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Abstract. This work explores the effect of noisy sample selection in
active learning strategies. We show on both synthetic problems and real-
life use-cases that knowledge of the sample noise can significantly improve
the performance of active learning strategies. Building on prior work, we
propose a robust sampler, Incremental Weighted K-Means that brings
significant improvement on the synthetic tasks but only a marginal uplift
on real-life ones. We hope that the questions raised in this paper are of
interest to the community and could open new paths for active learning
research.

1 Introduction

When training machine learning models, data quality is undoubtedly the most
fundamental requirement. A recent study [5] has shown that pervasive errors in
the test set of famous datasets could lead to selecting a suboptimal model. In
active learning, where a small number of samples are selected to be labeled by an
oracle, it becomes paramount as selecting samples of poor quality may worsen
the model’s performance.

Sample diversity in the training set is also essential and has been the main
focus of recent active learning strategies. Performance improvements come from
new ways of combining uncertainty and diversity in a single framework. Batch-
BALD [4] adds diversity by minimizing the joint mutual information between
batch samples. Core-sets [6] and [8] use a clustering approach to scatter the se-
lected samples across the sample space. The method proposed in [3] minimizes
the similarity between the samples of the batch while minimizing the similarity
with already labeled samples. The most common explanation for the observed
performance uplift when enforcing diversity is that a homogeneous set of sam-
ples contains much redundant information while a diverse one informs the model
with several classification patterns.

Enforcing diversity entails selecting samples where uncertainty is not maxi-
mal. Therefore, the selected samples are further away from the decision boundary
and easier to classify. We hypothesize that this side-effect of diversity contributes
to its success. In classification, mislabeled or very ambiguous samples – like five
that looks like six in MNIST – can be detrimental to the model [5]. As the den-
sity of such samples is higher near the classification boundary, we increase the
chances of obtaining meaningful samples by selecting samples further away.
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This paper proposes a metric to evaluate the quantity of such noisy samples
in a dataset, and we design a query strategy to avoid them. We first validate
our approach by showing the existence of these samples on a synthetic example
and observe that diversity-based methods are less likely to select those. We show
that our results obtained on synthetic data do not generalize well to real tasks,
propose an explanation and ideas to mitigate the problem.

2 Sample-noise robust strategies

In the following, D designates a dataset and h a probabilistic classifier. A sub-
script indicates the nature of datasets: L stands for labeled samples, U unlabeled,
T test, and B designates a batch of samples. Iterations are indicated with a su-
perscript when pertinent.

2.1 The pervasiveness of sample noise

In his seminal work on active learning, Settles [7] defines the most valuable
samples at iteration i as the one with the lowest maximum predicted probability
among classes:

lowest confidence(x) “ 1´ hi1pxq
With hik being the k-th probability predicted by the classifier learned at it-

eration i in descending order, so that hi1 is the maximum predicted probability
at iteration i. This definition assumes that each sample can reach a predicted
probability of 1. The difference between 1 and the predicted probability repre-
sents the information that the model is expected to gain when the sample gets
labeled.

However, classifiers do not always reach a predicted probability of 1 for all
samples. Fig. 1 shows the distribution of predicted probabilities on various stan-
dard tasks (see details in section 3). If some datasets like LDPA present an
almost uniform distribution, MNIST is very polarized towards 1 while having
outliers below 0.5.

We call noisy the samples located at the boundary between two classes, which
commonly have a low predicted probability for their class. Noisy samples can be
due to signal noise in the data that makes them hard-to-classify, labeling errors,
or to a genuine ambiguity such as a four that looks like a nine in MNIST (see
Fig. 1, right). Noisy samples are a challenge in active learning as they may get
overly selected by uncertainty-based methods despite their low quality. At a given
iteration of an active learning experiment, noisy samples occur for two reasons.
First, those samples may be easy to classify, but our current classifier lacks the
knowledge to do so. Labeling this sample could be useful as it would help the
model determine if the ideal decision boundary is close or not. This type of
uncertainty is called epistemic and can be reduced with more samples. However,
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Fig. 1. Distribution of prediction probabilities by a model in a 2-fold setting, and
examples of ambiguous samples on the MNIST dataset.

it may also be that this sample is ambiguous and that an ideal classifier would
not do any better. The noise is then due to aleatoric uncertainty that cannot be
reduced.

Let us call h8 this ideal classifier obtained by training the model on all
available training data . We use it to define the theoretical informed lowest
confidence sampler (denoted by IConfidence) based on the following score:

ιpxq “ h8pxq ´ hi1pxq
We expect this sampler to account for aleatoric uncertainty and therefore

focus only on reducing epistemic uncertainty. If h8 is unknown at experiment
time, it can be estimated in a research context where all labels are known. Such
an oracle can be useful in active learning research by providing a golden standard
of the maximum achievable accuracy in an experiment.

2.2 Measuring sample noise

Misclassified samples are a source of sample noise, and [5] proposes to iden-
tify them using human annotation. This approach can be considered a golden
standard but is hard to perform because of human labeling costs.

We previously suggested that sample noise could be measured as the maxi-
mum probability predicted by a good enough classifier. In order to extend this
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measure to a set of samples, we propose to rely on a metric previously introduced
in [1] called reverse batch accuracy or RBA for short. RBA measures how easy
samples are to classify by training a classifier on the test set and measuring its
accuracy on sample batches. The lower the RBA score, the harder samples are
to classify for the model, so the noisier are the samples.

2.3 Incremental Weighted K-Means (IWKMeans)

The goal of batch active learning strategies is to select batches of samples DB

representative of the unlabeled data DB „ DU . For a given notion of similarity
sim between batches, this leads to the following maximization objective:

argmaxDB
simpDB ,DU q (1)

In [8], the similarity is taken as ´ř
uPDU

dpDB , uq with d being the squared

distance to the closest point in the set dpDB , uq “ minbPDB
}b´ u}2. This corre-

sponds to the inertia objective of the K-Means clustering. The authors propose
to use it in a two-step procedure called Weighted K-Means (WKMeans) where
a set of samples are preselected using margin sampling, and then the final batch
is selected by using K-Means.

The above objective does not consider already labeled data and can lead to
suboptimal batches lying in regions of high-density of labeled samples. A natural
refinement is to additionally impose that the selected batch differs from already
labeled data, i.e. to minimise similarity simpDB ,DLq:

argmaxDB
simpDB ,DU q subject to argminDB

simpDB ,DLq
In the context of K-Means, minimizing this similarity is equivalent to prevent-
ing points close to labeled data to drag the centroids toward them. This is done
by adding the labeled points in the reference set used to compute distances in
the K-Means objective that becomes ´ř

uPDU
dpDB Y DL, uq. This translates

algorithmically by adding cluster centers corresponding to already labeled sam-
ples and keeping them fixed during optimization. We refer to this approach as
Incremental Weighted K-Means or IWKMeans for short, and it is described in
Alg. 1. IWKMeans tends to repel batch samples from already selected samples,
including the noisy ones. A similar approach is proposed in [3] where the values
in the matrix of similarity between batch and selected samples are minimized.

Potential concerns. The fact that the method repels all selected samples and
not only the noisy ones can be debated. We tested variants of this method that
repels noisy samples only, or noisy and very easy to classify samples as they can
also be considered detrimental [1]. Since all variants had similar performances,
we present here the simplest one. Another concern is the convergence of this
modified version of K-Means. It is easy to imagine in two dimensions how fixed
centers can prevent a moving one to reach its minimum. From our experience,
the K-Means++ initialization prevents most of these problems, and Fig. 2 proves
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Data: D0
L,D0

U

Result: hniter

for iÐ 1 to niter do
Margin sampling to pre-select βk samples among the unlabeled ones:
P i “ arg maxDi

U
1´ phi

1pxq ´ hi
2pxqq

Perform K-Means on P i with k moving and Di
L fixed centroids:

Di
B “ arg minDi

B
ĂP i

ř
xPP i dpDi

B YDi
L, xq

Update all sets and train the classifier:
Di`1

L Ð Di
L YDi

B Di`1
U Ð Di

UzDi
B hi`1 Ð hi `Di

B

end
Algorithm 1: IWKmeans algorithm

the method’s efficiency in a two-dimensional setting. For the sake of clarity and
concision, we refer the reader to this online study of IWKMeans convergence1.

3 Experiments

We perform active learning experiments on synthetic and natural datasets follow-
ing the framework described in [1]. Random sampling (Random) is the baseline.
We use KCenterGreedy (KCenter) as a proxy for Core-sets [6] since there is no
open implementation available. Note that the latter uses the activation of the
penultimate layer of neural networks, so we have adapted it to random forests
by considering a PCA-reduced forest embedding. We compare lowest confidence
sampling (Confidence) as described above to its informed counterpart IConfi-
dence. We also compare Weighted K-Means[8] (WKMeans) with β “ 10 to our
proposed IWKMeans. BatchBALD[4] was not considered due to its prohibitive
computational time of several hours compared to less than one minute for others.

We run ten iterations using five repeated two-fold cross-validation for each
task. Reported results include means and confidence intervals at 10th and 90th
quantiles. Cifar10 and Cifar100 tasks are run on ImageNet embeddings, Cifar10
SimCLR is run on embeddings learned using contrastive learning [2], and other
tasks are run using raw data. A Random Forest is used on the LDPA task, all
others use a multi-layer perceptron with hidden layers of size 128 and 64. More
details can be found on the code repository2 or in [1].

3.1 Synthetic problem with noisy samples

To create noisy samples, we design a task where samples from a given class
are not distinguishable from those of another class. We create a 10-class task
composed of spatially isolated blobs. Some blobs are composed of regular samples
that all belong to the same class. Other blobs are composed of samples randomly

1 https://dataiku-research.github.io/cardinal/auto_examples/plot_incr_

kmeans.html
2 https://github.com/dataiku-research/paper_ial_2021
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assigned to two different classes; we call them noisy blobs since their samples are
impossible to classify. We create a low-dimensional problem with 10000 samples,
2 features, 10 classes, 200 blobs, half of which are noisy. The active learning
experiment uses 20 batches of 20 samples. We also create a high-dimensional
problem with the same characteristics except that the data has 40 features, and
we generate 90 blobs, 30 of which are noisy. We use accuracy AUC over the whole
experiment to measure strategy performances. In this synthetic experiment, we
know which samples are noisy by construction and therefore report the ratio of
noisy samples (NSR) as a measure of sample noise instead of its proxy RBA.
Note that RBA is strongly correlated (ą 0.95) with NSR. Results are reported
in Fig. 2.
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Fig. 2. Test accuracy on synthetic problems.

Table 1. AUC and ratio of noisy samples per method. Standard deviation is in paren-
thesis. Best answers in terms of accuracy (higher) and Noisy Sample Ratio (lower) are
in bold.

Dataset Metric Random KCenter Confidence IConfidence WKMeans IWKMeans

Noisy LD AUC 38.6 (1.5) 47.9 (0.5) 26.7 (2.5) 24.5 (1.4) 44.0 (1.2) 48.1 (1.0)
Noisy LD NSR 50.3 (4.1) 42.4 (2.0) 38.9 (6.5) 10.1 (4.6) 43.5 (2.6) 39.3 (1.8)

Noisy HD AUC 50.7 (2.1) 61.7 (1.1) 58.0 (1.2) 55.0 (1.5) 60.6 (0.9) 63.2 (0.6)
Noisy HD NSR 35.0 (3.0) 24.5 (1.5) 25.6 (1.5) 3.2 (1.1) 33.4 (1.5) 26.9 (1.8)

In terms of performances, IWKMeans dominates all methods, which is what
was expected. KCenter is closely following which is surprising since the model
here is a random forest and we did not expect our quick adaptation to this
model to perform well. We would have expected Confidence to select more noisy
samples and perform poorly because of that. Instead, it seems to be penalized
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by its lack of diversity and exploration. IConfidence minimizes the number of
noisy samples selected, as expected, and yet it performs as badly as Confidence
for the same reasons. In the end, this experiment shows that diversity can be
as crucial as sample noise, and we expect a sweet spot to exist. Overall, we also
observe that IWKMeans seem to be more robust to noisy samples. More insights
are available in appendix Fig. A4.

Table 2. Area under the curve for accuracy (AUC) and reverse batch accuracy (RBA)
per method averaged over all repetitions. Standard deviation is in parenthesis. Bold
values are statistically significantly higher than the others based on a Friedman test
with Nemenyi post-hoc test which details are available in Fig. A5 in appendix.

Dataset Metric Random KCenter Confidence IConfidence WKMeans IWKMeans

LDPA AUC 59.0 (0.5) 57.2 (0.5) 51.9 (1.1) 51.2 (0.8) 63.1 (0.3) 63.6 (0.3)
LDPA RBA 67.1 (0.7) 49.3 (2.3) 51.6 (2.0) 98.9 (0.1) 67.8 (1.1) 67.6 (1.1)

Cifar10 AUC 80.9 (0.2) 82.0 (0.2) 81.9 (0.2) 82.9 (0.4) 81.8 (0.2) 81.6 (0.2)
Cifar10 RBA 91.5 (4.8) 81.5 (10.7) 80.5 (12.6) 94.9 (3.5) 85.2 (9.0) 85.3 (9.1)

Cifar10S AUC 88.8 (0.2) 89.2 (0.2) 89.5 (0.2) 89.6 (0.3) 89.4 (0.2) 89.5 (0.3)
Cifar10S RBA 93.5 (1.3) 87.5 (1.8) 80.0 (3.6) 96.5 (0.8) 86.2 (2.8) 87.9 (2.3)

MNIST AUC 90.9 (0.2) 91.2 (0.3) 93.5 (0.2) 93.8 (0.3) 94.2 (0.1) 94.2 (0.1)
MNIST RBA 97.6 (0.2) 96.6 (0.4) 92.3 (8.1) 97.7 (2.5) 88.1 (0.4) 86.9 (0.6)

Fashion AUC 82.4 (0.2) 79.3 (0.3) 83.5 (0.3) 85.0 (1.0) 84.3 (0.1) 84.3 (0.1)
Fashion RBA 88.1 (0.4) 90.8 (9.7) 82.3 (15.9) 91.3 (7.3) 70.6 (0.7) 69.2 (0.7)

Cifar100 AUC 48.5 (0.3) 48.3 (0.2) 46.2 (0.2) 50.8 (0.6) 48.9 (0.2) 49.0 (0.3)
Cifar100 RBA 69.4 (9.2) 71.2 (14.1) 55.6 (15.6) 88.8 (5.8) 70.7 (9.2) 70.0 (9.9)

3.2 Real datasets

We now analyze the samplers behaviors on our collection of real-life datasets.
Informed lowest confidence. IConfidence is equivalent or better than con-

fidence in all cases. It is also the best strategy for all tasks except MNIST and
LDPA. Note that the RBA of this method is much higher than the other strate-
gies. It reveals that getting too close to the decision boundary may not be re-
quired for good performance. Even more, this oracle method does not enforce
diversity but yet overpowers diversity enforcing methods. This questions the
fundamental hypothesis that enforcing diversity is mandatory to obtain good
performances. Further work will investigate further this sampler and try to re-
produce its behavior online with proxy metrics proposed in [1].

IWKMeans. WKMeans and IWKMeans bring a significant uplift against
random and all other uncertainty-based or unsupervised methods in all tasks ex-
cept CIFAR10 with SimCLR embeddings. IWKMeans outperforms WKMeans
on LDPA only, making it hard to draw a definitive conclusion on real tasks.
Further experiments are needed to investigate these behaviors. Early investiga-
tions suggest that the variation in density of noisy samples in multiclass settings
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(a) CIFAR 10, ImageNet embedding
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(b) CIFAR 10, SimCLR embedding
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(c) CIFAR 100
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(e) MNIST
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Fig. 3. Results on real datasets
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can tamper with adverse-to-noise samplers. For example, a general strategy can
be hard to find on the MNIST dataset where few noisy samples exist between
classes zero and four, while their density is high between classes three and five.

SimCLR embedding. An unexpected conclusion of these experiments is
that contrastive-based embeddings can bring an uplift significantly higher than
choosing the best query sampling strategy.

4 Conclusion

In active learning, noisy samples that are hard to classify by the model can be
detrimental to the performance. To prove this, we have designed a metric to
measure them and a synthetic problem to test the robustness of query strategies
to their presence. IWKmeans, the proposed noise-adverse sampling strategy, has
been proven effective on synthetic data, but not on real tasks where it marginally
improves WKMeans on which it is based. If IWKMeans’ performance seems
correlated to the number of noisy samples selected, there may be more than
meets the eye in this problem, and more investigations are needed. Our study
also shows that a sampler as simple as confidence sampling can outperform all
other samplers if informed by a good enough classifier. Whether or not this
uplift can be reproduced in real conditions using a proxy must be investigated
in further work.
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