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Abstract. Unsupervised Domain Adaptation (UDA) bridges the gap
between a labelled source domain and an unlabelled target domain. In
this paper, we improve adaptation by guiding the model with actively
annotated target data. This problem, named Active Domain Adapta-
tion (ADA) is of practical interest as it is sometimes possible to anno-
tate a small budget of target data in many applications. We introduce
Stochastic adversarial gradient embedding (Sage), an embedding for es-
timating the impact of annotating a target sample on adaptation. Sage
measures the variation of the transferability loss gradient, before and af-
ter annotation. Additionally, we investigate various procedures for incor-
porating a small subset of labelled target samples when learning domain
invariant representations. Our experiments on challenging benchmarks
demonstrate that a small effort of active annotation with Sage improves
adaptation substantially. Importantly, with a comparable labelling bud-
get, Sage performs better than its semi-supervised counterpart while
having more realistic assumptions.

Keywords: Domain Adaptation · Active Learning · Invariant Repre-
sentations.

1 Introduction

When provided with a large amount of labelled data, deep neural networks have
dramatically improved the state-of-the-art in various applications [19]. How-
ever, when deployed in the real world, where data may slightly differ from the
training data, deep models often fail to generalize out of the training distribu-
tion [5]. Nevertheless, deep nets can learn data representations transferable to
new tasks or new domains if some labelled data from the new distribution are
available [36]. Acquiring a sufficient amount of labelled data is often impossi-
ble, and large scale annotation is often cost-prohibitive. In contrast, unlabelled
data are much more convenient to obtain. This observation has motivated the
field of Unsupervised Domain Adaptation (UDA) [23,26] for bridging the gap
between a labelled source domain and an unlabelled target domain. Learning
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Fig. 1. Effect of annotation of a target sample selected by Sage (best viewed in colors).
Binary classification problem (• vs ?) where source samples are blue and target samples
are orange. Before annotation, the class-level alignment is not satisfactory leading to
a potential negative transfer (poorly aligned target samples tagged as 1, 2 and 3). We
estimate which sample should be primarily annotated by measuring the variation of
the representations’ transferability gradient, before and after annotation. We observe
the highest variation is obtained for target sample 3, which is sent to an oracle. The
oracle annotation returns class ?, validating the suspicion of negative transfer. This
leads to an update of the decision boundary, which pushes 1, 2, and 3 into class ?,
resulting in a better class-level alignment of representations.

domain Invariant Representations has led to significant progress [13,21,22]. By
fooling a discriminator trained to separate the source from the target domain,
the feature extractor removes domain-specific information from representations.
Thus, a classifier trained from those representations with source labelled data is
expected to perform reasonably well in the target domain [6].

However, those methods perform significantly worse than their fully su-
pervised counterparts. To this purpose, Semi-Supervised Domain Adaptation
(SSDA) has been studied in [31] through a Mini-Max Entropy objective (MME).
Nevertheless, assuming that at least one target labelled sample represents a class,
thus involving information about target labels, SSDA is built on assumptions
that are unlikely to be met in practice. A more realistic scenario would be to
guide adaptation by selecting for annotation a pool target unlabelled instances.
This new paradigm referred to as Active Domain Adaptation (ADA), is often
encountered in real-world applications. To our knowledge, only a few prior works
address ADA [9,27,30,34]. In particular, the recent work of Su et al. [34] is the
first that uses domain adversarial learning for Active Learning (AL).

In this paper, we address ADA reserving the annotation budget for target
samples for which their annotations are likely to guide adaptation. In contrast
to [34], which selects a diverse set of poorly adapted target samples based on
a classical criterion of uncertainty, we estimate the impact of annotation on
the representations’ transferability. To this purpose, we introduce Stochastic
adversarial gradient embedding (Sage), an embedding of target samples, whose
norm estimates precisely this impact. Our approach also promotes diversity in
the annotation. We follow [3] and select target samples for which Sage spans on
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diverse directions using the k-means++ initialization [1]. Since access to some
labelled data from the target domain brings us back to SSDA, we investigate
the role of MME in this context.

We organize the rest of the paper as follows. First, we provide a brief overview
of Domain Adversarial Learning for UDA. Importantly, we expose a soft-class
conditioning adversarial loss, which reflects the transferability error of domain
invariant representations [7]. Second, we present the details of Sage while provid-
ing theoretical insights that AL can improve representations’ transferability in
the third section. Finally, we conduct an empirical study on several benchmarks
that support our ADA approach.

2 Background

Notations. Let us consider three random variables; X the input data, Z the
representations and Y the labels, defined on spaces X , Z ⊂ Rm where m is
the dimension of the representation, and Y such that |Y| = C for some integers
C, respectively. We note realizations with lower cases, x, z and y, respectively.
Those random variables may be sampled from two and different distributions:
the source distribution pS i.e., data where the model is trained and the target
distribution pT i.e., data where the model is evaluated. Labels are one-hot en-
coded i.e., y ∈ [0, 1]C with

∑
c yc = 1 where C is the number of classes. We

use the index notation S and T to differentiate source and target quantities.
We define the hypothesis class H as a subset of functions from X to Y which
are the composition of a representation class Φ (mappings from X to Z) and a
classifier class F (mappings from Z to Y) i.e., h := fϕ := f ◦ϕ ∈ H where f ∈ F
and ϕ ∈ Φ. For D ∈ {S, T} and a hypothesis h ∈ H, we introduce the error in
domain D, εD(h) := ED[`(h(X), Y )] where ` is the L2 loss `(y, y′) = ||y − y′||2
and h(x)c is the probability of x to belong to class c. We note the source domain
data (xSi , y

S
i )1≤i≤nS

and the target domain data (xTj )1≤j≤nT
.

Domain Adversarial Learning. The seminal works from [13,21], and their the-
oretical ground [6], have led to a wide variety of methods based on domain
invariant representations [22,20,10]. A representation ϕ and a classifier f are
learned by achieving a trade-off between source classification error and domain
invariance of representations by fooling a discriminator trained to separate the
source from the target domain:

L(ϕ, f) := LS(ϕ, f)− λ · inf
d∈D

LINV(ϕ, d) (1)

where LS(ϕ, f) := ES [−Y · log(fϕ(X))] is the cross-entropy loss in the source
domain, LINV(ϕ, d) := ES [log(1−d(ϕ(X)))]+ET [log(d(ϕ(X))] is the adversarial
loss and D is the set of discriminators i.e. mapping from Z to [0, 1]. In practice,
infd∈D is approximated using a Gradient Reversal Layer [13].
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Transferability loss for class-level invariance. Promoting class-level domain in-
variance improves the transferability of representations [22]. Recently, the work
[7] introduces the transferability loss, noted LTSF, which adds class-conditioning
in the adversarial loss by computing a scalar product between labels y and a
class-level discriminator d defined as a mapping from Z to [0, 1]C . Since labels
are not available in the target domain at train time, predicted labels ŷ := fϕ(x)
are used. This approach is referred to as soft-class conditioning :

L(ϕ, f) := LS(ϕ, f)− λ · inf
d∈D

LTSF(ϕ, ŷ, d) (2)

where LTSF(ϕ, ŷ, d) := ES [Y · log(1 − d(ϕ(X)))] + ET [Ŷ · log(d(ϕ(X))] is the
transferability loss and D is the set of class-level discriminators i.e., mappings
from Z to [0, 1]C . In this work, we explore the role of active annotation on
a small subset of the target domain in order to improve the transferability of
representations. Methods based on LTSF as adaptation loss are flagged as TSF.

3 Proposed Method

3.1 Motivations

Gradient-based selection, as shown in Badge [3], is promising in AL. In contrast
to Badge, which focuses on the network’s predictions, we discuss the role of
representations’ transferability. To this purpose, we introduce, in the following,
the adversarial gradient that reflects the lack of transferability of a target sample.
From this gradient, we expose a query that efficiently incorporates the domain
shift problem in ADA. Let a target sample x ∼ pT with representation z :=
ϕ(x) ∈ Rm, we start by describing the effect of annotating the sample x on the
gradient descent update of 2. We define the adversarial gradient gx of x as the
gradient of the discriminator loss w.r.t the representation z:

gx := −∂ log(d(z))

∂z
∈ RC×m, where d(z) ∈ [0, 1]C (3)

Following the expression of the transferability loss LTSF, the contribution of a
sample x to the gradient update (2), before and after its annotation, is:

{
θ ← θ − α∂z

∂θ
· (ŷ · gx)

}

︸ ︷︷ ︸
Before annotation

−→
{
θ ← θ − α∂z

∂θ
· (y · gx)

}

︸ ︷︷ ︸
After annotation

y∼Oracle(x)

where ∂z/∂θ is the jacobian of the representations with respect to the deep
network parameters θ i.e., z := ϕθ(x), ŷ := fϕθ(x) is the current label estimation
and α is some scaling parameter. Before the annotation, the gradient vector
can be written as a weighted sum of gx i.e., ŷ · gx ∈ Rm, reflecting the class
probability of x. Annotating the sample x has the effect of setting, once and for
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all, a direction of the gradient (y ·gx). Based on this observation, we can measure
the annotation procedure’s ability to learn more transferable representations by
its tendency to change the path of the gradient descent i.e., how y ·gx may differ
with ŷ · gx.

3.2 Positive Orthogonal Projection (POP)

In the rest of the paper, we consider gx ∈ RC×m as a stochastic vector of Rm with
realizations lying in Gx := {g1

x, ...,g
C
x } where gcx = (−∂ log(d(z))/∂z)c. When

provided the label through an oracle i.e., y ∼ Oracle(x), we obtain gyx ∈ Gx, a
realization of gx. Before annotation, the direction of the gradient is the mean
of gx where Gx is provided with the class probability given by the classifier’s
output h(x). More precisely, the probability of observing g̃x = g̃cx is h(x)c, then,
the mean of gx, noted Eh[gx] is defined as follows:

Eh[gx] := Ey∼h(x) [gyx] = h(x) · gx ∈ Rm (4)

Therefore, the tendency to modify the direction of the gradient is reflected by
a high discrepancy between Eh[gx] and gyx for y ∼ Oracle(x). To quantify this
discrepancy, we consider variations in both direction and magnitude. To find a
good trade-off between these two requirements, we remove the mean direction of
the gradient Eh[gx] to gx by computing a Positive Orthogonal Projection (POP),
noting λ := |gx · Eh[gx]|/||Eh[gx]||2;

g̃x := gx − λEh[gx] (5)

We motivate the use |gx · Eh[gx]| rather than gx · Eh[gx] for the standard or-
thogonal projection. On the one hand, if the annotation provides a gradient with
the same direction as the expected gradient i.e., the annotation reinforces the
prediction, g̃x is null. On the other hand, if the annotation provides a gradient
with an opposite direction to the expected gradient i.e., the annotation contra-
dicts the prediction, the norm of g̃x increases. Therefore, target samples x for
which we expect the highest impact on the transferability, are those with the
highest norm of g̃x. Since λ involves an absolute value, we refer to it as a pos-
itive orthogonal projection. An illustration is provided in Figure 2. Since g̃x is
stochastic, we need additional tools to define a norm operator properly on it.

3.3 Stochastic Adversarial Gradient Embedding

It seems natural to quantify the norm of the stochastic vector g̃x as the square
root of the mean of g̃x’s norm: ||g̃x||h := (Ey∼h(x)

[
||g̃yx||2

]
)1/2. However, given x1

and x2, how to quantify the discrepancy between gx1
and gx2

? The difficulty re-
sults from the fact that h(x1) 6= h(x2) in general. Simply using Ey1∼h(x1),y2∼h(x2)[
||gy1x1

− gy2x2
||2
]
)1/2 leads to an operator that returns a non-null discrepancy be-

tween x and itself if h(x) is not a one-hot vector. To address this issue, we
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g2
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opposite direction of ŷ · gx. (b) Illustration of a case where the transferability loss is
close to a local minimum (ŷ ·gx ≈ 0), but the stochastic gradients (gy

x for y ∈ {1, 2, 3})
have a high norm. Here, the annotation chooses one of the gradients resulting in a
strong update of the model.

suggest to embed x, through a mapping S named Stochastic adversarial gradient
embedding (Sage):

S(x) := (
√
h(x)1g̃

1
x, ...,

√
h(x)C g̃Cx ) ∈ RC×m (6)

By choosing
√
h, we guarantee that ||S(x)|| = ||g̃x||h while offering a proper

discrepancy between gx1
and gx2

with ||S(x1)−S(x2)||. Crucially, both the norm
and the distance computed on Sage do not involve the target labels, making it
relevant for UDA since target labels are unknown. An illustration of Sage is
provided in Figure 2.

3.4 Increasing Diversity of Sage (k-means++)

As aforementioned, the higher the norm of ||S(x)||, the greater the expected
impact of annotating sample x on the transferability of representations. A naive
strategy of annotation would be to rank target samples by their Sage norm
(||S(x)||). The drawback is to acquire labels for a not IID batch from the target
distribution, a problem referred to as the challenge of diversity in AL [33]. In
certain pathological cases (e.g. the selection of very similar samples or samples
of the same class), the IID violation may degrade the performance in the target
domain. To label useful target samples (i.e., high ||S(x)||) while acquiring a
representative batch of the target distribution, we follow [3] by selecting samples
with high ||S(x)|| which span in various directions. This is performed using the
k-means++ initialization [1]. The procedure Sage is detailed in Algorithm 1 for a
given budget b of annotation. Importantly, sampling diverse target samples with
high impact on transferability results from the construction of an embedding
(Sage) suitable with k-means++.
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Algorithm 1 Sage(UT , b, f, ϕ, d): Sage with diversity (k-means++)

Input: UT : Unlabelled target data, budget b, representation ϕ, classifier f , discrimi-
nator d

1: Computes S(xu) for xu ∈ UT . Depends on both f and ϕ.
2: A ← {argmaxxu∈UT

||S(xu)||} . Select sample with the highest Sage norm.
3: while |A| < b do . Apply k-means++ on Sage embedding.
4: A ← A ∪ {argmax

xu∈UT

min
xa∈A

||S(xu)− S(xa)||}
5: end while
6: Return A

3.5 Semi-Supervised Domain Adaptation (SSDA)

When acquiring labels in the target domain, we are in the Semi-Supervised
Domain Adaptation (SSDA) setting. To this purpose, we note LS and LT the
sets of labelled samples from the source and the target domains, respectively. We
study three strategies, referred to as S∪T , S+T and MME [31]. They incorporate
labelled samples into adaptation through an additional loss Ω, called a SSDA
regularizer:

ΩS∪T (f, ϕ) := LLS∪LT
(f, ϕ) (7)

ΩS+T (f, ϕ) := LLS
(f, ϕ) + LLT

(f, ϕ) (8)

noting LL(f, ϕ) the empirical cross-entropy of fϕ computed on some labelled
dataset L. Note that ΩS+T gives more importance to target labelled samples
compared to ΩS∪T , especially in the small budget regime (i.e., when the budget
b is such that b � |LS |). As a strong baseline exists in SSDA, we design Ω fol-
lowing the minimax entropy (MME) [31]. Noting HUT (h) := − 1

|UT |
∑
x∈UT h(x) ·

log h(x), the entropy of unlabelled samples UT , the MME objective is:
{
ΩMME(f) := ΩS+T (f, ϕ)− λHUT (fϕ)
ΩMME(ϕ) := ΩS+T (f, ϕ) + λHUT (fϕ)

(9)

where f := σ
(
1
TW ◦ `2

)
(`2(f) := f/||f ||2 is the L2 normalization of features

and W ∈ RC×m is a linear layer), λ = 0.1, T = 0.05 and σ is the softmax layer.

3.6 Training procedure

The training procedure is described in Algorithm 2. First, we train the model by
UDA following the training procedure from [7]. Second, for a given number of
iterations, we select by Sage (See Algorithm 1) b samples to send to the Oracle.
Then, we perform UDA provided with the knowledge of newly labelled samples,
that is using a SSDA regularizer Ω combined with soft-class conditioning loss
LTSF. We describe the gradient descent step in the following. First, given a loss
L, Given a SSDA regularizer Ω (See Section 3.5), the gradient descent step is
defined as follows, for some α > 0:

(f, ϕ, d)← (f, ϕ, d)− α∇(f,ϕ,d)

(
Ω̂(f, ϕ) + λL̂TSF(f, ϕ)

)
(10)
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Algorithm 2 Training procedure

Input: Labelled source samples LS , Unlabelled target samples UT , budget b, annota-
tion rounds r, iterations nit, SSDA regularizer Ω:

1: LT ← {},U ′
T ← UT . Initializes the labelled target samples.

2: f, ϕ, d← UDA as described in [7] . Pretraining before Active Learning.
3: for b rounds of annotations do
4: A ← Sage(U ′

T , b, f, ϕ, d) . Selects samples for annotation.
5: L ← Oracle(A) . Sends samples to an Oracle.
6: LT ← LT ∪ L . Adds newly labelled samples.
7: U ′

T ← U ′
T \A . Removes newly labelled samples.

8: for nit iterations do
9: Sample a source labelled batch B`

S from LS

10: Sample a source labelled batch B`
T from LT

11: Sample a source labelled batch Bu
T from UT . (Not from U ′

T ).
12: f, ϕ, d← Gradient descent update from Equation 10.
13: end for
14: end for
15: Return: f, ϕ

where for a given loss L, we note its batch-wise computation L̂ when provided
with batches of source labelled samples B`S from LS , a source labelled samples B`T
from LT , a source labelled samples BuT from UT . Notably, B`S and B`T are involved

for computing Ω̂ (eventually BuT for Ω̂MME) while B`S and BuT are involved for

computing L̂TSF.

4 Theoretical Analysis

4.1 General bound

We provide a theoretical analysis of guiding adaptation with AL. It leverages
recent results from [7]. Our insight is that some labelled data from the target
domain, when combined with source labelled data, are likely to improve the
target error. For instance, minimizing ΩS+T may result in a better perform-
ing classifier than simply minimizing the source cross-entropy loss LLS

. The
theoretical framework from Bouvier et al. [7] allows to quantify precisely how
it impacts representations’ transferability. Noting hS := argminh∈HεS(h) and
hΩ := argminh∈HΩ(h) such that εT (hΩ) ≤ βεT (hS) for some β < 1 i.e., hΩ
improves the target error compared to hS , the work [7] bounds the target error;

εT (hΩ) ≤ ρ(εS(hS) + 8τ + η) where ρ :=
β

1− β (11)

where τ := supf∈F{ET [hΩ(X) · f(ϕ(X))]−ES [Y · f(ϕ(X))]} is the transferability
error, F is the set of continuous functions from Z to [−1, 1]C , η := inf f∈F εT (fϕ).
Thus, to guarantee a small target error, the following conditions have to be
met: a small source error of hS (small εS(hS)), a small transferability error of
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hΩ (small τ) and a strong inductive bias (small β) while we assume η small [7].
ADA incorporates a small set of target labelled samples into Ω to strengthen the
inductive bias while enforcing a small transferability error of hΩ . More details
on the choice of Ω are given in Section 3.5.

4.2 A particular case with closed form

Setup and additional notations. In this section, we provide a simple example
where the bound presented in Section 4 has a closed form. To conduct the anal-
ysis, we consider X as a measurable set provided with a probability measure
noted pT . We present an extension of an annotation selection to a measurable
set. Selecting samples for annotation with budget b consists in determining some
measurable subset B such that pT (X ∈ B) = b. In the particular case where
pT :=

∑
x∈DT

δx (δx is the Dirac distribution in x) is an empirical distribution,
determining some measurable subset B such that pT (X ∈ B) = b consists in
determining a subset of b samples of DT .

Naive Active Classifier. Given a classifier h and an annotated subset B (with
probability b), we suggest a slight modification of the classifier h based on the
annotation provided by the Oracle of B. To this purpose, we introduce the naive
active classifier, noted hB(x), and defined as follows:

hB(x) = Oracle(x) if x ∈ B, h(x) otherwise. (12)

Thus, hB(x) returns the classifier’s output h(x) if x is not annotated and returns
the oracle’s output Oracle(x) if x is annotated.

A closed bound. We want to exhibit a closed form of ρ when considering the
active classifier. To this purpose, we introduce the purity π of B, π := pT (hS(X)
6= Oracle(X)|X ∈ B). It reflects our capacity to identify misclassified target
samples. With this notion, we observe that the naive classifier improves the
target error; εT (hB) ≤ εT (hS) − bπ. Put simply, the error is reduced by bπ
corresponding to annotated samples for which the prediction is different from
the Oracle output. The higher the budget of annotation b and the higher the
purity π, the lower the target error of the naive classifier. It corresponds to

εT (hS)−bπ =
(

1− bπ
εS(hS)

)
εS(hS) ≤ (1−bπ)εS(hS); resulting into β = (1−bπ),

and finally:

εT (hB) ≤
(

1

bπ
− 1

)
(εS(hS) + 8τ + η) (13)

The target error of the active classifier is a decreasing function of both the purity
and the annotation budget and an increasing function of the transferability error.
The budget b, the purity π and the transferability of representations τ are levers
to improve the naive classifier target error. The budget b must be considered as
a cost constraint and not as a parameter to be optimized. The purity of π is not
tractable since it involves labels in the target domain. Some proxy measures,
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(a) A→W (b) W→A (c) A→D

(d) D→A (e) VisDA(b = 16) (f) VisDA(b = 128)

Fig. 3. Annotation of target samples improves adaptation drastically for the considered
tasks. TSF+Sage (in blue) improves upon the state-of-the-art of ADA (AADA, in
green), except for task A→D. AL (Badge, in red) performs poorly in this context (Badge
without adaptation does not appear on VisDA tasks since it performs poorly: 47.0%
and 63.4% after 10 rounds of annotation for b = 16 and b = 128, respectively) showing
the importance of addressing the problem of adaptation for AL under distribution
shift. Naively combining Badge with TSF (TSF+Badge, in orange) performs worsen
than Sage. Sage takes into account the problem of domain shift when querying samples.

such as the entropy of predictions [14], can provide a fair estimation of purity.
However, it is known that deep nets tend to be overconfident on misclassified
samples [12]. Therefore, we focus our efforts on understanding the role of active
annotation in improving transferability error τ .

5 Experiments

5.1 Setup

Tasks. We evaluate our approach on Office-31 [29], VisDA-2017 [25] and
DomainNet [24]. Office-31 contains 4,652 images classified in 31 categories
across three domains: Amazon (A), Webcam (W), and DSLR (D). We explore
tasks A → W, W → A, A → D and D → A. We do not report results
for tasks D → W and W → D since these tasks have already nearly perfect
results in UDA [22]. For VisDA, we explore Synthetic: 3D models with different
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lighting conditions and different angles; Real: real-world images. We explore
the Synthetic → Real task. DomainNet [24] is a large scale dataset with six
domains and 345 classes (Clipart (C), Infograph (I), Painting (P), Quickdraw
(Q), Real (R) and Sketch (S)). As DomainNet suffers of noisy labels, thus
violates the assumption of a perfect Oracle, we focus on the subset of 126 classes
and the 7 tasks R→C, R→P, P→C, C→S, S→P, R→S and P→R [31].

Protocol. The standard protocol in UDA uses the same target samples during
train and test phases. In AL’s context, this induces an undesirable effect where
sample annotation mechanically increases the accuracy. At train time, the model
has access to input and label of annotated samples which are also present at test
time. We suggest instead to split the target domain into a train target domain
(samples used for adaptation and pool of data used for annotation) and test target
domain (samples used for evaluating the model) with a ratio of 1/2. Therefore,
samples from the test target domain have never been seen at train time. As a
result, our protocol evaluates the model generalization in an inductive scenario.
Reported results are based on 8 seeds for each method.

Budget, rounds and backbone. As the selected datasets are of different volumetry
and difficulty, we used different budgets b: b = 8 for A→W and A→D (referred
to as easy tasks), b = 16 for W→A and D→A (referred to as medium tasks),
both b = 16 and b = 128 for VisDA (referred to as hard tasks). This allows to
appreciate versatility of methods in small (b = 8), medium (b = 16) and high
(b = 128) budget regimes. We conduct 10 rounds of annotation for these tasks.
Additional details for DomainNet experiments are provided in comparison with
SSDA in Section 5.2. Our backbone is a ResNet50 [16] trained by 10k steps of
SGD by UDA before annotation. We use DANN [13] for AADA, MME [31] for
MME based methods and TSF [7] for TSF based methods.

Baselines. AADA [34] is the closest algorithm to Sage. AADA adapts repre-
sentations by fooling a domain discriminator d trained to output 1 for source
data and 0 for target data [13] and scores target samples x; s(x) := H(ŷ)w(z)
where H(ŷ) is the entropy of predictions ŷ and w(z) = (1 − d(z))/d(z). H(ŷ)
brings information about uncertainty while w(z) brings diversity to the score. We
have reproduced the implementation of AADA. To demonstrate the effectiveness
of Sage for Active DA, we report TSF with Badge query [3] (TSF+Badge),
which is the state-of-the-art query in AL. For these methods, we used Ω = ΩS+T .
To compare Sage with an AL method which ignores domain shift between la-
belled samples and queried samples, we report Badge with ΩS∪T . Finally, to
compare with SSDA approaches, we build two methods upon MME [31] with
Entropy query (selection samples with highest prediction entropy [35]), noted
MME+Entropy, which is the most natural query for MME since it relies on
max/min entropy, and with Random query noted MME+Random. We have
reproduced the implementation of MME.
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5.2 Results

Comparison with SOTA. Results are reported in Figure 3. First, active anno-
tation brings substantial improvements to UDA (round 0 of annotation). This
validates the effort and the focus that should be put on ADA, in our opinion.
Sage outperforms the current state-of-the-art (AADA) with a comfortable mar-
gin for tasks with medium or hard difficulty, except for tasks A→D after the 5-th
round. Importantly, Sage performs similarly or better than naively combining
TSF with a state-of-the-art query in AL (Badge) demonstrating that Sage takes
into account the problem of domain shift in the query process. Finally, using a
direct AL method (Badge) fails in the context of domain shift.

Ablation of Sage. We ablate the core components of Sage i.e., POP and the
k-means++ in Figures 4(a) and 4(b). Interestingly, Sage without POP fails to
improve performances in the target domain. This demonstrates that POP brings
information about uncertainty into the embedding. Sage without diversity per-
forms poorly on VisDA(b = 128), demonstrating that k-means++ based sampling
brings diversity. Diversity on Sage has a small effect on W→A.

Ablation of queries. We ablate in Figures 4(c) and 4(d) more AL strategies :
(Random), where target samples are selected at random, Clusters that se-
lects the closest samples to b clusters of representations obtained with k-means,
Entropy based on the highest entropy maxx∈UT −h(x) · log h(x) [35] and Con-
fidence that used the smallest confidence minx∈UT maxc h(x)c [35]. Sage is com-
pared with a wide spectrum of AL queries based on representative (Random),
diversity (Clusters) and uncertainty sampling (Entropy, Confidence). Sage out-
performs them substantially on the two tasks, demonstrating it is well-suited for
ADA.

Ablation of Ω. We report TSF+ΩS∪T and TSF+ΩMME which consists in
adding MME as a regularization of TSF i.e., Ω used here is ΩS∪T and ΩMME,
respectively. Results are reported in Figures 4(e) and 4(f). We observe that us-
ing ΩS+T and ΩMME improve consistently wrt ΩS∪T on VisDA(b = 128) while
performing similarly on W→A. Furthermore, we observe that adding MME to
TSF+Sage achieves the best performances on VisDA(b = 128). Importantly,
MME+Entropy is already strong for VisDA(b = 128) explaining the substantial
improvement when adding MME to TSF for this task.

ADA vs SSDA: ADA is a more realistic setting. We compare SSDA (a fixed
number of labelled target samples per class are available) with ADA (an Oracle
provides ground-truth for queried target samples) when the number of target
labelled samples are equal. Crucially, enforcing a fix number of labelled samples
per class is unrealistic in practice. We report performances on DomainNet of
MME (1 and 3 shot) [31] and Sage (here we used TSF + Sage + ΩMME). AL is
performed during 6 rounds with b = 21 and b = 63 for 1 and 3 shot respectively,
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(a) W→A (b) VisDA(b = 128) (c) W→A

(d) VisDA(b = 128) (e) W→A (f) VisDA(b = 128)

Fig. 4. (a) and (b): Both the POP and k-means++ are crucial components for the em-
pirical success of Sage. (c) and (d): Sage outperforms AL query based on representative,
diversity and uncertainty samplings. (e) and (f): Effect of adding MME to TSF+Sage.

leading to the same number of target labelled samples5. Results are presented
in Table 1. In the 3-shot scenario Sage improves upon MME on all the tasks,
except P→R. In the 1-shot scenario, Sage and MME perform similarly. This
demonstrates that active annotation with Sage performs equally, or better, than
MME, and benefits from more realistic assumptions.

6 Related works

Transferability of Invariant Representations. Recent works warn that domain
invariance may deteriorate transferability of invariant representations [18,38].
Prior works enhance their transferability with multi-linear conditioning of rep-
resentations with predictions [22], by introducing weights [8,37,11], by penalizing
high singular value of representations batch [10] or by hallucinating consistent
target samples for bridging the domain gap [20].

Active Learning. There is an extensive literature on Active Learning [33] that can
be divided into two schools; uncertainty and diversity. The first aims to annotate
samples for which the model has uncertain prediction e.g., samples are selected

5 |LT | = 21× 6 = 126 (1 shot) and |LT | = 63× 6 = 3× 126 (3 shot)
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Tasks
1-shot 3-shot

MME AADA Sage MME AADA Sage

R→C 67.5 64.4 69.3 70.1 68.8 73.9
R→P 69.6 65.5 69.4 70.8 67.0 71.4
P→C 69.0 63.2 69.9 71.4 67.3 74.1
C→S 62.2 57.4 61.5 64.7 60.1 65.4
S→P 67.9 62.6 67.9 69.6 64.9 69.8
R→S 61.2 57.0 62.1 63.6 59.9 65.8
P→R 79.3 74.9 79.0 80.9 76.9 81.2

Mean 68.1 63.6 68.5 70.2 66.3 71.7

Table 1. SSDA (MME) vs ADA (AADA and Sage) on DomainNet. MME’s results
deviate from [31] due to train/test split, ResNet50 as backbone and minor implemen-
tation changes.

according to their entropy [35] or prediction margin [28], with some theoretical
guarantees [15,4]. The second focuses on annotating a representative sample
of the data distribution e.g., the Core-Set approach [32] selects samples that
geometrically cover the distribution. Several approaches also propose a trade-
off between uncertainty and diversity, e.g., [17] that is formulated as a bandit
problem. Recently, the work [2] introduces Badge, a gradient embedding, which,
like SAGE, takes the best of uncertainty and diversity. Our work is inspired by
Badge and adapts the core ideas in the context of ADA.

Active Domain Adaptation. Despite its great practical interest, only a few pre-
vious works address the problem of Active Domain Adaptation. [9] annotates
target samples by importance sampling while [27,30] annotates samples with
high discrepancy with source samples based on the prediction of a domain dis-
criminator. However, those strategies do not fit modern adaptation with deep
nets. To our knowledge, AADA [34] is the only prior work that learns actively
domain invariant representations and achieves the state-of-the-art for Active
Domain Adaptation. AADA is the most relevant work to compare with Sage.

7 Conclusion

We have introduced Sage, an efficient method for ADA which identifies target
samples that are likely to improve representations’ transferability when anno-
tated. It relies on two core components; a stochastic embedding of the gradient
of the transferability loss and a k-means++ initialization, which guarantees that
each annotation round annotates a diverse set of target samples. Through various
experiments, we have demonstrated the effectiveness of Sage and its capacity to
take the best of uncertainty, representative, and diversity sampling. New SSDA
strategies when using Sage is an interesting direction for future works.
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