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Abstract—Before autonomous driving vehicles are 

commercialized, they need to undergo a series of rigorous tests. 

This paper first proposes the general process of autonomous 

driving system testing, and then summarizes the research 

progress of autonomous driving vehicle testing from the model, 

simulation, network, and vehicle levels, and analyzes the 

characteristics of various testing technologies. Finally, this 

paper gives suggestions on the development of autonomous 

driving testing technology. 
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I. INTRODUCTION 

In recent years, the pervasive and tremendous 
breakthroughs of deep neural networks (DNNs) promote the 
development of autonomous driving technology. However, 
sometimes it is difficult to guarantee the reliability of the 
autonomous driving system. Banerjee et al. investigated the 
causes of 5,328 failures from autonomous driving systems of 
12 AV manufacturers[1]. As high as 64% of the failures were 
found to be caused by the bugs in the machine learning system. 
The industry and academia have strived to improve the safety 
of the autonomous driving system, they have done a lot of 
research on testing autonomous driving system.  

This paper summarizes the current research of 
autonomous driving testing technology from four aspects: 
model testing, simulation testing, cybersecurity testing, and 
field testing, combined with the system and software quality 
model defined in the ISO/IEC 25010 standard. Research on 
model testing is mainly focused on the adversarial attack. At 
present, there are already some works that can generate 
adversarial examples for street signs and billboards, leading to 
misclassification of the autonomous driving system. In terms 
of simulation testing, many companies have developed 
simulation platforms and scenario databases. The research of 
cybersecurity testing focuses on the vulnerability detection 
and data protection of the terminals and interfaces in the 
vehicle network. Field testing mainly focuses on the 
construction of a proving ground for autonomous driving. 

II. TESTING PROCESS OF AUTONOMOUS DRIVING SYSTEMS 

Autonomous driving system testing is an important 
procedure in the development process of autonomous vehicles, 
it mainly focuses on testing the functional suitability, 
reliability and security defined in the ISO/IEC 25010 standard. 
The testing process of the autonomous driving system 
includes model testing, simulation testing, cybersecurity 
testing, and field testing, as shown in Fig. 1. Model testing, 
simulation testing and field testing mainly test functional 
suitability and reliability of the autonomous driving system, 
and cybersecurity testing mainly tests security of the 
autonomous driving system. 
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Fig. 1. Testing process of autonomous driving systems 

The testing process of the autonomous driving system is a 
continuous cycle. During model testing, the perception model 
is tested using test data sets and adversarial examples. Then 
the simulation platform is used to test the autonomous driving 
system and each control unit. Cybersecurity testing mainly 
focuses on the network security of the autonomous driving 
system and its interface. Field testing is to test the autonomous 
driving vehicle in a proving-ground. During the test, a 
scenario database composed of environment, traffic 
participants, sensors, and other data is generated. The results 
of tests will also be used to update the scenario database, such 
as adding some newly discovered dangerous scenes. 
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III. TESTING TECHNOLOGY FOR AUTONOMOUS DRIVING 

SYSTEMS 

A. Testing for autonomous driving models 

Testing of autonomous driving system models is 
performed by testing datasets, adversarial examples, and other 
methods against perception models. Most current perception 
models are implemented by DNNs, but due to the large 
dimensions of input data for models, DNNs are vulnerable to 
adversarial examples, which is a great concern for the prospect 
of autonomous driving. Many studies have shown that the 
object detection model used for autonomous driving can be 
easily deceived by the existing adversarial attack methods, 
thereby causing errors in autonomous driving decision-
making.Current adversarial attack methods in the field of 
autonomous driving are mainly divided into attacks on the 
object detection model and attacks on LIDAR. 

In 2017, a team of researchers at Columbia University 
proposed DeepXplore[2], an automated DNN testing system 
that uses several existing test inputs as seeds, then modifies 
the test inputs in a continuous loop iteratively through a 
gradient ascent method to maximize the difference between 
the output of the model under test and the output of other 
similar models. Eventually, this system is able to generate a 
new set of test data, which can trigger errors in the judgment 
of the model under test. Experiments on the Udacity challenge 
dataset showed that the system is capable of making the  
DNN-based autonomous driving systems' prediction of the 
car's steering angle incorrect by changing the lightness and 
darkness of the input images, adding noise, and so on. The 
same group followed up with DeepTest[3], removing the 
requirement that DeepXplore must provide multiple DNNs 
with similar functions. DeepTest also makes some changes for 
the generation of test data for autonomous driving systems, 
resulting in a more efficient system for generating data for 
extreme scenarios. 

DeepXplore and DeepTest can generate a large number of 
adversarial examples, but these are very different from real 
scenes, and many extreme scenes such as rainy and foggy days 
are tough to generate by simple image transformation. 
DeepRoad[4] uses Generative Adversarial Networks (GAN) 
to generate more realistic transformed images of rainy and 
snowy days, compare the steering angle prediction results of 
the generated images with results of the original images, 
which can find the scenes that cause errors of DNN in the 
autonomous driving. 

Zhou et al. proposed DeepBillboard, which generates real-
world adversarial examples of billboards that could trigger 
steering errors in autonomous driving systems[5]. It 
demonstrates the possibility of generating real physical-world 
adversarial examples for actual autonomous driving systems. 
Kevin et al. perform a physical-world robustness attack on 
parking road signs (by sticking adversarial patches at specified 
locations on the road signs) to misclassify stop signs as other 
signs of the specified category with 100% probability, as in 
Fig. 2[6]. The authors proposed the RP2 algorithm: Firstly, 
build a model to quantify the target object's physical changes 
(including changes in distance, angle, illumination, etc., and 
transformations such as random cropping of images and 
changes in luminance), then construct a mask of the target 
object to discover "vulnerable regions" on which the attack is 
achieved by masking. 

 

Fig. 2. Attacking stop signs with stickers[6] 

Aishan Liu et al. proposed PS-GAN, which can generate 
adversarial patches, innovatively combining GAN network 
and attention mechanism[7]. PS-GAN can capture the 
sensitivity of spatial distribution to obtain the optimal attack 
locations in order to enhance the attack capability of the 
patches and also ensure a reasonable appearance, as in Fig. 3. 
However, this method does not guarantee that the patch is 
always on the target object. 

 

Fig. 3. The adversarial patches generated by PS-GAN[7] 

Zelun Konget al. proposed PhysGAN, an algorithm that 
generates adversarial examples with physical world resilience 
for autonomous driving systems in a continuous manner[8]. 
Unlike PS-GAN, the input to PhysGAN is a given scene (e.g. 
the content of a billboard, as in Fig. 4), so the generated 
adversarial examples are more realistic. What differs from 
other adversarial attack methods which aim at detection 
classifiers is that PhysGAN attacks autonomous driving 
navigation systems, which are regression models. So the 
authors use the mean squared error and the maximum error of 
the angle of autonomous driving navigation evaluate the result. 

 

Fig. 4. Attacking autonomous driving navigation systems via PhysGAN 

on the McDonald's ads[8] 

The above studies aim at vision-based autonomous driving 
systems, but LiDAR-Adv[9], a joint study of University of 
Michigan, UIUC, and Baidu, breaks through LiDAR systems. 
The researchers connected perturbations of a 3D target to a 
LiDAR scan (or point cloud) by modeling a differentiable 
LiDAR renderer. They then used the differentiable proxy 
function to produce 3D feature aggregations and designed 
different losses to ensure that 3D adversarial examples were 
smooth. In a specific experiment, the researchers compared a 
normal box with a 3D printed adversarial example on the 
Apollo Autopilot system. They found that the LIDAR-
equipped car did not detect the target until it approached the 



adversarial example. In contrast, the car detected the normal 
box at a long distance. 

The University of Toronto, Princeton University in 
conjunction with Uber also proposed a generic 3D adversarial 
object generator to fool LIDAR detectors[10]. In particular, 
the authors placed a generated pseudo-object on top of any 
target vehicle to completely hide the vehicle, resulting in an 
80% success rate of not being detected by LIDAR detectors, 
as shown in Fig. 5. 

 

Fig. 5. Placing an antagonistic object on the target vehicle made the 

vehicle "invisible" to LIDAR[10] 

B. Simulation testing for autonomous driving systems 

The simulation test is to test the autonomous driving 
system and each control unit through the simulation platform. 
Currently, about 90% of autonomous driving tests are 
completed through simulation platforms. Both Scenario 
database and simulation platform are required for simulation 
testing. 

1) Creating Scenario Database 
A scenario is the overall description of the autonomous 

vehicle and environment components over a period, which is 
abundant and complex. The scenario database is a database 
composed of a series of test scenarios that meet certain test 
requirements. The construction of the scenario database is 
generally divided into four steps[11]: data collection, data 
cleaning, information labeling, and scenario clustering. The 
source of scenario data mainly includes real-world driving 
data and simulation data synthesized from real-world driving 
data. The test results of the simulation test will also be used to 
update the scenario database as required. 

At present, many auto companies and autonomous driving 
solution providers have established their own scenario 
databases. Waymo collects simulation scenarios based on 
field tests. After testing autonomous vehicles on public roads 
and proving ground, Waymo accumulates thousands of 
scenario data, creates virtual scenarios based on these data, 
and produces more scenarios by modifying scenario 
parameters. Waymo has released a database of more than one 
thousand scenarios. Automotive Data of China Co., Ltd. has 
initially built a simulation testing scenario database that 
includes nearly 500,000 kilometers of driving data and traffic 
rules, covering important cities such as Beijing, Tianjin, and 
Shanghai. China Automotive Engineering Research Institute 
Co., Ltd. released the "China Typical Scenario Database 
V2.0" in 2019, including hundreds of standard traffic rules 
scenarios, 3,000 empirical scenarios, 50,000 functional 
scenarios, and 150 accident scenarios. Companies such as 

Tencent and Baidu have also released their own databases of 
autonomous driving scenarios. 

2) Simulation platform 
The autonomous driving simulation platform is a system 

that tests autonomous driving functions by simulating traffic 
scenes, vehicle movements, and sensor signals. Its main 
functions include restoring static scenes and dynamic scenes, 
camera and radar simulation, and vehicle dynamics simulation. 
At present, many companies and institutions have developed 
their autonomous driving simulation platforms. 

Carla[12] is an open source free autopilot simulator based 
on unreal engine. It supports flexible configuration of sensors, 
environmental states, dynamic and static traffic participants 
and maps, and can control simulated vehicles through Python 
or C language API. Autoware[13] is an open source software 
for automatic driving technology research. It includes four 
modules: localization, detection, prediction and planning, and 
control. It supports path planning, traffic signal detection, lane 
detection, virtual reality and other functions. PreScan[14] is a 
widely used vehicle driving simulation software product of 
Siemens. It supports the simulation of multiple functions such 
as camera, radar, LiDAR, GPS, and vehicle-to-vehicle 
communication, and can simulate simple traffic scenarios. 
SiVIC[15] is similar to PreScan, but it can provide more 
realistic and complete sensor models. Google developed the 
simulation platform Carcraft, based on the scenario data 
collected by Waymo, combined with high-precision map 
information, to realistically simulate the real traffic 
environment. NVIDIA released the cloud-based NVIDIA 
Drive Constellation simulation system in 2018, which can 
generate realistic data, create various test environments, 
simulate various weather conditions such as rain and snow, 
simulate different roads and terrains, and simulate dazzling 
light during the day and limited vision at night. Microsoft 
open-sourced the cross-platform Unreal Engine simulator 
AirSim in 2017, which supports simulations of drones and 
autonomous driving. It can create a highly realistic traffic 
environment and simulate vehicles and sensors. LG Silicon 
Valley Lab released the open-source autonomous driving 
simulator LGSVL Simulator in early 2019, which supports 
sensor simulation and editable maps, vehicles, weather, traffic 
flow, pedestrians, etc.  

Tencent released the autonomous driving simulation 
platform TAD Sim in 2018, which combines professional 
game engines, industrial level vehicle dynamics models, 
integrated virtual and real traffic flow and other technologies. 
Baidu's self-developed autonomous driving simulation system 
AADS includes a data-driven traffic flow simulation 
framework and a scene picture synthesis framework based on 
image rendering. Researchers of Jilin University 
independently developed the PanoSim, a virtual autonomous 
driving test platform[16]. They analyzed the driving habits of 
drivers based on the platform and proposed ADAS control 
strategies that consider different driving habits. 

C. Cybersecurity testing for autonomous driving systems 

The autonomous driving system is deployed in the 
Intelligent Connected Vehicle(ICV), which can not only assist 
or replace drivers to control a vehicle through advanced 
onboard sensors, controllers, actuators, and other devices but 
also integrate modern communication and network 
technologies to realize Vehicle-to-everything(V2X), complex 
environmental perception, decision making and cooperative 



control of multi-vehicle, etc. The vehicle network technology 
provides the possibility that crackers hack into the 
autonomous driving system or ICV system. Crackers can slow 
down, stop the engine, brake, or do other malicious operations 
to the vehicles by hacking into the cloud account. They may 
also hack into the mobile application to take over the control 
of vehicle such as unlocking and starting engine remotely; 
implant malicious files into the in-vehicle networking (IVN) 
through USB storage media to control the vehicle, etc. 
Yoshiyasu Takefuji listed several cybersecurity incidents, 
such as white hat hackers stopped the engine of a car on the 
highway through a remote man-in-the-middle attack in 2015; 
Ford car's parking assistance module could be forced to 
intervene the control of steering wheel through the CAN 
command named "0x0081"[17]. 

The frequent occurrence of security accidents has 
accelerated the in-depth examination of cybersecurity issues 
of ICV. The security of autonomous driving systems requires 
the support of layered distributed technology, including the 
security of in-vehicle module systems, network-side 
interaction and cloud information processing. The security of 
each layer guarantees the security of ICV and connected 
vehicle system, and ensures the safety of the autonomous 
driving system ultimately. 

In-vehicle terminal

Communication Network

Cellular Network

T-Box

Mobile phone terminal Cloud service platform

IVI GateWay/...ECU

A
u
to

n
o
m

o
u
s d

riv
in

g
 sy

stem
 cy

b
ersecu

rity
 

testin
g

 o
b
jects

In-vehicle Network (CAN Bus)

B
a
ck

en
d

C
a
r

N
e
tw

o
rk

 

Fig. 6. Objects of autonomous driving system cybersecurity testing 

According to the structure of vehicle security operation 
center (VSOC) defined in the white book, "Setting the 
Standard for Connected Cars' Cybersecurity", the objects of 
testing autonomous driving system cybersecurity can be 
classified into cloud service platform, mobile phone terminal, 
in-vehicle terminal, and communication network (Fig. 6). 
Specific testing points for these objects include the following:  

a) Cloud service platform testing concerns more about the 
traditional Web vulnerability and the transmission security 
between the cloud and the other two terminals;  

b) Mobile phone terminal has become the standard 
configuration of ICV so that testers should evaluate whether 
the communication key and communication protocol between 
the mobile and vehicle terminal can be cracked by 
technologies, analyze the communication protocol, and use it 
to forge malicious requests for vehicle control;  

c) In-vehicle terminal testing objects include In-Vehicle 
Infotainment (IVI), Telematics-Box (T-Box), sensors, 
external interfaces, and other components. Generally, IVI, T-
Box and other components contain operating systems, in-
vehicle APPs, and a large number of third-party libraries; 

d) Communication networks are tested for authentication, 
transmission encryption, and protocol security. 

To test the four types of cybersecurity testing objects for 
autonomous driving systems, several researchers not only 
applied existing traditional effective and valuable 
cybersecurity testing methods to cloud service platforms and 
mobile phone terminals, but also proposed testing methods for 
the items of autonomous driving systems that require special 
attention. Wu Lingyun et al. proposed a random forest-based 
CAN bus message anomaly detection method model, which 
effectively detects anomalous data on ICV and improves 
vehicle operation security[18]. Mazloom S et al. created a 
malicious demo application, loaded on a mobile terminal. It 
uses the open MirrorLink interface on an IVI to connect to a 
mobile phone and discovers a heap overflow vulnerability that 
allows an attacker to obtain the control flow of a privileged 
process executing on the IVI[19]. It will further allow 
malicious attacks on the controller of the autonomous driving 
system. Testers can use the same principle to test whether the 
dangerous interface of IVI has been closed using the relevant 
Payload. 

D. Field testing for autonomous driving systems 

Field testing is to test the autonomous vehicle on the real-
world road, typically in a proving ground. The autonomous 
vehicle must be tested in many scenarios and environments in 
a limited field. 

The United States and the European Union have built 
some proving ground for autonomous driving testing. The 
Smart Road was built in Virginia by renovating part of the 
highway, which is 2.2 miles long and can simulate rainy and 
foggy weather by spraying water mist. The Mcity proving 
ground in Michigan contains pavements of different materials, 
and is equipped with abundant traffic signs, signal lights, 
tunnels, and other traffic elements. Google rents the Castle Air 
Force Base in California to test its autonomous vehicles. There 
are various streets, highways, traffic lights, traffic 
roundabouts, etc. inside the proving ground, as well as rainy 
weather simulators. The AstaZero Proving Ground in Sweden 
includes urban roads, highways, multi-lane parallel road, 
roundabouts and intersections, and has become a research and 
development platform for autonomous driving safety 
technology. Shanghai, Hangzhou, Wuhan, Shenzhen and 
some other cities in China also plan to build proving ground 
for autonomous driving testing. 

IV. CONCLUSION 

Testing and verifying the safety of autonomous driving 
systems is an important prerequisite for running autonomous 
vehicles on the road. The difficulty of testing is increasing as 
the level of autonomous driving increases. Currently, the 
industry and academia have carried out a lot of research on 
testing autonomous driving systems and developed 
corresponding tools and technologies to test autonomous 
driving models, systems, networks, and vehicles. A lot of 
achievements have been made in adversarial example 
generation, simulation platform development, network 
vulnerability analysis and proving ground construction. 
However, there are still some unresolved problems in 
autonomous driving system testing. For example, the 
cooperation mechanism of developing the scenario database 
is still inefficient, and the standard of autonomous driving 
system evaluation is not established yet. In the future, it is 
necessary to establish a set of testing standards and tool chains 
for autonomous driving systems to provide forceful supports 



for the development and implementation of autonomous 
driving technology. 
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