a perfect
mapping.

Combining the keywords-based mapping and NBAt-
tract using CDA provided outstanding performance with

Tobias Olsson et al. CEUR Workshop Proceedings

amean precision, recall, and F1 score of 0.98, 1.0, and 0.99,
respectively. The performance was higher than using
random initial sets and NBAttract using CDA and file
information, and the interactive technique InMap (see
Table 2).

If a mapping is already established, NBAttract with
CDA and file information provides good performance in
many cases; however, in some systems, the model could
suffer from overfitting issues (cf. Figure 3).

Using keywords is an attractive approach that can sig-
nificantly reduce the mapping effort. However, a central
question that remains is how to extract good candidate
keywords and let a human user assign weights.

In addition, a keywords-based mapping approach is
likely not applicable for some systems. We plan on per-

forming comparative studies using the mappings from [10],

where the authors claim architectural modules are not
bound to the file structure of the source code.

Acknowledgments

The research was supported by the Centre for Data Inten-
sive Sciences and Applications at Linnaeus University.

References

(1]

(2]

(3]

(4]

(6]

(7]

L. De Silva, D. Balasubramaniam, Controlling soft-
ware architecture erosion: A survey, Journal of
Systems and Software 85 (2012) 132-151.

G. C. Murphy, D. Notkin, K. Sullivan, Software
reflexion models: Bridging the gap between source
and high-level models, ACM SIGSOFT Software
Engineering Notes 20 (1995) 18-28.

N. Alj, S. Baker, R. O’Crowley, S. Herold, J. Buck-
ley, Architecture consistency: State of the practice,
challenges and requirements, Empirical Software
Engineering 23 (2017) 1-35.

J. Knodel, D. Popescu, A comparison of static archi-
tecture compliance checking approaches, in: The
IEEE/IFIP Working Conference on Software Archi-
tecture, 2007, pp. 12-21.

R. A. Bittencourt, G. Jansen de Souza Santos, D. D. S.
Guerrero, G. C. Murphy, Improving automated map-
ping in reflexion models using information retrieval
techniques, in: Working Conference on Reverse
Engineering, IEEE, 2010, pp. 163-172.

A. Christl, R. Koschke, M. A. Storey, Automated
clustering to support the reflexion method, Infor-
mation and Software Technology 49 (2007) 255-274.
Z.T. Sinkala, S. Herold, Inmap: Automated inter-
active code-to-architecture mapping recommenda-
tions, in: IEEE 18th International Conference on
Software Architecture (ICSA), 2021, pp. 173-183.

[8] T. Olsson, M. Ericsson, A. Wingkvist,

Semi-
automatic mapping of source code using naive
bayes, in: Proceedings of the 13th European Con-
ference on Software Architecture - Volume 2, 2019,
p. 209-216.

V. Tzerpos, R. C. Holt, The orphan adoption prob-
lem in architecture maintenance, in: Working Con-
ference on Reverse Engineering, IEEE, 1997, pp.
76-82.

J. Garcia, I. Krka, C. Mattmann, N. Medvidovic, Ob-
taining ground-truth software architectures, in:
35th International Conference on Software Engi-
neering (ICSE), 2013, pp. 901-910.

[11] J. Buckley, N. Ali, M. English, J. Rosik, S. Herold,

Real-time reflexion modelling in architecture rec-
onciliation: A multi case study, Information and
Software Technology 61 (2015) 107-123.

N. Anquetil, T. C. Lethbridge, Recovering software
architecture from the names of source files, Journal
of Software Maintenance: Research and Practice 11
(1999) 201-221.

A. Christl, R. Koschke, M. A. Storey, Equipping the
reflexion method with automated clustering, in:
Working Conference on Reverse Engineering, IEEE,
2005, pp. 98-108.

T. Olsson, M. Ericsson, A. Wingkvist, An explo-
ration and experiment tool suite for code to archi-
tecture mapping techniques, in: Proceedings of the
13th European Conference on Software Architec-
ture - Volume 2, ECSA °19, 2019, p. 26-29.

I. Witten, E. Frank, M. Hall, C. Pal, Data Mining,
Fourth Edition: Practical Machine Learning Tools
and Techniques, 4th ed., Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 2016.

T. Olsson, M. Ericsson, A. Wingkvist, s4rdm3x: A
tool suite to explore code to architecture mapping
techniques, Journal of Open Source Software 6
(2021) 2791. doi:10.21105/joss . 02791.

[17] J. Brunet, R. A. Bittencourt, D. Serey, J. Figueiredo,

On the evolutionary nature of architectural viola-
tions, in: Working Conference on Reverse Engi-
neering, IEEE, 2012, pp. 257-266.

J. Lenhard, M. Blom, S. Herold, Exploring the suit-
ability of source code metrics for indicating archi-
tectural inconsistencies, Software Quality Journal
(2018).

A.Nurwidyantoro, T. Ho-Quang, M. R. V. Chaudron,
Automated classification of class role-stereotypes
via machine learning, in: Proceedings of the Eval-
uation and Assessment on Software Engineering,
2019, p. 79-88.

http://dx.doi.org/10.21105/joss.02791

Tobias Olsson et al. CEUR Workshop Proceedings

0.8 0.9

0.7

F1 Score
0.8 0.9 1.0 0.7 0.8 0.9

0.7

0.8 0.9

0.7

0.8 0.9

0.7

ArgoUML

0.7

00 01 02 03 04 05 06 07

Commons Imaging

08 09 1.0

00 01 02 03 04 05

JabRef

06 07 08 09 10

00 01 02 03 04 05 06 07 08 09 10 00 01 02 03 04 05 06 07 08 09 10
K9 Lucene
=
]
o
@
o
~
o
00 01 02 03 04 05 06 07 08 09 10 00 01 02 03 04 05 06 07 08 09 10
ProM SweetHome3D
____________________________ = -] ©]
2o -
2
o
<
o
~
oS
00 01 02 03 04 05 06 07 08 09 10 00 01 02 03 04 05 06 07 08 09 10
TeamMates
—— Random+NBAttract
--- Keywords
""" Keywords+NBAttract
-=-= InMap

00 01 02 03 04 05 06 07 08

09 1.0
Initial Set Size

Figure 1: The F1 score of each approach, Random+NBAttract are shown with a running median and the running 25th to 75th
quartiles. Note that the F1 score starts at 0.7.

Tobias Olsson et al. CEUR Workshop Proceedings

0.8 0.9

0.7

Precision
0.9 1.0 07 08 0.9

0.8

0.9 0.7 0.9 0.7

0.8

0.7

ArgoUML

0.9

0.8

0.7

00 01 02 03 04 05 06 07

Commons Imaging

0.8

00 01 02 03 04 05

JabRef

06 07 08 09

00 01 02 03 04 05 06 07 08 09 1.0 00 01 02 03 04 05 06 07 08 09 1.0
K9 Lucene
___ o
@
o
©
o
~
o
00 01 02 03 04 05 06 07 08 09 1.0 00 01 02 03 04 05 06 07 08 09 1.0
ProM SweetHome3D

00 0.1 04 05 06

TeamMates

00 01 02 03 04 05 06 07 08

00 01 02 03 04 05 06 07 08 09

—— Random+NBAttract
--- Keywords
Keywords+NBAttract
-=-= InMap

09 1.0
Initial Set Size

Figure 2: The precision of each approach, Random+NBAttract are shown with a running median and the running 25th to
75th quartiles. Note that the precision starts at 0.7.

Tobias Olsson et al. CEUR Workshop Proceedings

Ant ArgoUML
e - e —————
2 ST s
] @
o o
© ©
o o
~ ~
o o
00 01 02 03 04 05 06 07 08 09 10 00 01 02 03 04 05 06 07 08 09 1.0
Commons Imaging JabRef
e] 2 - —
]]
o o
© ©
o o
~ ~
o o
00 01 02 03 04 05 06 07 08 09 10 00 01 02 03 04 05 06 07 08 09 10
K9 Lucene
e
]]
=C> o
©
o]
0]
'xeq ”””””””””””””””””””””” ©
o o
~ ~
o o
00 01 02 03 04 05 06 07 08 09 10 00 01 02 03 04 05 06 07 08 09 10
ProM SweetHome3D
e - 1 2@ []
@ @
o o
© ©
o o
~ ~
IS oS
00 01 02 03 04 05 06 07 08 09 10 00 01 02 03 04 05 06 07 08 09 10
TeamMates
e
]
IS} —— Random+NBAttract
--- Keywords
""" Keywords+NBAttract
© -=-= InMap
o
~
o

00 01 02 03 04 05 06 07 08 09 10)
Initial Set Size

Figure 3: The recall of each approach, Random+NBAttract are shown with a running median and the running 25th to 75th
quartiles. Note that the recall starts at 0.7.

	1 Introduction
	2 Background and Related Work
	2.1 Semi-Automatic Mapping
	2.2 Interactive Mapping

	3 Keywords and File-Based Mapping
	4 Method
	5 Results and Analysis
	6 Discussion and Validity
	7 Conclusions and Future Work

