Proving a Conjecture on 8-Distance Coloring of the Infinite Hexagonal Grid ${ }^{\star}$

Sasthi C. Ghosh and Subhasis Koley
Advanced Computing and Microelectronics unit Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
Emails: sasthi@isical.ac.in, subhasis.koley2@gmail.com

Abstract

Given $p \in \mathbb{N}$, a p distance coloring is a coloring $f: V \rightarrow\{1,2, \cdots, n\}$ of the vertices of G such that $f(u) \neq f(v)$ for all pair of vertices u and v in G where $d(u, v)$, the distance between u and v, is at most p. Here $d(u, v)$ is defined as the minimum number of edges required to connect u and v in G. The p distance chromatic number $\lambda^{p}(G)$ of a graph G is the minimum n such that G admits a p distance coloring of G. Such type of distance coloring is relevant when frequency assignment problem is formulated as a graph coloring problem. In the context of frequency assignment problem, sometimes cellular network can be modelled as an infinite hexagonal grid T_{H}. Therefore $\lambda^{p}\left(T_{H}\right)$ has practical relevance. For even $p \geq 8$, it was conjectured by Jacko and Jendrol [Discussiones Mathematicae Graph Theory, 2005] that $\lambda^{p}\left(T_{H}\right)=\left[\frac{3}{8}\left(p+\frac{4}{3}\right)^{2}\right]$ where $[x]$ is an integer, $x \in \mathbb{R}$ and $x-\frac{1}{2}<[x] \leq x+\frac{1}{2}$. In this paper, we prove that $\lambda^{8}\left(T_{H}\right)=33$ which coincides with the conjectured value.

Keywords: Distance coloring • hexagonal grid • lower bound • conjecture

1 Introduction

Assigning frequencies to the communication channels in a communication network is one of the fundamental challenges as frequencies must be allotted in such a way that interference cannot occur during communication. The frequency channel assignment problem (CAP) can be modelled as a graph coloring problem where vertices are represented as users and proximity between vertices can be measured in terms of minimum number of edges between them and color of a vertex represents frequency assigned to the corresponding user [1]. Sometimes CAP is formulated as a variant of graph coloring problem where two vertices at distance at most p cannot have same color. This type of graph coloring is called a p distance coloring of a graph $G(V, E)$. Wegner [2] introduced p distance coloring of G as a coloring $f: V \rightarrow\{1,2, \cdots, n\}$ of the vertices of G such that $f(u) \neq f(v)$ for all pair of vertices u and v in G where $d(u, v) \leq p$. Here $d(u, v)$, the distance between u and v in G, is defined as the minimum number of

[^0]edges required to connect u and v in G. The objective of such coloring problem is to find the p distance chromatic number $\lambda^{p}(G)$ where $\lambda^{p}(G)$ is the minimum n such that G admits a p distance coloring of G. Several authors studied the distance graph coloring problems [7-9]. Sometimes CAP in cellular network can be modelled as a graph coloring problem in infinite regular hexagonal grid or honeycomb grid T_{H}. In Fig. 1, honeycomb representation of T_{H} have been shown. The coordinates of the vertices of T_{H} have also been shown here.

Fig. 1: Honeycomb representation of T_{H} and coordinates of its vertices.

Several authors studied p distance graph coloring for T_{H} [3-6]. When p is odd, the exact value of $\lambda^{p}\left(T_{H}\right)$ has been determined in [5]. But for even p, the exact value of $\lambda^{p}\left(T_{H}\right)$ has not been determined yet [5,7,10,11]. In [5], it was conjectured that for every even $p \geq 8$,

$$
\begin{equation*}
\lambda^{p}\left(T_{H}\right)=\left[\frac{3}{8}\left(p+\frac{4}{3}\right)^{2}\right] \tag{1}
\end{equation*}
$$

($[x]$ is an integer, $x \in \mathbb{R}$ and $x-\frac{1}{2}<[x] \leq x+\frac{1}{2}$) and is still an open problem.
It has been shown in [5] that

$$
\begin{equation*}
\left|T_{H}^{\prime}\left(V^{\prime}, E^{\prime}\right)\right|=\left(\frac{3}{2} p^{2}+\frac{3}{2} p+1\right) \tag{2}
\end{equation*}
$$

where $T_{H}^{\prime}\left(V^{\prime}, E^{\prime}\right)$ is the maximum subgraph of T_{H} such that $d(u, v) \leq 2 p$ for every pair of vertices $u, v \in V^{\prime}$. Using equation (2), a lower bound of $\lambda^{2 p}\left(T_{H}\right)$ was obtained
in [5]. The result is as follows:

$$
\begin{equation*}
\lambda^{2 p}\left(T_{H}\right) \geq\left(\frac{3}{2} p^{2}+\frac{3}{2} p+1\right)+1 \tag{3}
\end{equation*}
$$

equation (3) implies that $\lambda^{8}\left(T_{H}\right) \geq 32$ [5]. But this value is one less than that of the value obtained from equation (1).

Again in [5], it was shown that when $p=4 m$ where m is a positive integer,

$$
\begin{equation*}
\lambda^{p}\left(T_{H}\right) \leq \frac{3}{8}\left(p+\frac{4}{3}\right)^{2}+\frac{1}{3} \tag{4}
\end{equation*}
$$

equation (4) implies that $\lambda^{8}\left(T_{H}\right) \leq 33$. Moreover, using a computer routine that explores all possible colorings of a subgraph of T_{H} with 109 vertices, authors in [5] found that 33 colors were required for the subgraph for 8 distance coloring and this value exactly coincides with the value obtained from the conjecture stated in equation (1) as well as with the upper bound stated in equation (4). In this paper, we prove that $\lambda^{8}\left(T_{H}\right) \geq 33$. Since $\lambda^{8}\left(T_{H}\right) \leq 33$ [5], we get $\lambda^{8}\left(T_{H}\right)=33$, thus answering the conjecture stated in equation (1) positively.

2 Problem statement and key ideas

Definition 1. A vertex with coordinates (i, j) in T_{H} is said to be a right vertex, or x_{r} if it is connected to the vertex with coordinates $(i+1, j)$ by an edge.

A right vertex x_{r} with coordinates (i, j) is adjacent to the vertices having coordinates $(i+1, j),(i, j+1)$ and $(i, j-1)$ but not adjacent to the vertex with coordinates $(i-1, j)$.

Definition 2. A vertex with coordinates (i, j) in T_{H} is said to be a left vertex, or x_{l} if it is connected to the vertex with coordinates $(i-1, j)$ by an edge.

A left vertex x_{l} with coordinates (i, j) is adjacent to the vertices having coordinates $(i-1, j),(i, j+1)$ and $(i, j-1)$ but not adjacent to the vertex with coordinates $(i+1, j)$. In Fig. 2, a right and a left vertex in T_{H} are shown.

Definition 3. A subgraph $D_{x}^{2 p}(p \in \mathbb{N})$ of T_{H} centered at vertex $x \in V\left(T_{H}\right)$ is the maximum ordered vertex induced subgraph of T_{H} such that for each pair of vertices $u, v \in V\left(D_{x}^{2 p}\right), d(u, v) \leq 2 p$ and for every vertex $w \in V\left(D_{x}^{2 p}\right), d(w, x) \leq p$.

In Fig. 3 different $D_{x}^{2 p}$ in T_{H} are shown.

Note that for any right vertex x_{r} and left vertex $x_{l}, D_{x_{r}}^{2 p}$ and $D_{x_{l}}^{2 p}$ are isomorphic. So any property that holds for $D_{x_{r}}^{2 p}$ also holds for $D_{x_{l}}^{2 p}$. Therefore, we will state and prove our results for $D_{x_{r}}^{2 p}$ and these also hold for $D_{x_{l}}^{2 p}$.

Fig. 2: x_{r} and x_{l} are right and left vertices in T_{H}.

Fig. 3: Different $D_{x}^{2 p}$.

Consider a right vertex x_{r} and we assume the coordinates of x_{r} are $(0,0)$. The subgraph $D_{x_{r}}^{16}$ is shown in Fig. 4. Note that there are $3 j$ vertices which are at distance j from x_{r}, where $1 \leq j \leq 8$. In Fig. 4, the $3 j$ vertices are denoted as $v_{1}^{j}, v_{2}^{j}, \cdots, v_{3 j}^{j}$ where $1 \leq j \leq 8$. We now define $\mathcal{F}_{j}=\bigcup_{1 \leq i \leq 3 j}\left\{v_{i}^{j}\right\}$ where $1 \leq j \leq 8$. For $5 \leq q \leq 8$, we define the following sets of vertices.

$$
V_{i-j}^{q}= \begin{cases}\left\{v_{l}^{q}: i \leq l \leq j\right\} & \text { when } i \leq j \\ V_{i-3 q}^{q} \cup V_{1-j}^{q} & \text { when } i>j\end{cases}
$$

3 Results

Consider $V^{\prime}=V\left(D_{x_{r}}^{16}\right) \backslash V\left(D_{x_{r}}^{8}\right)=\mathcal{F}_{5} \cup \mathcal{F}_{6} \cup \mathcal{F}_{7} \cup \mathcal{F}_{8}$. In the following discussion, we investigate how many times at maximum a color used in $D_{x_{r}}^{8}$ can be reused in V^{\prime} and where it can be reused in V^{\prime}.

As $\left|V\left(D_{x_{r}}^{8}\right)\right|=1+\left|\mathcal{F}_{1}\right|+\left|\mathcal{F}_{2}\right|+\left|\mathcal{F}_{3}\right|+\left|\mathcal{F}_{4}\right|=31$, we need 31 distinct colors to color the vertices of $D_{x_{r}}^{8}$ and hence $\lambda^{8}\left(D_{x_{r}}^{8}\right) \geq 31$. In Fig. 4 , we denote the $3 j$ colors of the vertices in \mathcal{F}_{j} as $c_{1}^{j}, c_{2}^{j}, \cdots, c_{3 j}^{j}$, where $1 \leq j \leq 4$. It is evident that color c assigned

Fig. 4: All the vertices v with $1 \leq d\left(v, x_{r}\right) \leq 8$ and color of all the vertices u with $d\left(u, x_{r}\right) \leq 4$ (Color is mentioned within brackets next to the corresponding vertex).
to x_{r} cannot be reused at all in V^{\prime} due to the reuse distance. In subsequent Observations we will state and prove how many times at most the colors $c_{1}^{j}, c_{2}^{j}, \cdots, c_{3 j}^{j}$ can be reused in V^{\prime} and where they can be be reused to attain their maximum reusability.

Observation 1 Each color c_{i}^{1} with $i \in\{1,2,3\}$ can be reused at most three times in V^{\prime}. For maximum reusability, each color c_{i}^{1} must be reused three times in \mathcal{F}_{8}.

Proof. There are three vertices in \mathcal{F}_{1} where the colors c_{i}^{1} with $i \in\{1, \cdots, 3\}$ are used. We first consider the color c_{1}^{1} used in vertex v_{1}^{1}. Observe that c_{1}^{1} can be reused in $R=V_{5-17}^{8}=R_{1} \cup R_{2} \cup R_{3}$ where $R_{1}=V_{5-8}^{8}, R_{2}=V_{9-12}^{8}$ and $R_{3}=V_{13-17}^{8}$ are three disjoint subsets of vertices. Note that every pair of vertices in R_{1} are at distance at most 8 , and the same is true for R_{2} and R_{3}. Hence c_{1}^{1} can be reused at most three times in V^{\prime}, once in R_{1}, once in R_{2} and once in R_{3}. Note that v_{1}^{1} and v_{3}^{1} are symmetric with respect to x_{r} where c_{1}^{1} and c_{3}^{1} are used respectively. Hence result obtained regarding how many times the color c_{1}^{1} can be reused in V^{\prime} also holds for c_{3}^{1}. So we are remaining to consider the color c_{2}^{1} used in vertex v_{2}^{1}. For c_{2}^{1}, the corresponding sets R, R_{1}, R_{2} and R_{3} can easily be obtained as $R=V_{13-1}^{8}, R_{1}=V_{13-16}^{8}, R_{2}=V_{17-21}^{8}$ and $R_{3}=V_{22-1}^{8}$ respectively. Hence c_{2}^{1} can also be reused at most three times in V^{\prime}.

It is evident that each c_{i}^{1} with $i \in\{1,2,3\}$ can only be reused in \mathcal{F}_{8}. Hence for maximum reusability, each color c_{i}^{1} must be reused three times in \mathcal{F}_{8}.

Observation 2 Each color c_{i}^{2} with $i \in\{1, \cdots, 6\}$ can be reused at most two times in V^{\prime}. For maximum reusability, each color c_{i}^{2} must be reused two times in $\mathcal{F}_{7} \cup \mathcal{F}_{8}$.

Proof. There are six vertices in \mathcal{F}_{2} where the colors c_{i}^{2} with $i \in\{1, \cdots, 6\}$ are used. Observe that the vertices v_{1}^{2} and v_{4}^{2} are symmetric with respect to x_{r} where c_{1}^{2} and c_{4}^{2} are used respectively. Similar fact holds for c_{2}^{2} and $c_{3}^{2} ; c_{5}^{2}$ and c_{6}^{2}. Hence results obtained regarding how many times the colors c_{1}^{2}, c_{2}^{2} and c_{5}^{2} can be reused in V^{\prime} also hold for c_{4}^{2}, c_{3}^{2} and c_{6}^{2} respectively. Therefore we need to consider the colors c_{1}^{2}, c_{2}^{2} and c_{5}^{2} only.

- We will first consider the color c_{1}^{2}. It can be reused in $R=V_{8-15}^{7} \cup V_{9-17}^{8}$. Observe that $R=R_{1} \cup R_{2}$ where $R_{1}=V_{8-11}^{7} \cup V_{9-12}^{8}$ and $R_{2}=V_{12-15}^{7} \cup V_{13-17}^{8}$ are two vertex disjoint subsets. Note that there does not exist any pair of vertices in R_{1} at distance 9 or more. Same fact holds for R_{2}. Hence c_{1}^{2} can be reused at most two times in V^{\prime}, once in R_{1} and once in R_{2}. It is evident that each c_{i}^{2} with $i \in\{1, \cdots, 6\}$ can only be reused in $\mathcal{F}_{7} \cup \mathcal{F}_{8}$. Hence c_{1}^{2} must be reused two times in $\mathcal{F}_{7} \cup \mathcal{F}_{8}$ to attain its maximum reusability. Similar result holds for c_{4}^{2} also.
For the colors c_{2}^{2} and c_{5}^{2} the sets R, R_{1} and R_{2} are stated below.
$-c_{2}^{2}: R=V_{12-19}^{7} \cup V_{13-21}^{8}=R_{1} \cup R_{2} ; R_{1}=V_{12-15}^{7} \cup V_{13-17}^{8} ; R_{2}=V_{16-19}^{7} \cup$ V_{18-21}^{8}.
$-c_{5}^{2}: R=V_{1-8}^{7} \cup V_{1-9}^{8}=R_{1} \cup R_{2} ; R_{1}=V_{1-4}^{7} \cup V_{1-4}^{8} ; R_{2}=V_{5-8}^{7} \cup V_{5-9}^{8}$.
Observation 3 Each color c_{i}^{3} with $i \in\{1, \cdots, 9\}$ can be reused at most three times in V^{\prime}. For maximum reusability, each c_{i}^{3} with $i \in\{2,5,8\}$ must be reused at least two times in $\mathcal{F}_{7} \cup \mathcal{F}_{8}$ and each c_{i}^{3} with $i \in\{1, \cdots, 9\} \backslash\{2,5,8\}$ must be reused at least once in $\mathcal{F}_{7} \cup \mathcal{F}_{8}$.

Proof. Note that the pair of colors c_{1}^{3} and c_{6}^{3} are assigned to the vertices v_{1}^{3} and v_{6}^{3} which are symmetric with respect to x_{r}. Similar fact holds for c_{2}^{3} and $c_{5}^{3} ; c_{3}^{3}$ and $c_{4}^{3} ; c_{9}^{3}$ and c_{7}^{3}. Hence results obtained regarding how many times the colors $c_{1}^{3}, c_{2}^{3}, c_{3}^{3}$ and c_{9}^{3} can be reused in V^{\prime} also hold for $c_{6}^{3}, c_{5}^{3}, c_{4}^{3}$ and c_{7}^{3} respectively. Therefore, we need to consider the colors $c_{1}^{3}, c_{2}^{3}, c_{3}^{3}, c_{9}^{3}$ only. We will consider the case for the color c_{8}^{3} separately.

- First consider the color c_{1}^{3}. It can be reused in $R=V_{7-13}^{6} \cup V_{8-15}^{7} \cup V_{5-18}^{8}=$ $R_{1} \cup R_{2} \cup R_{3}$ where $R_{1}=V_{8-8}^{7} \cup V_{5-9}^{8}, R_{2}=V_{7-10}^{6} \cup V_{9-12}^{7} \cup V_{10-13}^{8}$ and $R_{3}=V_{11-13}^{6} \cup V_{13-15}^{7} \cup V_{14-18}^{8}$ are three disjoint subsets of vertices. Observe that every pair of vertices belonging to the same subset are at distance at most 8. Hence c_{1}^{3} can be reused at most three times, once in $R_{1} \subset \mathcal{F}_{7} \cup \mathcal{F}_{8}$, once in R_{2} and once in R_{3}. To reuse c_{1}^{3} three times in V^{\prime}, it must be reused at least once at $\mathcal{F}_{7} \cup \mathcal{F}_{8}$. Similar result holds for c_{6}^{3} also.
For each of the colors $c_{2}^{3}, c_{3}^{3}, c_{9}^{3}$ and c_{8}^{3} the set R and its corresponding partitions R_{1}, R_{2}, R_{3} are as stated below.
$-c_{2}^{3}: R=V_{10-13}^{6} \cup V_{12-15}^{7} \cup V_{9-21}^{8}=R_{1} \cup R_{2} \cup R_{3} ; R_{1}=V_{9-12}^{8} ; R_{2}=V_{10-13}^{6} \cup$ $V_{12-15}^{7} \cup V_{13-16}^{8} ; R_{3}=V_{17-21}^{8}$; To reuse c_{2}^{3} three times, it must be used once in $R_{1} \subset \mathcal{F}_{8} \subset \mathcal{F}_{7} \cup \mathcal{F}_{8}$, once in R_{2} and once in $R_{3} \subset \mathcal{F}_{8} \subset \mathcal{F}_{7} \cup \mathcal{F}_{8}$. Hence to reuse c_{2}^{3} three times, it must be used at least two times in $\mathcal{F}_{7} \cup \mathcal{F}_{8}$. Similar result holds for c_{5}^{3} also.
- $c_{3}^{3}: R=V_{10-16}^{6} \cup V_{12-19}^{7} \cup V_{12-1}^{8}=R_{1} \cup R_{2} \cup R_{3} ; R_{1}=V_{10-12}^{6} \cup V_{12-14}^{7} \cup V_{12-16}^{8}$; $R_{2}=V_{13-16}^{6} \cup V_{15-18}^{7} \cup V_{17-20}^{8} ; R_{3}=V_{19-19}^{7} \cup V_{21-1}^{8}$; To reuse c_{3}^{3} three times, it must be used once in R_{1}, once in R_{2} and once in $R_{3} \subset \mathcal{F}_{7} \cup \mathcal{F}_{8}$. Hence to reuse c_{3}^{3} three times, it must be used at least once in $\mathcal{F}_{7} \cup \mathcal{F}_{8}$. Similar result holds for c_{4}^{3} also.
$-c_{9}^{3}: R=V_{4-10}^{6} \cup V_{5-12}^{7} \cup V_{4-17}^{8}=R_{1} \cup R_{2} \cup R_{3} ; R_{1}=V_{4-6}^{6} \cup V_{5-7}^{7} \cup V_{4-8}^{8}$; $R_{2}=V_{7-10}^{6} \cup V_{8-11}^{7} \cup V_{9-12}^{8} ; R_{3}=V_{12-12}^{7} \cup V_{13-17}^{8}$; To reuse c_{9}^{3} three times, it must be used once in R_{1}, once in R_{2} and once in $R_{3} \subset \mathcal{F}_{7} \cup \mathcal{F}_{8}$. Hence to reuse c_{9}^{3} three times, it must be used at least once in $\mathcal{F}_{7} \cup \mathcal{F}_{8}$. Similar result holds for c_{7}^{3} also.
- c_{8}^{3} : at $R=V_{4-7}^{6} \cup V_{5-8}^{7} \cup V_{1-13}^{8}=R_{1} \cup R_{2} \cup R_{3} ; R_{1}=V_{1-4}^{8} ; R_{2}=V_{4-7}^{6} \cup$ $V_{5-8}^{7} \cup V_{5-9}^{8} ; R_{3}=V_{10-13}^{8}$; To reuse c_{8}^{3} three times, it must be used once in $R_{1} \subset \mathcal{F}_{8} \subset \mathcal{F}_{7} \cup \mathcal{F}_{8}$, once in R_{2} and once in $R_{3} \subset \mathcal{F}_{8} \subset \mathcal{F}_{7} \cup \mathcal{F}_{8}$. Hence to reuse c_{8}^{3} three times, it must be used at least two times in $\mathcal{F}_{7} \cup \mathcal{F}_{8}$.

Observation 4 Each color c_{i}^{4} with $i \in\{1, \cdots, 12\}$ can be reused at most three times in V^{\prime}. For maximum reusability, each c_{i}^{4} with $i \in\{1, \cdots, 12\}$ must be reused at least two times in $\mathcal{F}_{7} \cup \mathcal{F}_{8}$.

Proof. Note that the colors c_{1}^{4} and c_{7}^{4} are used at v_{1}^{4} and v_{7}^{4} respectively which are symmetric with respect to x_{r}. Similar fact also hold for c_{2}^{4} and $c_{6}^{4} ; c_{3}^{4}$ and $c_{5}^{4} ; c_{8}^{4}$ and c_{12}^{4}; c_{9}^{4} and c_{11}^{4}. Hence result obtained regarding how many times the colors $c_{1}^{4}, c_{2}^{4}, c_{3}^{4}, c_{8}^{4}$ and c_{9}^{4} can be reused in V^{\prime} are same for the colors $c_{7}^{4}, c_{6}^{4}, c_{5}^{4}, c_{12}^{4}$ and c_{11}^{4} respectively. Therefore we need to consider the colors $c_{1}^{4}, c_{2}^{4}, c_{3}^{4}, c_{8}^{4}$ and c_{9}^{4} only. We will consider the remaining two colors c_{4}^{4} and c_{10}^{4} separately.

- We first consider the color c_{1}^{4}. It can be reused at $R=V_{6-11}^{5} \cup V_{7-13}^{6} \cup V_{7-16}^{7} \cup$ $V_{8-18}^{8}=R_{1} \cup R_{2} \cup R_{3}$ where $R_{1}=V_{6-8}^{5} \cup V_{7-9}^{6} \cup V_{7-10}^{7} \cup V_{8-11}^{8}, R_{2}=$
$V_{9-11}^{5} \cup V_{10-13}^{6} \cup V_{11-14}^{7} \cup V_{12-16}^{8}$ and $R_{3}=V_{15-16}^{7} \cup V_{17-18}^{8}$ are three disjoint subsets. Observe that every pair of vertices belonging to the same subset are at distance at most 8 . Hence c_{1}^{4} can be reused at most three times, once in R_{1}, once in R_{2} and once in R_{3}.
Observe that c_{1}^{4} can be reused two times in $\mathcal{F}_{5} \cup \mathcal{F}_{6}$ only when c_{1}^{4} is used once in $u \in V_{6-8}^{5} \cup V_{7-9}^{6} \subset R_{1}$ and once in $v \in V_{9-11}^{5} \cup V_{10-13}^{6} \subset R_{2}$ such that $d(u, v) \geq 9$. Note that for any such (u, v) pair, there does not exist any $w \in R_{3}$ such that $d(u, w) \geq 9$ and $d(v, w) \geq 9$. That is, in that case, c_{1}^{4} cannot be reused once more in R_{3}. This implies that for maximum reusability, c_{1}^{4} can be reused at most once in $\mathcal{F}_{5} \cup \mathcal{F}_{6}$. Hence c_{1}^{4} must be used at least two times in $\mathcal{F}_{7} \cup \mathcal{F}_{8}$ to attain its maximum reusability. Similar result holds for c_{7}^{4} also.
For each of the colors $c_{2}^{4}, c_{3}^{4}, c_{4}^{4}, c_{8}^{4}, c_{9}^{4}$ and c_{10}^{4} the set R and its corresponding partitions R_{1}, R_{2}, R_{3} are stated below.
$-c_{2}^{4}: R=V_{9-11}^{5} \cup V_{10-13}^{6} \cup V_{8-19}^{7} \cup V_{9-21}^{8}=R_{1} \cup R_{2} \cup R_{3}$;
$R_{1}=V_{8-11}^{7} \cup V_{9-12}^{8} ; R_{2}=V_{9-11}^{5} \cup V_{10-13}^{6} \cup V_{12-15}^{7} \cup V_{13-17}^{8} ; R_{3}=V_{16-19}^{7} \cup$ V_{18-21}^{8};
To reuse c_{2}^{4} three times, it must be reused once in $R_{1} \subset \mathcal{F}_{7} \cup \mathcal{F}_{8}$, once in R_{2} and once in $R_{3} \subset \mathcal{F}_{7} \cup \mathcal{F}_{8}$ and hence it must be reused at least two times in $\mathcal{F}_{7} \cup \mathcal{F}_{8}$. Similar result holds for c_{6}^{4} also.
$-c_{3}^{4}: R=V_{9-14}^{5} \cup V_{10-16}^{6} \cup V_{11-20}^{7} \cup V_{12-22}^{8}=R_{1} \cup R_{2} \cup R_{3}$;
$R_{1}=V_{9-11}^{5} \cup V_{10-13}^{6} \cup V_{11-14}^{7} \cup V_{12-16}^{8} ; R_{2}=V_{15-16}^{7} \cup V_{17-18}^{8} ; R_{3}=V_{12-14}^{5} \cup$ $V_{14-16}^{6} \cup V_{17-20}^{7} \cup V_{19-22}^{8}$;
Observe that c_{3}^{4} can be reused two times in $\mathcal{F}_{5} \cup \mathcal{F}_{6}$ only when c_{3}^{4} is used once in $u \in V_{9-11}^{5} \cup V_{10-13}^{6} \subset R_{1}$ and once in $v \in V_{12-14}^{5} \cup V_{14-16}^{6} \subset R_{3}$ such that $d(u, v) \geq 9$. Note that for any such (u, v) pair, there does not exist any $w \in R_{2}$ such that $d(u, w) \geq 9$ and $d(v, w) \geq 9$. That is, in that case, c_{3}^{4} cannot be reused once more in R_{2}. This implies that for maximum reusability, c_{1}^{4} can be reused at most once in $\mathcal{F}_{5} \cup \mathcal{F}_{6}$. Hence c_{3}^{4} must be used at least two times in $\mathcal{F}_{7} \cup \mathcal{F}_{8}$ to attain its maximum reusability. Similar result holds for c_{5}^{4} also.
$-c_{4}^{4}: R=V_{11-14}^{5} \cup V_{13-16}^{6} \cup V_{12-1}^{7} \cup V_{13-1}^{8}=R_{1} \cup R_{2} \cup R_{3}$.
$R_{1}=V_{12-15}^{7} \cup V_{13-17}^{8} ; R_{2}=V_{11-14}^{5} \cup V_{13-16}^{6} \cup V_{16-18}^{7} \cup V_{18-20}^{8} ; R_{3}=V_{19-1}^{7} \cup$ V_{21-1}^{8};
To reuse c_{4}^{4} three times, it must be reused once in $R_{1} \subset \mathcal{F}_{7} \cup \mathcal{F}_{8}$, once in R_{2} and once in $R_{3} \subset \mathcal{F}_{7} \cup \mathcal{F}_{8}$ and hence it must be reused at least two times in $\mathcal{F}_{7} \cup \mathcal{F}_{8}$ to attain its maximum reusability.
$-c_{8}^{4}: R=V_{1-4}^{5} \cup V_{1-4}^{6} \cup V_{19-8}^{7} \cup V_{21-9}^{8}=R_{1} \cup R_{2} \cup R_{3}$;
$R_{1}=V_{19-1}^{7} \cup V_{21-1}^{8} ; R_{2}=V_{1-4}^{5} \cup V_{1-4}^{6} \cup V_{2-4}^{7} \cup V_{2-4}^{8} ; R_{3}=V_{5-8}^{7} \cup V_{5-9}^{8}$;
To reuse c_{8}^{4} three times, it must be reused once in $R_{1} \subset \mathcal{F}_{7} \cup \mathcal{F}_{8}$, once in $R_{3} \subset$ $\mathcal{F}_{7} \cup \mathcal{F}_{8}$ and once in R_{2} and hence it must be reused at least two times in $\mathcal{F}_{7} \cup \mathcal{F}_{8}$ to attain its maximum reusability. Similar result holds for c_{12}^{4} also.
$-c_{9}^{4}: R=V_{1-6}^{5} \cup V_{1-7}^{6} \cup V_{21-9}^{7} \cup V_{24-10}^{8}=R_{1} \cup R_{2} \cup R_{3}$;
$R_{1}=V_{1-3}^{5} \cup V_{1-3}^{6} \cup V_{21-4}^{7} \cup V_{24-3}^{8} ; R_{2}=V_{5-5}^{7} \cup V_{4-5}^{8} ; R_{3}=V_{4-6}^{5} \cup V_{4-7}^{6} \cup$ $V_{6-9}^{7} \cup V_{6-10}^{8}$;
Observe that c_{9}^{4} can be reused two times in $\mathcal{F}_{5} \cup \mathcal{F}_{6}$ only when c_{9}^{4} is used once in $u \in V_{1-3}^{5} \cup V_{1-3}^{6} \subset R_{1}$ and once in $v \in V_{4-6}^{5} \cup V_{4-7}^{6} \subset R_{3}$ such that $d(u, v) \geq 9$. Note that for any such (u, v) pair, there does not exist any $w \in R_{2}$ such that
$d(u, w) \geq 9$ and $d(v, w) \geq 9$. That is, in that case, c_{9}^{4} cannot be reused once more in R_{2}. This implies that for maximum reusability, c_{9}^{4} can be reused at most once in $\mathcal{F}_{5} \cup \mathcal{F}_{6}$. Hence c_{9}^{4} must be used at least two times in $\mathcal{F}_{7} \cup \mathcal{F}_{8}$ to attain its maximum reusability. Similar result holds for c_{11}^{4} also.
$-c_{10}^{4}: R=V_{4-6}^{5} \cup V_{4-7}^{6} \cup V_{1-12}^{7} \cup V_{1-13}^{8}=R_{1} \cup R_{2} \cup R_{3}$;
$R_{1}=V_{1-4}^{7} \cup V_{1-4}^{8} ; R_{2}=V_{4-6}^{5} \cup V_{4-7}^{6} \cup V_{5-8}^{7} \cup V_{5-9}^{8} ; R_{3}=V_{9-12}^{7} \cup V_{10-13}^{8}$;
To reuse c_{10}^{4} three times, it must be reused once in $R_{1} \subset \mathcal{F}_{7} \cup \mathcal{F}_{8}$, once in R_{2} and once in $R_{3} \subset \mathcal{F}_{7} \cup \mathcal{F}_{8}$ and hence it must be reused at least two times at $\mathcal{F}_{7} \cup \mathcal{F}_{8}$.

Now we investigate whether the colors used in $D_{x_{r}}^{8}$ are sufficient to color the vertices of V^{\prime} or new color/s is/are to be introduced to color them. Note that if new color/s is/are necessary then the required number of new color/s will depend on the number of vertices of V^{\prime} which cannot be colored with the colors used in $D_{x_{r}}^{8}$ and how many times at maximum a new color can be used in V^{\prime}. In following Observation, we first state that how many times at maximum a color not appearing in $D_{x_{r}}^{8}$ can be used in V^{\prime} and then based on this result, in Theorem 1, we finally state the minimum number of colors required to color the vertices of $D_{x_{r}}^{16}$.

Observation 5 A color c_{n} not appearing in $D_{x_{r}}^{8}$ can be used at most five times in V^{\prime}.
Proof. The color c_{n} can be used in $V^{\prime}=\mathcal{F}_{5} \cup \mathcal{F}_{6} \cup \mathcal{F}_{7} \cup \mathcal{F}_{8}=V_{1-24}^{8} \cup V_{1-21}^{7} \cup V_{1-18}^{6} \cup$ V_{1-15}^{5}. Observe that V^{\prime} can be partitioned into six disjoint subsets $R_{1}=V_{21-1}^{8} \cup$ $V_{19-1}^{7} \cup V_{16-1}^{6} \cup V_{14-1}^{5}, R_{2}=V_{17-20}^{8} \cup V_{15-18}^{7} \cup V_{13-15}^{6} \cup V_{11-13}^{5}, R_{3}=V_{12-16}^{8} \cup$ $V_{11-14}^{7} \cup V_{9-12}^{6} \cup V_{8-10}^{5}, R_{4}=V_{7-11}^{8} \cup V_{7-10}^{7} \cup V_{5-8}^{6} \cup V_{5-7}^{5}, R_{5}=V_{2-6}^{8} \cup V_{2-5}^{7} \cup$ $V_{2-4}^{6} \cup V_{2-4}^{5}$ and $R_{6}=V_{6-6}^{7}$ where every pair of vertices in a subset is at most distance 8 apart. If c_{n} is not used in v_{6}^{7}, the only vertex in R_{6}, then c_{n} can be used at most five times in V^{\prime}. In other words, to use c_{n} six times in V^{\prime}, c_{n} must be used in v_{6}^{7}. If c_{n} is used in v_{6}^{7} then the set of vertices where c_{n} can be reused is $R^{\prime}=V_{11-2}^{8} \cup$ $V_{11-1}^{7} \cup V_{9-1}^{6} \cup V_{9-15}^{5}$. Now observe that R^{\prime} can be partitioned into four disjoint subsets $R_{1}^{\prime}=V_{11-15}^{8} \cup V_{11-13}^{7} \cup V_{9-12}^{6} \cup V_{9-10}^{5}, R_{2}^{\prime}=V_{16-19}^{8} \cup V_{14-18}^{7} \cup V_{13-15}^{6} \cup V_{11-13}^{5}$, $R_{3}^{\prime}=V_{20-24}^{8} \cup V_{19-21}^{7} \cup V_{16-1}^{6} \cup V_{14-15}^{5}$ and $R_{4}^{\prime}=V_{1-2}^{8} \cup V_{1-1}^{7}$ where every pair of vertices in a subset is at most distance 8 apart. This implies that c_{n} can be used at most five times in V^{\prime} regardless of whether c_{n} is used or not used in v_{6}^{7}.

Now we state and prove our main theorem.
Theorem 1. $\lambda^{8}\left(T_{H}\right) \geq 33$.
Proof. As $\left|V\left(D_{x_{r}}^{8}\right)\right|=31$ and $\left|V\left(D_{x_{r}}^{16}\right)\right|=109,(109-31)=78$ vertices are to be colored with the colors from $c_{1}^{j}, c_{2}^{j}, \cdots, c_{3 j}^{j}$, where $1 \leq j \leq 4$ (Note that color c of x_{r} cannot be reused in $D_{x_{r}}^{16}$ as any vertex in $D_{x_{r}}^{16}$ is at distance at most 8 from x_{r}). From Observation 1, Observation 2, Observation 3 and Observation 4, using these colors we can color at most $(\underbrace{(3 \times 3)}_{c_{i}^{1}, i \in\{1,2,3\}}+\underbrace{(6 \times 2)}_{c_{i}^{2}, i \in\{1,2, \cdots, 6\}}+\underbrace{(9 \times 3)}_{c_{i}^{3}, i \in\{1,2, \cdots, 9\}}+\underbrace{(12 \times 3)}_{c_{i}^{4}, i \in\{1,2, \cdots, 12\}})=84$ vertices in V^{\prime} if each of them are reused with their maximum potential of reusability.

As discussed in Observation 1, all $c_{i}^{1}, i \in\{1,2,3\}$ must be reused three times in \mathcal{F}_{8} to attain their maximum reusability in V^{\prime}; Hence all $c_{i}^{1} \mathrm{~s}, i \in\{1,2,3\}$ together must
occupy 9 vertices in \mathcal{F}_{8} here. As discussed in Observations 2, all $c_{i}^{2}, i \in\{1,2, \cdots, 6\}$ must be reused two times in $\mathcal{F}_{7} \cup \mathcal{F}_{8}$ to attain their maximum reusability; Hence all $c_{i}^{2} \mathrm{~s}, i \in\{1,2, \cdots, 6\}$ together must occupy 12 vertices in $\mathcal{F}_{8} \cup \mathcal{F}_{7}$ here. As discussed in Observations 3, each of c_{2}^{3}, c_{5}^{3} and c_{8}^{3} must be used at least two times in $\mathcal{F}_{7} \cup \mathcal{F}_{8}$ to attain their maximum reusability and each of $c_{i}^{3}, i \in\{1,2, \cdots, 9\} \backslash\{2,5,8\}$ must be reused at least once in $\mathcal{F}_{7} \cup \mathcal{F}_{8}$ to attain their maximum reusability. So, all $c_{i}^{3} \mathrm{~s}, i \in$ $\{1,2, \cdots, 9\}$ together must occupy at least 12 vertices in $\mathcal{F}_{7} \cup \mathcal{F}_{8}$ here. As discussed in Observations 4, all $c_{i}^{4}, i \in\{1,2, \cdots, 12\}$ must be reused at least two times in $\mathcal{F}_{7} \cup \mathcal{F}_{8}$ to attain their maximum reusability. So, all $c_{i}^{4} \mathrm{~s}, i \in\{1,2, \cdots, 12\}$ together must occupy at least 24 vertices in $\mathcal{F}_{7} \cup \mathcal{F}_{8}$ here. Therefore, to satisfy the maximum reusability of each color used in $D_{x_{r}}^{8}$, total positions required at $\mathcal{F}_{7} \cup \mathcal{F}_{8}$ is at least $9+12+12+24=57$. However, total positions available at $\mathcal{F}_{7} \cup \mathcal{F}_{8}$ is $21+24=45$ only. Since two or more colors cannot be given at the same vertex, these colors together must loose the potential of maximum reusability by at least $57-45=12$ in V^{\prime}. Hence they together can color maximum $(84-12)=72$ vertices in V^{\prime}. Since V^{\prime} has 78 vertices, new color/s must be needed to color at least $(78-72)=6$ vertices of V^{\prime}. From observation 5, a new color can color at most five vertices in V^{\prime}. So at least two new colors are required to color these six vertices. Since 31 distinct colors are required for $D_{x_{r}}^{8}$, at least $(31+2)=33$ colors are required for $D_{x_{r}}^{16}$. Hence $\lambda^{8}\left(D_{x_{r}}^{16}\right) \geq 33$.

As for any left vertex $x_{l}, D_{x_{r}}^{16}$ and $D_{x_{l}}^{16}$ are isomorphic, so $\lambda^{8}\left(D_{x_{l}}^{16}\right) \geq 33$. As $D_{x_{r}}^{16}$ and $D_{x_{l}}^{16}$ are subgraphs of T_{H}, we conclude that $\lambda^{8}\left(T_{H}\right) \geq 33$. Hence the proof.

4 Conclusion

In our work we show that $\lambda^{p}\left(T_{H}\right) \geq 33$ and this exactly coincides with the value obtained from the conjecture and upper bound of $\lambda^{p}\left(T_{H}\right)$ as obtained in [5] when $p=8$. Exact value of $\lambda^{p}\left(T_{H}\right)$ for even $p>8$ is still unknown and determining it is an interesting problem for future work.

References

1. W. K. Hale, Frequency assignment: Theory and applications, Proc. IEEE, 68 (1980), pp.1497-1514.
2. G. Wegner, Graphs with given diameter and a colouring problem(Preprint, University of Dortmund, 1977).
3. A. A. Bertossi, M. C. Pinotti, R. Rizzi and A. M. Shende, Channel assignment in honeycomb networks, Theoretical Computer Science, vol. 2841, pp. 150-162, 2003.
4. A. A. Bertossi, M. C. Pinotti, R. Rizzi and A. M. Shende, Channel assignment for interference avoidance in honeycomb wireless networks, Journal of Parallel and Distributed Computing, vol. 64, pp. 1329-1344, 2004.
5. P. Jacko, S. Jendrol, Distance coloring of the hexagonal lattice, Discussiones Mathematicae Graph Theory, vol. 25, pp. 151-166, 2005.
6. S. Nandi, N. Panigrahy, M. Agarwal, S. C. Ghosh and S. Das, Efficient assignment for cellular networks modeled as honeycomb grid, Proceedings of the 15 th Italian Conference on Theoretical Computer Science, 2014, pp. 183-295.
7. F. Kramer, H. Kramer, A survey on the distance-colouring of graphs, Discrete Mathematics, vol. 308(2-3), pp. 422-426, 2008.
8. Sandip Das, Sasthi C. Ghosh, Soumen Nandi, Sagnik Sen, A lower bound technique for radio k-coloring, Discret. Math, vol.340(5), pp. 855-861, 2017.
9. Bostjan Bresar, Jasmina Ferme, Sandi Klavzar, Douglas F. Rall, A survey on packing colorings, Discuss. Math. Graph Theory vol. 40(4), pp. 923-970, 2020.
10. W. Goddard and H. Xu, A note on S-packing colorings of lattices, Discrete Applied Mathematics, vol. 166, pp. 255-262, 2014.
11. N. Gastineau, H. Kheddouci and O. Togni, Subdivision into i-packings and S-packing chromatic number of some lattices, Ars Mathematica Contemporanea, vol. 9, pp. 321-344, 2015.

[^0]: * Copyright (c) 2021 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

