CEUR-WS.org/Vol-3043/poster3.pdf

Monitoring Python Applications With Kieker

Reiner Jung’, Sven Gundlach’, Serafim Simnonov’ and Wilhelm Hasselbring’

'Kiel Unversity, Christian-Albrechts-Platz 4, 24103 Kiel, Germany

Keywords
Application Level Monitoring, Kieker, Instrumentation, Python

Python is a widely used programming for applications, web services, and, especially, in scientific
computing and data science. In the context of our project OceanDSL, which aims to provide
DSLs for ocean system models, we need to comprehend existing scientific software based on
static and dynamic code analysis. Thus, we decided to provide monitoring support for Python
utilizing the existing Kieker analysis toolchain. As the code base is rather extensive, manually
injecting probes is not a viable solution. Thus, our implementation relies on code weaving
approaches.

The Kieker Language Pack for Python follows, in principle, the Kieker architecture for
monitoring with a reduced feature set [1]. It comprises (a) event types, (b) code to control
probes and data storage, (c) probes to instrument the code, and (d) a techniques to introduce
probes into a program without modifying the code manually.

Event types for Python can be generated utilizing the Kieker instrumentation record language
(IRL) which we extended to support Python [2]. Currently, the event types consist, like their
Java counterparts, of a set of constants implementing default values, attributes, a constructor
and a serialization method which utilizes a serialization helper to support multiple formats (cf.
Listing 1). As the language pack is only used to monitor and log events in Python applications,
it does not support features used to deserialize and manage events. However, this can be added
later, if needed.

Listing 1: Simplified OperationExecutionRecord

class OperationExecutionRecord:
__NO_OPERATION_SIGNATURE__

"noOperation”

def __init__(self, operation_signature, trace_id, tin, tout):
self . operation_signature = (self.__NO_OPERATION_SIGNATURE__
if operation_signature is None
else operation_signature)

self.trace_id = trace_id
self.tin = tin
self.tou = tout

SSP’21: Symposium on Software Performance, November 09-10, 2021, Leipzig, Germany
& reiner jung@email.uni-kiel.de (R. Jung); sven.gundlach@email.uni-kiel.de (S. Gundlach);
stu126367@mail.uni-kiel.de (S. Simnonov); hasselbirng@email.uni-kiel.de (W. Hasselbring)
® 0000-0002-5464-8561 (R. Jung); 0000-0003-4060-2754 (S. Gundlach); 0000-0001-6625-4335 (W. Hasselbring)
© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

=] CEUR Workshop Proceedings (CEUR-WS.org)



mailto:reiner.jung@email.uni-kiel.de
mailto:sven.gundlach@email.uni-kiel.de
mailto:stu126367@mail.uni-kiel.de
mailto:hasselbirng@email.uni-kiel.de
https://orcid.org/0000-0002-5464-8561
https://orcid.org/0000-0003-4060-2754
https://orcid.org/0000-0001-6625-4335
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

def serialize (self ,serializer):
serializer .put(self.operation_signature)
serializer .put(self.tin)
serializer .put(self.tout)

Logging, time keeping, and probe control are handled by a monitoring controller utilizing a
writer and a time controller following the Kieker architecture in a simplified adaptation. The
controller provides all the necessary functionality for monitoring probes. The writer controller
supports logging into files and transfer via TCP. The file logging serializes event types following
the Kieker text file format. The TCP logging utilizes the Kieker binary logging format, which is
also used by the Kieker Java implementation and Kieker Language Pack for C and Fortran. The
latter logging feature allows to transfer data to a dedicated logging computer and either store
the log data with the Kieker collector tool (the replacement for the Kieker data bridge) or feed
the information directly into an analysis.

The probes follow the same general structure implementing advices which can be applied
manually or with different methods automatically. We implemented a basic set of probes and
tooling supplemented with documentation. To apply the probes, users can rely on our own
weaving technique which utilizes Python’s own weaving feature. This has the benefit that no
additional libraries must be used. Alternatively, Python aspectlib can be used which provides
convenient functions to weave probes into Python.'

While the Kieker Language Pack for Python is in an early stage, we applied it successfully
to the Kieker bookstore example. The tooling is available on the github page of Kieker.” Our
next steps are to complete the implementation to support trace and data flow monitoring for
Python. Furthermore, we aim to create an installation package for Python supporting pip to
reduce hurdles for users including ourselves, and apply it to various tools used in data science
including Juypter notebooks.

Acknowledgments
Funded by the Deutsche Forschungsgemeinschaft (DFG — German Research Foundation), grant
no. HA 2038/8-1 - 425916241.

References

[1] W. Hasselbring, A. van Hoorn, Kieker: A monitoring framework for software engineering
research, Software Impacts 5 (2020). doi:10.1016/j.simpa.2020.100019.

(2] R.Jung, C. Wulf, Advanced typing for the Kieker instrumentation languages, in: Symposium
on Software Performance 2016, 2016. URL: http://oceanrep.geomar.de/34626/.

! Aspectlib https://pypi.org/project/aspectlib/
’Kieker Language Pack for Python https://github.com/silvergl/kieker-lang-pack-python/


http://dx.doi.org/10.1016/j.simpa.2020.100019
http://oceanrep.geomar.de/34626/
https://pypi.org/project/aspectlib/
https://github.com/silvergl/kieker-lang-pack-python/

