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Abstract

The susceptibility of deep learning models to adversarial
examples raises serious concerns over their application in
safety-critical contexts. In particular, the level of understand-
ing of the underlying decision processes often lies far below
what can reasonably be accepted for standard safety assur-
ance. In this work, we provide insights into the high-level
representations learned by neural network models. We specif-
ically investigate how the distribution of features in their la-
tent space changes in the presence of distortions. To achieve
this, we first abstract a given neural network model into a
Bayesian Network, where each random variable represents
the value of a hidden feature. We then estimate the importance
of each feature by analysing the sensitivity of the abstrac-
tion to targeted perturbations. An importance value indicates
the role of the corresponding feature in underlying decision
process. Our empirical results suggest that obtained feature
importance measures provide valuable insights for validating
and explaining neural network decisions.

Keywords— Neural network latent representation, Bayesian net-
work, Feature importance, Sensitivity analysis.

1 Introduction
When neural networks are used in critical applications, the reli-
ability of their decision making becomes a major concern. Vari-
ous techniques have been developed to verify, falsify, enhance, or
explain the neural networks, see (Huang et al. 2020) for a recent
survey. In this paper, we focus on gaining insight on the decision
mechanisms based on the main features of the network.

Deep neuronal networks (DNNs) learn their decision rule
through training on a large dataset by gradually optimising parame-
ters until they achieve the required accuracy. Therefore, they do not
have a specific control-flow structure, which makes it difficult to
precisely define suitable test criteria. Neuron activation (Pei et al.
2017) and other structural coverage techniques, such as MC/DC
(Sun et al. 2019), that are defined based on the syntactic model
components have proven to be less effective in validating the safety
behaviour of the intelligent systems (Sun et al. 2018a). This paper
analyses the internal representation of a DNN built from the train-
ing dataset, together with the training data itself, toward defining a
testing approach that uses semantic aspects.

This is a contribution to a recent trend to exploring the internal
logic of the learning model, such as eXplainable Artificial Intelli-

Copyright © 2022, for this paper by its authors. Use permitted un-
der Creative Commons License Attribution 4.0 International (CC
BY 4.0).

gence (XAI) (Miller 2019), semantic-level robustness (Hamdi and
Ghanem 2020; Xu et al. 2021), and exhibition of internal working
mechanism through test cases (Huang et al. 2021).

We build on the work of Berthier et al. (2021), which elicited
semantic assumptions by advancing an approach that relies on a
Bayesian Network (BN) abstraction to examine whether latent fea-
tures are adequately exercised by a set of inputs. The Bayesian
view of statistics treats the latent parameters as random variables
and seeks to learn a distribution of these parameters conditional on
what is observed in the training data.

Contribution. Our key contribution is to propose a method that
estimates the importance of a neural network’s latent features by
analysing an associated Bayesian network’s sensitivity to distribu-
tional shifts. This allows us to define semantic testing metrics and
to identify distributional shifts in the feature space through the ef-
fect they have on the random variables in BNs.

This provides us with a separation of concern: we can study the
effect of a distributional shift in the latent feature space, which is
typically low-dimensional, independent of potential shifts in the
input distributions. This provides insight on the semantic mecha-
nisms of decision making in the DNN as well as information for
testing the sensitivity of features to distributional shifts.

A weighted scoring model is commonly applied in statistics
when certain selected criteria are assigned more importance than
others. The feature importance (FI) describes how much each
feature influences the classifier’s decision, and thus indicates the
importance of the feature for the classification. This is to be con-
tracted with the existing notion of feature importance in explana-
tion models, which assigns the importance value to the features
that belong to the input space, e.g., age, sex, education. Instead,
we investigate the learning models’ latent feature space and exam-
ine how much their deep representation relies on a specific hidden
feature to change their prediction.

We seek to evaluate the learning models’ semantic robustness
by developing a weight-based test metric that utilises the Bayesian
Network model from Berthier et al. (2021). However, instead of di-
rectly using the extracted hidden features to measure some test cov-
erage metric, we first compute a weight value,wi, for the i-th latent
feature, by analysing the BN’s sensitivity to a controlled noise ap-
plied to this feature. In this paper, we develop several analyses that
rely on the BN abstraction to estimate the relative impacts and sen-
sitivity of the latent features. For example, we measure the relative
impact one feature has on another for all feature pairs by estimat-
ing how a controlled noise impacts the BN’s probability distribu-
tions. As an alternative approach, we also estimate the sensitiv-
ity to a given latent feature by comparing the probability distribu-
tions of training samples before and after the feature has been per-
turbed. Figure 1 outlines the proposed feature sensitivity analysis



Figure 1: Illustration of the proposed BN analysis technique to compute the sensitivity of extracted latent features.

approach.
This allows us to monitor the behaviour of a DNN via its as-

sociated BN. The structure of this BN is built based on a param-
eterisable abstraction scheme that defines a series of DNN layers
to consider (conv2d, dense and dense 1 in the Figure), a feature
extraction technique to identify a given number of latent features
for each one of these layers (2 in the example), and a discretisation
strategy that determines the granularity at which values of latent
features are aggregated into distinct intervals of indistinguishable
values. Combined with the feed-forward nature of the DNNs we
consider, this scheme allows us to derive the structure of a BN, as
shown in Figure 1.

In addition, this scheme provides us with a discretisation
function Discr], that transforms a set of inputs X into a low-
dimensional, discretised version FX . In the Figure, the vector of in-
putsX is transformed into FX , which associates each input x ∈ X
with six feature intervals, one for each latent feature represented by
the BN. As the BN assigns a probability to an input sample that be-
longs to the distribution it represents, we can compare the probabil-
ities of a sample under a given BN before and after a perturbation.
To do so, we conduct the interior analysis on FX by calculating the
probability of each sample under the BN B. After that, we iterate
over all considered latent feature f , and shift the associated inter-
vals in FX to produce a modified F ′Xf

w.r.t. the feature f , and cal-
culate its probability belonging to the BN B distribution. The term
intervals shifting refers to a technique used to artificially simulate
a controlled distribution shift by randomly shifting intervals in the
selected feature space. To identify the impact of a perturbation, we
compute a distance between the original probability vector and the
probability vector obtained from the perturbed features.

2 Related Works
Robustness of Neural Networks latent features. Features
play an essential role in the field of image processing and classi-
fication. They are considered as the basic conceptual components
of the semantics of an image. Similar as this paper, there are re-
cent studies concentrated on the features space to study the hidden
semantic representation of intelligent models. Ilyas et al. (2019)
categorised useful features in the input-space into robust and non-
robust features. They demonstrate that adversarial perturbation can
arise from flipping non-robust features in the data that are useful

for the classification of regular inputs in the standard setting. They
further argue that ML models are highly vulnerable to adversarial
examples due to the presence of these useful non-robust features.
This was further emphasised by Madaan, Shin, and Hwang (2020),
who showed that the factor causing the adversarial vulnerability is
the distortion in the latent feature space. Going beyond these works
which justify the needs of considering features (instead of pixels or
neurons), we study the causality relation between features by con-
structing a formal model – Bayesian network.

Bayesian Networks (BNs) and Neural Networks (NNs).
Current trends towards using Bayesian modelling to solve chal-
lenging issues of neural networks have seen a growing recogni-
tion of the vital links between them. Daxberger et al. (2021) de-
veloped a framework for scaling Bayesian inference to NNs to be
able to quantify the uncertainty in NN predictions. Furthermore,
due to the scalability problem that arises when analysing neural
networks, Berthier et al. (2021) uses a statistical analysis of acti-
vations at network layers, and abstracts the behaviours of the DNN
using a Bayesian Network. They identify hidden features that have
been learned by hidden layers of the DNN and associate each fea-
ture with a node of the BN. Their Bayesian network approximation
model is therefore defined based on high-level features, rather than
on low-level neurons. These extracted features are minimal seman-
tic components that can be analysed to understand the behaviour
of the feature space and the internal logic of the analysed DNN.
This paper is, based on the BN in Berthier et al. (2021), to consider
different methods to quantify the importance of latent features.

Bayesian Networks Sensitivity Analysis. Sensitivity anal-
ysis in Bayesian networks is concerned with understanding how
a small change in local network parameters may affect the global
conclusions drawn based on the network (Castillo, Gutiérrez, and
Hadi 1997). The key aspect of performing a sensitivity analysis on
a Bayesian network can be listed as follows:

• Quantify the impact of different nodes on a target node;
• Discover important features that have significant influence on

the classifier decision;
• Determine sensitive parts of the network that might cause net-

work vulnerability.
However, we cannot directly apply the sensitivity analysis in the
traditional sense with Bayesian Networks, where the sensitivity is



Figure 2: Structure of the Bayesian Network abstraction af-
ter reducing each h1, h2, h3 into two features λi,1 ◦ hi and
λi,2 ◦hi with two intervals each. The conditional probability
tables are shown for features λ3,1 and λ3,2.

performed by changing the BN parameter from the input space and
observing how that influences the final decision. Instead, since our
analysis targets the latent features in the low-dimensional space,
we measure how sensitive are the BN probability distributions to
changes in the values of hidden features. This process gives insight
into how such perturbations impact the inner Bayesian network dis-
tribution and hence reflects the ground truth of the neural networks’
behaviour in the presence of adversarial inputs.

Throughout this work, we use the Bayesian network probability
distributions to study the neural networks latent features and anal-
yse their deep representations.

3 Preliminaries
At the core of our approach lies the proposed BN-based latent fea-
ture analysis algorithms. Before that, we introduce the scheme and
Bayesian Network that have been used by Berthier et al. (2021) as
an explainable abstraction of DNNs’ latent features.

Let N be a trained deep neural network with sequential layers
L = (l1, . . . , lK) and X a training dataset. As an abstract model
of N and X , a Bayesian Network (BN) is a directed acyclic graph
B = (V,E, P ), where V are nodes, E are edges that indicate de-
pendencies between features in successive layers, and P maps each
node in V to a probability table representing the conditional prob-
ability of the current feature over its parent features w.r.t. X .

Example 1 Figure 2 gives a simple neural network of 2 hid-
den layers and its Bayesian Network abstraction. hi is a func-
tion that gives the neuron activations at layer li from any given
input sample, and λi,j is a feature mapping from the set Λi =
{λi,j}j∈{1,...,|Λi|}. Each random variable λi,j ◦ hi in the BN rep-
resents the j-th component of the value obtained after mapping hi

into the latent feature space. Since each function λi,j ◦ hi ranges
over a continuous space, the respective feature components—which
are the codomains of the λi,j’s—are discretised into a finite set of
feature intervals.

Each node in BN abstractions represents an extracted feature,
and we let F ]

i,j = {f ]1
i,j , . . . , f

]m
i,j }, for the j-th extracted feature

from layer li, be a finite set of m intervals that partition the value
range of the feature. We formally define a feature as a pair (i, j),
where i indexes a layer li in L, and j identifies a component of the
extracted feature space for layer li, i.e., j ∈ {1, . . . , |Λi|}. Each

Figure 3: Illustration of probability tables and feature inter-
vals with a Bayesian Network node.

node in the BN model is associated with either a marginal proba-
bility table for hidden features of layer l1, or a conditional proba-
bility table for hidden or output layers. In Figure 2, the conditional
probability table for the feature component λ3,1 is defined for each
feature interval {(−∞, 3[, [3,+∞)} for layer l3, w.r.t. each com-
bination of the parent feature intervals from previous layer l2.

Example 2 Figure 3 illustrates an example node in a BN, which
corresponds to the second extracted feature from the first NN layer,
i.e., i = 1, j = 2. The set F ]

1,2 contains two intervals, f ]1
1,2 and

f ]2
1,2, which partition the real line. The node is denoted as a random

variable named λ1,2 ◦ h1, which is associated with a probability
table. The probability table is a marginal probability table because
the features on the first layer do not have parent features. The table
says that this feature has probability 0.7 to have a value smaller
than 2 and probability 0.3 to have a value no less than 2.

The previous demonstrating examples were simple, which illus-
trated a BN built using each layer of the NN. In practice, we can
select specific NN layers to be abstracted, as we did in our analysis
experiments.

Using Bayesian Network Abstractions. We can fit the set
of probability tables in a BN abstraction B by using a training sam-
ple X . This process first transforms X by means of the discreti-
sation function to obtain a vector of elements from the discretised
latent feature space FX = Discr](X). It then updates the probabil-
ity tables in B in such a way that the joint probability distribution
it represents fits the distribution of FX .

We can query the fitted BN B for the probabilities of the
discretised input sample FX′ . We denote this query opera-
tion Pr(FX′ ∈ B), and may abuse this notation by defining
Pr(X ′ ∈ B) = Pr

(
Discr](X ′) ∈ B

)
.

Perturbation of Latent Features. Our developments in the
next Section rely on the application of a controlled change of a
feature (i, j) in an element Fx of the latent feature space. This
operation simulates a distortion in single targeted component of
the latent feature space by substituting its associated interval with
an adjacent one. (We assume that each latent feature component
is partitioned into at least two intervals). When an interval has
two neighbours, we chose uniformly at random between them. We
denote this operation with the function random shift(Fx, i, j),
which replaces the feature interval f ]k

i,j of Fx with either f ]k−1
i,j

or f ]k+1
i,j . For instance, assuming two hidden feature components

extracted from activations at two layers of a NN, each compo-
nent being discretised into small-enough intervals, i.e., 10 in-
tervals, random shift((f ]4

0,0, f
]7
0,1, f

]1
1,0, f

]9
1,1), 1, 0) returns either

(f ]4
0,0, f

]7
0,1, f

]0
1,0, f

]9
1,1) or (f ]4

0,0, f
]7
0,1, f

]2
1,0, f

]9
1,1).

4 BN-based Latent Feature Analysis
In this section, we develop several BN-based analysis approaches
we employ to gain insights on latent features. The first approach
produces a pairwise comparison matrix that exhibits the relative



Figure 4: A toy example, with only three intervals for each
feature, illustrates the conditional probability table for the
first extracted feature from layer dense 1 before and after
shifting intervals of feature (2, 0) in the dataset used to fit
the BN.

impact the latent features have on each other. Next, we leverage
the BN to estimate the sensitivity of individual features to a con-
trolled distribution shift. We then describe how the sensitivity anal-
ysis technique can be applied to define feature importance based on
a generic definition of weights on features. Finally, we formalise a
concrete definition of weights based on our BN-based feature sen-
sitivity.

4.1 Pairwise Comparison
This particular study is to assess the degree to which the extracted
features can affect each other by comparing the parallelised Con-
ditional Probability Tables (CPTs) of a sample, under a BN, with
the CPTs of the same sample after perturbing the features intervals
of the BN. The pairwise comparison method is used to make a re-
cursive comparison. It begins by extracting a set of inputs X from
training data, and computing its feature intervals with Discr]. This
produces a sample FX of intervals w.r.t. X . To generate the proba-
bility tables, we fit the Bayesian network with FX , which gives the
clean reference probability tables CPTs(FX). Figure 4-(a) shows
the CPT for feature (3, 0), which is the first extracted feature from
the third NN layer, named dense 1 in the BN from Figure 1.

To extract knowledge about a given feature’s independence and
robustness, we apply a controlled change to the targeted feature
f , by using the random shift operation to shift f ’s intervals
in FX to obtain F ′X . We then re-fit the BN’s probabilities with
F ′X , which gives the modified probability tables CPTs(F ′X) w.r.t.
the perturbed feature f , examplified in Figure 4-(b). To identify
the impact, we use the mean squared error (MSE) between each
corresponding table in the reference CPTs(FX) and generated
CPTs(F ′X).

We illustrate and give an example of pairwise comparison in
Section 5 below.

4.2 Feature Sensitivity Analysis
The core benefit of relying on a Bayesian Network is to have a
model that exhibits the relevant theoretical aspects of Bayesian
analysis. To estimate the sensitivity of the abstraction scheme on
a given latent feature, we measure the impact of artificially per-
turbing the intervals representing the selected feature on the prob-
ability distribution represented by the BN. In this algorithm, the
BN is already fitted using a training dataset, and the distribution it
represents does not change.

Algorithm 1: BN-based Feature Sensitivity Analysis
Input: Bayesian network B and associated feature mapping
& discretisation function Discr], training datasetX , distance
metric dp.
Output: Mapping associating a distance measure with each
considered latent feature

1: Compute the feature intervals w.r.t. X:
FX = Discr](X)

2: Compute the reference probabilities of FX w.r.t. B:
Pref = Pr(FX ∈ B)

3: for each considered feature f = (i, j) do
4: P ′

f = 〈Pr(random shift(Fx, i, j) ∈ B)〉Fx∈FX

5: df = dp

(
Pref , P

′
f

)
6: end for
7: return distances df , for all f

The feature sensitivity analysis is given in Algorithm 1. This
procedure receives an input sample X , taken from the training
dataset, and first performs the feature projection and discretisation
step with Discr] to obtain the associated feature intervals FX . It
then calculates the probability of each element of FX w.r.t. the BN
B; this gives the vector of reference probabilities Pref , that asso-
ciates a probability with each set of abstracted latent features that
are elicited by each x in X . Then, for each extracted feature f ,
a random perturbation is performed in FX via the random shift
function introduced in the previous Section. This leads to a second
vector, that holds the probabilities of the resulting F ′Xf

w.r.t. the
BN B. The given distance dp between these two probability vec-
tors for the perturbed feature f is eventually computed.

We chose to make the feature sensitivity analysis algorithm para-
metric in the distance metric p for the purposes of easing further
experimental use of the FI measure. The considered distances are:

• Lp’s with different norms, typically 1, 2, or∞;

• JS is the Jensen-Shannon distance, that is a metric that mea-
sures the similarity between two probability distributions based
on entropy computations;

• corr is the correlation distance;

• cos is the cosine distance;

• MSE is the mean squared error;

• RMSE is the root mean squared error;

• MAE is the mean absolute error;

• AF is a special purpose anti-fit divergence, which we define
based on the coefficient of determination R2. R2 is a score
that is typically used as a “goodness-of-fit” measure for regres-
sion models, and we refer to it as scoreR2 . While the maximal
score is 1 (indicating a perfect fit), the score decreases with the
amount of variance in P that is not in Q and can take negative
values. With this we define dAF(P,Q) = 1− scoreR2(P,Q).

The rationale of using scoreR2 as a basis for measuring the di-
vergence is that we can view the probability vectors for per-
turbed features as output by a model. Divergence will be large
when the effect of the perturbation is significant, and small
when the model is not (very) sensitive to the perturbation.



distance dL1
dL2

dL∞ dJS dcorr dcos dMSE dRMSE dMAE dAF

perturbed feature

(1, 0) 150 0.726 0.009 56 0.224 0.142 0.114 0.000 000 879 0.000 937 0.000 249 0.278

(1, 1) 340 1.18 0.009 89 0.353 0.448 0.361 0.000 002 32 0.001 52 0.000 567 0.735
(2, 0) 325 1.09 0.009 46 0.365 0.332 0.267 0.000 001 98 0.001 41 0.000 541 0.625

(2, 1) 360 1.16 0.0103 0.393 0.395 0.323 0.000 002 24 0.001 50 0.000 600 0.710

(3, 0) 276 0.880 0.008 89 0.258 0.170 0.137 0.000 001 29 0.001 14 0.000 460 0.408
(3, 1) 315 1.07 0.009 60 0.324 0.318 0.264 0.000 001 92 0.001 39 0.000 525 0.608

Table 1: Example distance measures.

4.3 Feature Importance
We associate each extracted feature f with a weight wf based on
the set of measured sensitivity distances as follows:

wf =
edf∑

f∈T e
df

(1)

where T is the set of considered latent features. The soft-max
weighting in Eq. (1) acts as a normalisation function, i.e., it en-
sures the sum of the feature components’ weights equals one. The
normalised importance weight for each feature is usually positively
correlated with the respective probabilities distances.

Example 3 Table 1 shows selected distance measures computed
based on one experiment detailed in the next Section. Assuming the
dcorr distance is chosen to determine feature importance,

feature (1, 1) is assigned the largest weight at 0.192, followed
by feature (2, 1) at 0.182, etc.

The importance weight for an extracted latent feature of a DNN’s
layer may reflect some relevant amount of information/variance/
that the abstracted DNN uses at the considered layer. The current
abstraction scheme, however, does not relate latent features with
the DNNs’ decisions. Still, perturbing a specific part of the latent
space and observing the implicit changes of the learning models’
distribution contributes to understanding their internal decisions.

5 Experiments
In this Section, we first illustrate the results of pairwise comparison
of latent features, and then turn to an empirical evaluation of the
sensitivity of BN abstractions at detecting distribution shift induced
by adversarial examples.

5.1 Illustration of Pairwise Comparison
We first concentrate on the BN given in examples so far.

We report in Table 2 a pairwise comparison matrix for this ex-
ample, where we arrange the perturbed features in the first column
and compute their impact on each feature (i, j)’s probability ta-
bles. The numbers reported in this matrix represent the change in
the probability values. For instance, our controlled perturbation of
feature (2, 0) intervals has an impact on features (3, 0) and (3, 1)
values. More specifically, the MSE between the (3, 0) probability
tables for feature (3, 0), given in Figure 4 (a) before and (b) after
perturbing feature (2, 0), is 0.0113.

Discussion. Suppose we set the diagonal line to zeros since the
change is made from the feature itself. In that case, we can observe
that the perturbations are not affecting the probability of features
from the previous layer (parent features) or the same layer as ex-
pected. On the other hand, random shifting only influenced the im-
mediate features in the next layer. The largest difference occurred

on feature (3, 1) when perturbing feature (2, 1). Although this im-
pact is relatively small, we can (as expected) observe the depen-
dencies between latent feature values of the BN model. However,
the perturbations do not change the features’ probability for deeper
layers, e.g., features of Layer 3 are not affected by the perturbation
made on features of Layer 1, which is surprising.

5.2 Sensitivity Analysis
Let us now turn to our empirical assessment of the effectiveness of
the BN sensitivity analysis method in examining the behaviour of
the latent features under perturbation.

Datasets and Experimental Setup. We have selected two
trained CNN models for our experiments: the first one targets the
MNIST classification problem with 99.38% validation accuracy,
and the second model targets the CIFAR-10 dataset with 81.00%
validation accuracy. The models are reasonably sized, with more
than 15 layers including blocks of convolutional and max-pooling
layers, followed by a series of dense layers. They have 312 000 and
890 000 trainable parameters, respectively.

The Bayesian Network abstraction scheme accepts a wide range
of feature extraction techniques and discretisation strategies. To
explore their impact on our approach, we use a wide set of BN
abstractions. We have selected two linear feature extraction tech-
niques: Principal Component Analysis (PCA) and Independent
Component Analysis (ICA), and one non-linear technique: radial
basis functions (RBF) kernel-PCA. We also decided to fix the num-
ber of extracted features at three features per layer; this choice
of a relatively small number of hidden features enables us to use
many intervals (5 or 10) for their discretisation while still obtain-
ing reasonably-sized probability tables. We applied both uniform-
and quantile-based discretisation strategies, with or without the ad-
dition of two left- and right-most intervals that do not contain any
element of the training sample. Finally, we considered three hidden
layers to construct the BN abstractions: for the two models, the first
two selected layers directly follow a block of convolutions, while
the last is a dense ReLU layer that is situated few layers before the
NN’s output layer. The layers chosen criteria is based on a belief
that the activation values at these layers capture relevant patterns
w.r.t the NN decisions.

Example Distributions and Distances. We plot in Figure 5
example distributions of probabilities in vectors obtained from a
BN abstraction of the MNIST model. We have annotated each
one of these plots with various measures of distances between
the reference probabilities Pref that is generated using a sample
from the training data set, and the respective six perturbed fea-
tures probabilities P ′f . The shown difference between these two
probability distributions illustrates the internal change in the dis-
tribution represented by the BN. For instance, when applying the
random shift on the first feature that is extracted from the first se-
lected layer i.e., perturbed feature (1,0), the calculated probability



(1, 0) (1, 1) (2, 0) (2, 1) (3, 0) (3, 1)

perturbed feature

(1, 0) 0.003 01 0. 0.008 58 0.008 08 0. 0.
(1, 1) 0. 0.002 57 0.007 83 0.008 65 0. 0.

(2, 0) 0. 0. 0.0143 0. 0.0113 0.008 07
(2, 1) 0. 0. 0. 0.0102 0.008 89 0.0114

(3, 0) 0. 0. 0. 0. 0.0229 0.

(3, 1) 0. 0. 0. 0. 0. 0.0161

Table 2: Example pairwise comparison matrix for six extracted features. Each cell describes the extent to which a feature (rows)
affects the others (columns).

Figure 5: Distributions of probabilities obtained from one example BN abstraction for each perturbed feature, for the MNIST
model. Each plot shows respective distance measures w.r.t. the probabilities obtained from the BN for the clean (unperturbed)
features (Pref ).

distribution P ′(1, 0), coloured with blue, shows a change on prob-
abilistic causal relation that implies the change on the probability
represented by the BN. Hence, we can determine the safety viola-
tion risk by comparing an input probability belonging to the BN
probability distribution.

Sensitivity to Adversarial Distribution Shift. We have
carried out a set of experiments to assess whether the set of three
features extracted for each considered hidden layer allows us to
capture relevant properties of the learnt representations. In partic-
ular, we wanted to check whether the BN abstraction allows us to
detect the shift in the distribution of inputs that occurs when the
NN is subject to adversarial examples. In other words, we want
to discover whether some distance measures indicate that the BN
abstractions capture relevant latent features (and their dependen-

cies) with sufficient precision to associate diverging probabilities
between “legitimate” inputs and adversarially perturbed ones. If
such is the case, we shall conclude that our abstraction scheme and
the associated BN are sufficiently precise to capture relevant de-
pendencies in latent feature values that may not be matched (or
matched too well, depending on the sign of the actual difference in
probabilities) by some adversarial inputs.

To carry out these experiments, we have selected the following
adversarial attacks:

fgsm is the Fast Gradient Sign Method of Goodfellow, Shlens, and
Szegedy (2015);

pgdlinf and pgdl2 are the Projected Gradient Descent approach of
Madry et al. (2017) with L∞ and L2 norm, respectively;

cwlinf and cwl2 are Carlini and Wagner (2017)’s attack with L∞
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Figure 6: Selected distances (vertical axes) between probability vectors obtained for the validation dataset (Pr(Xtest ∈ B)) and
probability vectors (Pr(Xattack ∈ B)) obtained for datasets generated by selected adversarial attacks (shown on each column),
for a range of BN abstractions B. The top (resp. bottom) three rows show results for the MNIST (resp. CIFAR10) model. Hue
indicates the discretisation strategy and the number of intervals. The grey vertical lines show confidence intervals.

and L2 norm, respectively, both targeting 0.1 confidence;

deepfool is the DeepFool attack by Moosavi-Dezfooli, Fawzi, and
Frossard (2016).

Attacks involving the L∞ norm target a maximum of ε = 0.1
perturbation in the input images, whereas pgdl2 targets a maximum
perturbation ε = 10.

For each attack, we have generated an adversarial dataset
Xattack from the validation dataset Xtest for both the MNIST
and CIFAR10 models, where each dataset consists of 10 000
inputs. Then, for each attack and BN abstraction B built and
fit using 20 000 elements drawn from the respective training
datasets, we measured a set of distances p between the vec-
tors of probabilities Pr(Xtest ∈ B) and Pr(Xattack ∈ B), denoted
dp(Pr(Xtest ∈ B) ,Pr(Xattack ∈ B)).

Results and Discussion. Figure 6 shows our results for three
selected distances L2, cos , and AF . We give more detailed results
in Appendix A. Each chart in the figure illustrates the calculated
distances with four colours according to the discretisation method
and the number of intervals in the vertical axis, using three sets
of feature extraction techniques (pca, ica, and rbf.kpca) in the hor-
izontal axis. The used distance metric and attack type are shown
at each chart’s top. First of all, we can observe that some combi-
nations of abstractions and distance measures exhibit notable dif-
ferences between the validation dataset and the adversarial one for
some attacks. For instance, every distance shown allows us to mea-
sure a shift in input distribution for every attack, except Carlini and
Wagner (2017)’s in some cases. Next, although the feature extrac-
tion technique does not have a noticeable impact on any measured
distance, the discretisation strategy certainly plays a role in the abil-
ity of the BN to model each abstracted latent feature and their de-



pendencies with sufficient precision. For example, in the first row
of the CIFAR-10 experiment (L2 distance), the distribution shift is
detected when using the uniform-based discretisation method with
five intervals (distance with blue color).

Overall, the experimental results show that computing distances
between two BN probability distributions, clean and perturbed by
intervals-shift or adversarial attacks, can detect the distribution
shift where it exists. We emphasise that, in the case of adversar-
ial shift, this is measured based on the latent features only. Given
this empirically confirmed property, BN-based computation of fea-
ture importance appears to be one tool, which adds to the growing
set of useful techniques for the detection of important features as
well as of adversarial examples. What is more, it adds a semantic
twist to this analysis and allows for explaining in which way the
changes in the features contribute to the distribution shift.

6 Discussions
In this section, we discuss a few aspects related to either the method
we take or the potential application of the method.

Hyper-parameters in BN Construction. The parametric
nature of the scheme advanced by Berthier et al. (2021) enables
the exploration of a wide range of DNN abstractions. For instance,
in our experiments, the sensitivity to adversarial distribution shift
is relied most on the linear dimensionality reduction techniques
to extract latent features. We plan to conduct further experiments
with more non-linear feature extraction techniques, like manifold
learning (Lee 2000), to assess the properties of extracted features in
extended cases. The effect of more advanced discretisation strate-
gies can also be explored, for instance by relying on kernel density
estimations to partition each latent feature component into inter-
vals that span across ranges of the real line that are either densely
or non-densely exercised by the training sample.

Hyper-parameters in Weight Quantification. There are a
number of building blocks in the weight quantification method (Al-
gorithm 1), including e.g., the perturbation made to generate new
CPTs, the random shifting function, and the distance metrics for
probabilities (Pref ) and (P ′f ). In this paper, we have explored sev-
eral different options of the distance metrics for a comparison. It
would also be useful to study if and how the other hyper-parameters
may affect the overall results.

Utility of Feature Weights. Quantifying the importance of
the hidden features provides three advantages. First, visualising the
most important features provides insight into the model’s internal
decisions by highlighting dominating regions in the feature space.

Second, we can use the importance measurement to design high-
level testing metrics that evaluate the robustness of the DNN. Some
attempts have been made in Berthier et al. (2021), where no feature
weight is taken into consideration.

Third, with FI as a defence, we can utilise the obtained impor-
tance in the training process and force the DNN to adjust its param-
eters according to the features that are most relevant for the predic-
tion. This direction is the most widely adopted strategy. For exam-
ple, Zhang et al. (2021) propose a hierarchical feature alignment
method that computes the difference between clean and adversarial
feature representations and utilises it as a loss function when opti-
mising network parameters, while Bai et al. (2021) suggest that
different channels of a DNN’s intermediate layers contribute dif-
ferently to a specific class prediction and propose a Channel-wise
Activation Suppressing training technique that learns the channel
importance, and leverages them to suppress the channel activation
while training the network.

Utility of Bayesian Network. As suggested, BN can be seen
as an abstraction of the original DNN. It is therefore imperative
to understand how this abstraction may help in either analysing or
enhancing the original DNN. In Berthier et al. (2021), test metrics
are designed over the BN by extending the MC/DC metrics pro-
posed by Sun et al. (2019). As the next step, it would be interesting
to understand if test case generation methods (Sun et al. 2018b),
in particular the one based on symbolic computation (Sun, Huang,
and Kroening 2018), can also be extended to work with BNs. More-
over, it will be useful to see if the generated test cases can be more
nature and diverse when comparing with those generated directly
on DNNs, as done in (Huang et al. 2021).

In addition to testing, it would also be interesting to see if such
abstraction may bring any benefit to e.g., verification (Huang et al.
2017), interpretation of DNN training (Jin et al. 2020), explainable
AI (Zhao et al. 2021c), and safety case (Zhao et al. 2020). For ex-
ample, scalability is the key obstacle of DNN verification due to its
complexity (Ruan, Huang, and Kwiatkowska 2018). Considering
that BN is significantly smaller than the original DNN, it will be
interesting to understand if BN can be used to alleviate the prob-
lem without losing the provable guarantee. A potential difficulty
may be whether and how the verification result on the BN can be
transferred to the DNN.

Similar as the above discussion for testing and verification, the
potential for the BN to be used as an intermediate step for the reli-
ability assessment (Zhao et al. 2021a) and safety case (Zhao et al.
2021b) is worthy of exploration. This may probably require a quan-
tification of the error, or the loss of information, when using BN as
an abstraction of the DNN.

7 Conclusions
In this study, we have advanced a novel technique that employs a
BN abstraction to investigate how to measure the importance of
high level features when they are used by the neural network to
make classification decisions. In addition to the observed ability of
detecting the distribution shifts before and after perturbation, this
will open many doors for future exploration. For example, it will
certainly be interesting to understand if the generated importance
values can support the explanation of the black-box learning model.
It will also be useful if such importance values can be utilised to
improve the training process.
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A Detailed Results for Sensitivity to
Adversarial Shift Experiments

We have plotted in Figure 6 some statistics for a subset of the dis-
tances we have considered for comparing probability vectors. Fig-
ures 7, 8, and 9 show the distances computed for the MNIST model,
and Figures 10, 11, and 12 show the results for the CIFAR10 model.
In these plots, hue still indicates the discretisation strategy. How-
ever, we have discriminated between extended and non-extended
strategies: the prefix ‘-X’ denotes that latent features are discretised
in such a way that left- and right-most intervals do not contain any
(projected) training sample.
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Figure 7: Distances (vertical axes) between probability vectors obtained for the MNIST validation dataset (Pr(Xtest ∈ B))
and probability vectors (Pr(Xattack ∈ B)) obtained for datasets generated by selected adversarial attacks (attack, shown on the
horizontal axes), for a range of BN abstractions B. Every abstraction involves 3 layers for which 3 features have been extracted
using PCA (left-hand side column), ICA (middle), or radial basis functions (RBF) kernel-PCA (right). Plotted data aggregates
five independent runs, and shows confidence intervals.
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Figure 8: See Figure 7.
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Figure 9: See Figure 7.
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Figure 10: Distances (vertical axes) between probabilities obtained for the CIFAR10 validation dataset and datasets generated
by selected adversarial attacks (horizontal axes). See Figure 7 for further details.
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Figure 11: See Figure 10.
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Figure 12: See Figure 10.


