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Abstract. To understand and support teachers’ design practices, re-
searchers in Learning Design manually analyse small sets of design ar-
tifacts produced by teachers. This demands substantial manual work and 
provides a narrow view of the community of teachers behind the designs. 
This paper compares the performance of different Supervised Machine 
Learning (SML) approaches to automatically code datasets of learning 
designs. For this purpose, we extracted a subset of learning designs (i.e., 
their textual content) from Avastusrada and Smartzoos, two mobile 
learning tools. Later, we manually coded it guided by rel-evant theoretical 
models to the context of mobile learning and used it to train and compare 
several combinations of SML models and feature extraction techniques. 
Results show that such models can reliably code learning design datasets 
and could be used to understand the learning design practices of large 
communities of teachers in mobile learning and beyond.

Keywords: Supervised Machine Learning, Learning Design, Learning 
Analytics, Mobile Learning, Contextual Learning

1 Mobile Learning from a Learning Design perspective

Mobile Learning (m-learning) activities promote authentic and contextualized
learning [18, 12]. These activities usually take place across spaces (physical and
digital) and settings (formal, informal, or non-formal) [9, 11]. To enable teach-
ers to design for m-learning, the field of Learning Design (LD) has come up
with several authoring tools [13]. For instance, Smartzoos support the design of
geo-localised learning activities outdoor [14], while with GLUESP-AR teachers
design activities that happen across multiple physical and digital spaces [9].

Designing learning activities is already a strenuous task for teachers. In m-
learning they also have to deal with the complexity of designing across settings
and spaces (previously discussed), together with the need to possess substan-
tial technical and pedagogical competencies, relevant to this context. Mettis
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and Väljataga [8] after manually analysing designs that teachers created in an
m-learning training, concluded that most of the designs were decontextualized
(i.e., not related with the situated learning environment) and scored low on the
cognitive level (i.e., that mainly required from students to remember basic con-
cepts, instead of performing analysis or evaluations). Considering that teachers
should have been trained to produce adequate technology-enhanced designs (in-
cluding m-learning ones) since their pre-service education [8], more research is
needed to first understand and then support teachers’ practices when designing
for m-learning. A first step could be analysing of databases of design artifacts
from existing m-learning tools.

To address this gap, researchers would have to analyse large communities of
teachers that design for m-learning. Existing studies have already automatically
analysed learning designs practices, focusing on (teachers, or students) action
logs, or the structure of the designs (e.g., [3]). Nevertheless, when researchers
want to consider more high-level aspects (e.g., the pedagogical approaches fol-
lowed by teachers), the typical approach has been to manually code the designs
(see, for instance [16]). For large datasets, it would be necessary an automatic
coding strategy, as it is time consuming to follow a manual approach. Therefore,
in this paper we compare different supervised machine learning (SML) models
and features extraction techniques to automatically code datasets of learning de-
signs for m-learning.

We started by compiling a dataset with learning designs from two m-learning
platforms, Avastusrada (avastusrada.ee) and Smartzoos (smartzoos.eu). As a
first step, we considered as input features for the algorithms only the textual
content (in Estonian) of the learning tasks included in the designs. Although,
the design artifacts in these tools also include other metadata that could be
potentially used as features for the SML algorithms (such as different types
of learning tasks and learning resources), these usually are tool-dependent and
would not be useful for platform-independent algorithms that can be later used
to analyse learning designs from multiple tools.

We manually labelled the dataset guided by theoretical models and tax-
onomies, relevant to the context of m-learning and also used in previous stud-
ies that manually labeled m-learning deisngs [8, 18]. These include the Revised
Bloom’s Taxonomy [7], the Inquiry Based Learning (IBL) model [10], and the
categorization of the role of the context in a learning activity [18]. This dataset
(with the textual content as input and the corresponding codes as the output
that had to be predicted) was later used to train and compare the different SML
models and feature extraction techniques (see section 3).

2 Machine Learning as analytics for LD in m-learning

Research in Learning Analytics (LA) has largely used SML to predict learners’
performance [1, 21]. Furthermore, Prieto et al. [15] attempted to use SML to sup-
port researchers, by automatically coding diaries of students’ learning progress.
Yet, the automated analysis of artifacts created by teachers remains an underex-
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plored area. Therefore, this paper presents a comparison of the performance of
different SML approaches, when trained to code datasets of m-learning designs,
guided by theoretical models that are pertinent in the context of m-learning (see
section 3).

Analytics can inform LD practices in different levels: as LA (i.e., informed
based on students data), as design analytics (i.e., informed from traces of the
LD process), or as community analytics (such as metrics about LD practices of a
community of teachers behind a specific m-learning tools) [6]. Few studies reflect
this alignment between LD and LA in m-learning [11]. Cases that explicitly
addressed this alignment, focus mainly on LA for LD [9, 17], while design and
community analytics for LD remain unexplored. This paper aims to explore the
potential of SML techniques to automatically code learning designs. Successful
algorithms could be later used to analyse large databases of designs from multiple
tools, as well as to create systems that provide design and community analytics
in m-learning.

3 Methodology

This study is guided by the following research question (RQ): To what extent
can SML techniques automatically code datasets of m-learning designs, in terms
of IBL phases, context and cognitive level? To respond this question, we con-
ducted an exploratory study that consists of two parts. During the first part we
compiled a dataset of learning tasks (i.e. their textual content), extracted from
existing learning designs in Avastusrada and Smartzoos, which are used by two
complementary communities of teachers. Avastusrada is used in formal settings
(by K-12 schools in Estonia), while Smartzoos in informal, or non-formal ones
(used by zoos in Estonia, Sweden and Finland). The dataset had 1,472 learning
tasks in Estonian, originating from 168 different designs (114 from Avastusrada
and 54 from Smartzoos).

To determine the cognitive level (required from learners) in each learning
task, we coded this dataset using a binary version of the Revised Bloom’s tax-
onomy [7], consisting of: lower-order thinking, representing the two lowest cate-
gories (Remember and Understand); and higher-order thinking representing the
rest (Apply, Analyse, Evaluate, Create). This choice was made to identify tasks
that require students to (at least) apply their knowledge in different learning
situations from tasks that did not (a relevant aspect of Avastusrada and Smart-
zoos). Furthermore, to understand the role played by the situated environment
in the learning designs, we coded each task based on the following categories (in-
spired by [18]):learning in context, i.e., learning happening in a specific situated
learning environment; learning about context, when the situated environment it-
self is the object of learning. Finally, to understand the extent to which IBL
pedagogies (relevant to the context of Avastusrada and Smartzoos) were present
in the learning designs, we used the following phases of the IBL model proposed
by [10]: Conceptualization, during which learners have to come up with a hypoth-
esis, or problem; Investigation that include activities such as experimentation
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and data interpretation; and Conclusion during which learners reflect upon the
results and their implications.

Guided by these theoretical models, we coded the dataset using 6 binary
codes that signaled if a learning task included: higher-order thinking, learning in
context, learning about context, conceptualization, investigation, and conclusion.
As Bloom categories are hierarchical, they are represented by a single code. For
the rest we use a separate code for each category (e.g., a task can have more
than one phase of IBL). The dataset was coded by two master students from the
school of Digital Technologies, Tallinn University. We first conducted a test where
each coder worked with the same subset of 100 tasks and compared the results to
establish a common coding approach. The same procedure was repeated until the
end, during which cases doubtful cases were consulted with the first author of this
paper (see the full coded dataset in bit.ly/ManuallyLabelledDatasetJLA2021).
During the second part of this study we used the dataset to train, evaluate
and compare several common SML models and feature extraction techniques for
natural language processing (for each of binary code in the dataset). We first
preprocessed the textual content (see Figure 1, in green).

Fig. 1. The process of comparing different SML approaches.

Using 80% of the dataset as training and 20% as testing set, we tested a com-
bination of classic SML models and neural networks with different feature extrac-
tors. The first group consisted of classic models, i.e., Logistic Regression (LR),
Naive Bayes (NB), Random Forest (RF), Support Vector Machine (SVM) with
a linear kernel and Gaussian Processes (GP), combined with feature extractors
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such as the pre-trained word2vec in Estonian with 100 embedding dimensions,
both as a continuous bag of words (W2V CBOW) and as a skip-gram (W2V SG),
bag of words (BOW), and bag of words with term-frequency inverse-document-
frequency (TF-IDF BOW). Neural networks included Long Short-Term Memory
Recurrents (LSTM), Convolutionals (CNN) and a mixed model (CNN+LSTM).
These were tested in combination with the word2vec mentioned above, and an
untrained embedding layer. LSTM consisted of a single bidirectional layer, while
CNN was a 1-dimensional layer, both with 64 hidden units. We used early stop-
ping based on the validation loss to avoid overfitting. Finally, we also used the
Estonian version of the Bidirectional Encoder Representations from Transform-
ers (EstBERT) [19], with an AdamW optimizer with 2e-0.5 as the initial learning
rate and a single layer. The process was a stratified 5-fold cross-validation, re-
peated 5 times, based on various classification metrics, used for the comparison
(see Figure 1 below). Algorithms with kappa values (the inter-rater reliability
between the manual and automatic process) lower than 0.65 were not consid-
ered as reliable [20]. Algorithms were written in Python, using Scikit-learn and
Tensorflow packages.

4 Results

This section presents a comparison of the combination of SML models and
feature extractors, guided by Cohen’s kappa. The attached document includes
results for all the metrics (bit.ly/ResultsStep2JLA2021). In Figure 2, we can
see that classic models did not surpass the threshold value for kappa>0.65.
Neural networks performed better, but only EstBERT significantly surpassed
kappa>0.65. The prevalence, which considers the balance of the dataset for
each code (see the horizontal line in 2, where the right side represents balanced
datasets), had a direct influence over the performance of the classic models, but
had no significant influence over the performance of the neural networks.

Fig. 2. Distribution of Cohen’s kappa between human coders and the different combi-
nations of SML models and feature extractors, for the six the codes.
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Fig. 3. Variation of the reliability for all the models with the logarithmic prevalence
of each code.

5 Discussion

Regarding our RQ (the performance of SML approaches when coding datasets of
m-learning designs), we were able to train algorithms based on EstBERT that
for our particular dataset, were reliable on all the six codes (with kappa>0.65).
EstBERT algorithms also performed uniformly well on all the other classifica-
tion metrics that we used. Thus, SML could be used in the future to support
researchers in LD, when analysing large datasets of learning designs. In the
context of m-learning, similar algorithms could be used to analyse the whole
databases of Avastusrada and Smartzoos, providing a case of community ana-
lytics in m-learning [6], as well as enabling large-scale and in-the-wild studies
about the open issue of teachers’ design practices in m-learning [8]. Other m-
learning tools could benefit from the same SML approach, such as GLUESP-AR
[9], or QuestInSitu [17]. Beyond m-learning, our approach could be useful to
analyse LD platforms used by big communities of teachers, such as ILDE [5].

Most of the codes in our dataset did not have a balanced distribution (see
Figure 3), which is typical in qualitative coding tasks. However, EstBERT algo-
rithms performed well with all the codes, despite their prevalence and constitute
an example of dealing with unbalanced datasets (common in education). The
dataset used to train and compare the SML approaches constitutes a limita-
tion for this study as it is not a representative of all the kinds of designs in
m-learning. Also, the manual coding process might have produced biases condi-
tioning the performance of the algorithms. Nevertheless, while in this paper we
present only preliminary results for our exploratory study, further optimizing the
models could produce better performance results. We considered as a threshold
value kappa>0.65. However, various researchers advocate for different threshold
values, or for the inclusion of other metrics (e.g., Shaffer’s rho [4]).

We used as input features the textual content of the learning tasks. In future
work, features such as task type might improve the prediction for tool-specific
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analysis. The design artifacts were in Estonian, a contribution, as few SML
algorithms exist in this language, but also a limitation, as English versions of
word2vec, BERT, etc., are usually pre-trained based on larger amounts of data.

6 Conclusion

In this study, we provide an example of how SML approaches can mimic humans,
in the context of coding datasets of m-learning designs. We compared different
SML models and feature extraction techniques. Models based on EstBERT con-
stantly provided values of kappa>0.65, thus could be used to conduct in-the-wild
studies of how teachers design for m-learning.

Future work will include further steps of optimization for all the models that
were considered in this study. In line with recent trends of providing models that
are transparent to the related stakeholders [2], it is important to further tune-up
the performance of classic models (such as LR) and compare it with black-box
ones (such as the neural networks). Once further optimized, the best performing
algorithms will be used to analyse the learning designs included in Avastusrada
and Smartzoos. A similar approach might be useful to analyse other known LD
tools in m-learning (e.g., QuestInSitu [17], or beyond (e.g., ILDE, [5]).
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