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Abstract. Knowledge graphs (KGs) represent facts about a domain in
a structured form. Although KGs can be quantitatively huge and consist
of millions of triples, their coverage is usually still only a small fraction of
the available knowledge. Among the most promising recent approaches for
tackling this incompleteness problem is link prediction using knowledge
graph embedding models. Various embedding models have been proposed
so far, among which, the RotatE model is reported to obtain state-
of-the-art performance in such link prediction tasks. However, RotatE
mainly outperforms other models when using a high embedding dimension
(e.g. 1000). In this paper, we simulate such scenarios by studying the
performance of different models using multiple low dimensions in different
repetition rounds of the same model. For example, our studies show
better results when instead of training a model one time with a high
dimension of 1200, we repeat the training of the model 6 times in parallel
with dimension of 200 and then combine the 6 models, This can improve
results while maintaining the overall number of adjustable parameters
is the same. In order to justify our findings, we perform experiments
on various models including TransE, DistMult, RotatE and ComplEx.
Experimental results on standard benchmark dataset show that multiple
low-dimensional models outperform a single high dimensional model while
the overall number parameters is same.

Keywords: Graph Embedding - Ensemble Learning - Link Prediction.

1 Introduction

|]The advent of knowledge graph (KG) technology has propelled knowledge repre-
sentation to the next level and influenced the untimate results of several Al-based
applications such as question answering and recommendation systems [14[9]. Sev-
eral KGs such as WordNet [8], FreeBase [2], and YAGO [10], have been published
with different utilization purposes. In recent years, KG technology combined with
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the recent advances of hardware technologies such as GPU processing. Therefore,
a new horizon for using machine learning approaches on structured data at scale
has been opened up for leading science and industry.

Despite the advantages of KGs in down stream tasks, one of the main chal-
lenges of existing KGs is their incompleteness [11]. KG completion using link
prediction approaches aims at addressing this problem. Among various link
prediction approaches, KG embedding (KGE) has gained significant attention
recently. A KGE model takes a KG in the form of triple facts (h,r,t) where h,t
are entities (nodes) and r is a relation (link) between the entities. A d dimensional
vector is then assigned to each element of a triple (h,r,t) in a KG and adjusts the
vectors by optimizing a loss function. The likelihood of a triple is then measured
by using a score function over the embedding vectors (h,r,t).

The score functions of models play an important role in the performance
of the KGEs. After early proposals of novel KGE models, the research field
has continued by designing and publishing new models with a focus on score
functions. Among those, TransE is one of the primary models which computes
the score of a triple by measuring the distance between the tail vector and the
relation-specific translated head (i.e. h 4+ r & t). Several variants of TransE such
as TransR [7], TransH [I5], and TransD [4] have been proposed later to address
the limitations of the original model such as the problem of not being able to
encode one to N, symmetric and reflexive relations.

One of the recent state-of-the-art models is RotatE [I2] which utilizes rotation
in complex space to compute the score of triples. The rotation is performed
from each element of the head vector by using relation specific angle to each
element of the tail vector i.e. hor &~ t (o is element-wise complex multiplication
which induces rotation in complex space). The evaluations reported in the initial
work introducing RotatE [12] as well as the ones studied afterwards [I], shows
that RotatE obtains state-of-the-art in link prediction tasks by using a relatively
high dimension (1000 on freebase datasets). QuatE [17] is another KGE model
that outperforms other models by taking the advantage of quaternion space that
contains four elements. Similar to RotatE, the high performance of QuatE is
achieved by using an embedding dimension of 1000. Due to the quaternion design
of ths model, the best performing setting with this high dimension results in
4000 adjustable parameters. A similar fact is observable in the ComplEx model
which gets a high accuracy with dimension 1000 [6].

Such observations led us to a systematic evaluation of the state-of-the-art
models that shows in most of these works, first a high dimension and, second
multiple vectors for each entity /relation due to using either complex (with two
elements of real and imaginary) or quaternion (with four elements) space. In
other words, all the above-mentioned models use single model with a multi-part
high dimensional embeddings (number of parameters is 1 x dj,). In contrast to
those models, we use the same model multiple (k) times in parallel trainings
with low dimension (number of parameters is k x d;). In order to have a fair
comparison, we enforce (1 x d, = k x d;). The experimental results show that the
ensemble of the same model several times trained with low-dimensions, results in
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a better performance than training that model once with a high dimension while
the overall numbers of adjustable parameters are same.

2 Related Work

Here we review the existing KGE models including TransE, RotatE, ComplEx,
and DistMult. Each model defines a score function f(h,r,t) which takes the
triple embeddings (h,r,t) and returns the degree of correctness of the triple.
TransE [3] Given a triple (h,r,t), the TransE model computes the score by
measuring the distance between relation-specific translated head (h + r) and the
tail t as f(h,r,t) = —||h +r — t|| to enforce h +r ~ t (h,r,t € R?) for each
positive triple (h,r,t) in the vector space.

RotatE [12] RotatE aims at mapping each element of the head embedding (h;)
to the corresponding tail embedding t; by using relation-specific rotation r; = e*.
The score of each triple (h,r,t) is computed as f(h,r,t) = —||h or — t|| where
h,r,t € C¢. This enforces hor ~ t for each positive triple (h,7,t).

DistMult [I6] captures the interaction between elements that has the same
index in h and t. The formulation of score function is f,.(h,t) = h' diag(r)t =
Z?:o r; - h; - t; The model captures symmetric relation, but not antisymmetric.
CompEx [I3] was proposed as a more elegant way to solve the shortcoming of
DistMult in modeling antisymmetric relation. Its main contribution is to embed
KGs in complex space. The score function is defined as f(h,r,t) = Re({r,h,t))
where r,h,t € C%. Although effective, ComplEx is not expressive enough to
model composition relations [12].

Several surveys have been reviewed the existing KGEs and reported about
their performance from different aspects and settings. In [5], a set of KGEs
combined evaluations have been done for multiple models and settings. It lifts
the models intro one score function and combines them during the training phase,
however, we focus on stretching and squeezing the dimensions of the same models
which are trained separately and combined for testing.

3 Proposed Approach

Recent models such as RotatE, ComplEx, and QuatE obtain state-of-the-art
performances in link prediction. They go beyond the real space and embed a KG
into a Complex or Quaternion space. Therefore, the embedding vectors contain
two (complex) or four (quaternion) parts. Consequently, designing KGE models
with specific embeddings containing multiple parts (complex vectors with real
and imaginary parts) has been shown to be effective in performance boosting.
Based on this, we initiated the methodology of this research as follows:

Hypothesis 1. Multiple combined slices of a KGE model in low-dimensions
perform better than a single version of that model in high dimensions.

Our aim is to provide evidences in order to evaluate the hypothesis.
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In contrast to the mentioned model which uses a single model with high
dimension, in this part we propose a new approach which combines multiple
models of the same type in which each model contains low-dimensional em-
beddings. Therefore, the overall number of adjustable parameters remains the
same compared to the approaches using a single model with high dimensions.
In order to formulate this scenario, let us have a model M (e.g. RotatE) with
embedding dimension d;. We follow the steps below in our approach:

(a) We first generate k times copies of an underlying model M. The jth slice
of the model is denoted by M;,5 = 1,...,k, and the corresponding d,
dimensional embeddings of (h,r,t) are denoted by (h7,r/,t7). The vectors
are randomly initialized in the beginning of learning process.

(b) We then train each of the models M;,j =1,...,k separately.

(c) Finally, the testing is performed by using the following score function

k
f(hvrvt):ZfMj(hj7rj’tj)’ (1>
j=1

where fa; (hj,rj,t;) is the score of a triple (h,r,t) computed by the jth
copy of the model.

Note that all models are trained on a same KG and the only difference between the
models is the initialization of the embedding vectors. To have a fair comparison
with original models, we keep the overall number of adjustable parameters
(embeddings) equal when comparing with the original single model, i.e. dj, = kxd;.
We will later show in the evaluation part that such a simple approach improves
the performance of KGEs without additional cost.

4 Experiments

Dataset We use FB15k and FB15k-237 for evaluation. FB15k contains 483,142

triples in training set, 50,000 and 59,071 in validation and test set respectively.
FB15k-237 contains 272,115, 17,535 and 20,466 triples in the training, validation

and testing set respectively.

Evaluation Metric We use Mean Reciprocal Rank (MRR) and Hist@n (n=1,3,10)
for evaluation. The detail process of computing these metrics can be found in [3].
Experimental Setup we evaluate our proposed approach by training TransE,

RotatE, DistMult and ComplEx in both single model with high dimension and

multiple models with low dimension. For single models with high dimensions, we

set embedding dimension to dj, = {2,4,6,8,10,12} x 100. For models sliced in

multiple versions with low dimensions, we set the number of modelsto k =2,...,6

and dimension d; = 200. Note that each single mode e.g. RotatE with dimension

dp, is compared with multiple models e.g. CRotatE (combination of k = 6 RotatE

models) with dimension d;. Therefore the number of parameters in both models

are the same i.e. k x d; =1 x dp e.g. 6 x 200 = 1 x 1200. The implementation has

been done by using Pytorch on GPU servers. We use RotatE loss for the models

in the table 1. We use uniform negative sampling with only one negative sample.
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Table 1: Link prediction results on FB15K and FB15K-237.

5

Model FB15K FB15K-237
MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

TransE (d=200) 0.698 0.597 0.777 0.859 0.278 0.187 0.305 0.465
TransE (d=400) 0.718 0.623 0.790 0.866 0.285 0.192 0.315 0.476
TransE (d=600) 0.718 0.623 0.791 0.867 0.2850.191 0.315 0.475
TransE (d=800) 0.716 0.620 0.790 0.866 0.283 0.191 0.310 0.473
TransE (d=1000) 0.712 0.616 0.786 0.864 0.280 0.188 0.308 0.470
TransE (d=1200) 0.704 0.604 0.781 0.862 0.277 0.186 0.303 0.464
CTransE (d=2*200) 0.720 0.624 0.794 0.870 0.288 0.193 0.318 0.479
CTransE (d=3*200) 0.726 0.632 0.799 0.873  0.292 0.198 0.324 0.485
CTransE (d=4*200) 0.729 0.635 0.800 0.874 0.295 0.200 0.324 0.490
CTransE (d=5*200) 0.731 0.639 0.802 0.875  0.297 0.202 0.327 0.490
CTransE (d=6*200) 0.732 0.640 0.802 0.876 0.298 0.202 0.329 0.491
DitMult (d=200) 0.653 0.540 0.744 0.827 0.222 0.148 0.241 0.372
DitMult (d=400) 0.675 0.564 0.764 0.839 0.227 0.148 0.248 0.388
DitMult (d=600) 0.682 0.568 0.774 0.852  0.228 0.147 0.248 0.392
DitMult (d=800) 0.685 0.570 0.777 0.854  0.227 0.144 0.250 0.397
DitMult (d=1000) 0.690 0.577 0.781 0.854 0.228 0.143 0.251 0.398
DitMult (d=1200) 0.688 0.573 0.781 0.855 0.227 0.142 0.249 0.399
CDitMult (d=2*200) 0.693 0.576 0.787 0.867  0.229 0.153 0.250 0.379
CDitMult (d=3*200) 0.703 0.587 0.799 0.874 0.232 0.156 0.255 0.384
CDitMult (d=4*200) 0.709 0.593 0.806 0.880  0.237 0.161 0.259 0.386
CDitMult (d=5*200) 0.716 0.601 0.810 0.882  0.237 0.160 0.260 0.389
CDitMult (d=6*200) 0.718 0.603 0.815 0.883 0.237 0.160 0.260 0.390
ComplEx (d=200) 0.635 0.510 0.734 0.835 0.229 0.153 0.250 0.381
ComplEx (d=400) 0.682 0.568 0.773 0.848 0.230 0.150 0.252 0.393
ComplEx (d=600) 0.687 0.572 0.780 0.860 0.229 0.145 0.252 0.398
ComplEx (d=800) 0.698 0.585 0.789 0.864 0.229 0.144 0.252 0.400
ComplEx (d=1000) 0.697 0.582 0.791 0.864 0.228 0.141 0.254 0.400
ComplEx (d=1200) 0.696 0.580 0.791 0.862  0.226 0.139 0.249 0.400
CComplEx (d=2%200) 0.684 0.562 0.782 0.869  0.235 0.158 0.255 0.391
CComplEx (d=3%200) 0.697 0.575 0.798 0.878  0.237 0.159 0.259 0.393
CComplEx (d=4%200) 0.705 0.583 0.807 0.882  0.239 0.161 0.261 0.396
CComplEx (d=5%200) 0.710 0.590 0.809 0.884  0.240 0.162 0.264 0.395
CComplEx (d=6*200) 0.710 0.590 0.810 0.886 0.240 0.162 0.264 0.398
RotatE (d=200) 0.680 0.563 0.773 0.859  0.282 0.190 0.309 0.469
RotatE (d=400) 0.719 0.617 0.801 0.871  0.295 0.203 0.324 0.482
RotatE (d=600) 0.729 0.631 0.807 0.873 0.293 0.200 0.323 0.485
RotatE (d=800) 0.735 0.639 0.810 0.873 0.294 0.200 0.323 0.482
RotatE (d=1000) 0.730 0.634 0.805 0.870 0.292 0.199 0.321 0.481
RotatE (d=1200) 0.727 0.630 0.802 0.868 0.290 0.197 0.319 0.478
CRotatE (d=2%*200) 0.726 0.622 0.809 0.879  0.297 0.205 0.325 0.486
CRotatE (d=3*200) 0.739 0.639 0.821 0.885 0.301 0.208 0.331 0.492
CRotatE (d=4*200) 0.744 0.644 0.826 0.888 0.306 0.213 0.334 0.493
CRotatE (d=5%200) 0.748 0.651 0.829 0.890 0.306 0.213 0.337 0.496
CRotatE (d=6*200) 0.753 0.656 0.832 0.891 0.307 0.213 0.338 0.496
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Table 2: Link prediction results on FB15K with one to N scoring and N3 regular-
ization.

Model FB15K
MRR Hits@Ql Hits@3 Hits@Q10

DitMult (d=200) 0.816 0.776 0.841 0.889
DitMult (d=400) 0.831 0.792 0.854 0.898
DitMult (d=600) 0.835 0.799 0.858 0.901
DitMult (d=800) 0.837 0.800 0.860 0.903
DitMult (d=1000) 0.839 0.799 0.866 0.909
DitMult (d=1200) 0.836 0.796 0.865 0.909
CDitMult (d=2*200) 0.836 0.800 0.859 0.901
CDitMult (d=3*200) 0.842 0.806 0.865 0.905
CDitMult (d=4%*200) 0.844 0.809 0.867 0.908
CDitMult (d=5*200) 0.846 0.812 0.868 0.908
CDitMult (d=6*200) 0.847 0.813 0.869 0.909
ComplEx (d=200) 0.826 0.790 0.849 0.890
ComplEx (d=400) 0.840 0.806 0.860 0.898
ComplEx (d=600) 0.840 0.805 0.863 0.902
ComplEx (d=800) 0.842 0.802 0.870 0.908
ComplEx (d=1000) 0.842 0.803 0.869 0.909
ComplEx (d=1200) 0.843 0.802 0.871 0.910
CComplEx (d=2%*200) 0.845 0.814 0.864 0.902
CComplEx (d=3*200) 0.851 0.820 0.870 0.906
CComplEx (d=4%*200) 0.856 0.825 0.873 0.909
CComplEx (d=5*200) 0.858 0.827 0.876 0.911
CComplEx (d=6*200) 0.859 0.829 0.877 0.911
QuatE (d=1000) 0.833 0.800 0.859 0.900

Results Results are shown in Table [I] and Table 2] Table [I] presents the
results on FB15k and FB15k-237. As can be seen, multiple models with low
dimension (started with "C" such as CTransE) outperforms single models with
high dimensions. For example, on FB15K, the single ComplEx model with dimen-
sion 800 obtains 0.698, 0.585, 0.789 and 0.864 respectively on MRR, Hist@1,3,10
respectively. Whereas CComplEx with k = 4, d; = 200 obtains 0.705, 0.583, 0.807,
0.882. Therefore, in all metrics except Hits@Ql CComplEx outperforms ComplEx
while both of the models use same number of parameters (4 x 200 = 1 x 800).

5 Conclusion

In this paper, we compare performance of a single model using high dimension
with multiple combined models using low dimension (for each model). Our
experimental evaluation on FB15k and FB15k-237 show that instead of using
a single model with dj, dimension, using k¥ models with d; = dj,/k dimension
results in a higher accuracy.
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