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Abstract
Citation count prediction is the task of predicting the number of citations a paper has gained after a period of time. Prior
work viewed this as a static prediction task. As papers and their citations evolve over time, considering the dynamics of the
number of citations over time seems the logical next step. Here, we introduce the task of sequence citation prediction. The
goal is to accurately predict the trajectory of the number of citations a scholarly work receives over time. We propose to view
papers as a structured network of citations, allowing us to use topological information as a learning signal. Additionally,
we learn how this dynamic citation network changes over time and the impact of paper meta-data such as authors, venues
and abstracts. To approach the new task, we derive a dynamic citation network from Semantic Scholar spanning over 42
years. We present a model which exploits topological and temporal information using graph convolution networks paired
with sequence prediction, and compare it against multiple baselines, testing the importance of topological and temporal
information and analyzing model performance. Our experiments show that leveraging both the temporal and topological
information greatly increases the performance of predicting citation counts over time.

Keywords
citation count prediction, graph neural network, citation network, dynamic graph generation

1. Introduction
The problem of predicting citation counts of papers has
been a long-standing research problem. Predicting cita-
tion counts allows us to better understand the relation-
ship between a paper and its impact. However, prior
research has viewed this as a static prediction problem,
i.e. only predicting a single citation count at a static point
in time. This ignores the natural development of the data
as new papers are being published. Here, we propose
to view the problem as a sequence prediction task, with
models then having the ability to capture the evolving
nature of citations.

This, in turn, requires a dataset to contain the papers’
citation counts over a period of time, which adds a tem-
poral element to the data, which can then be encoded
by sequential machine learning models, such as Long
short-term memory models (LSTM) [1]. Additionally,
scholarly documents exhibit a natural graph-like struc-
ture in their citation networks. Given recent develop-
ments in modeling such data [2, 3] and prior research
showing that modeling input as graphs can be beneficial,
we hypothesize that modeling a paper’s citation network
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Figure 1: Illustration of the development of the dynamic
graph through three time steps. Each node represents a paper;
edges are citations between papers. Red nodes represent new
papers in the current time step.

is useful for predicting citation counts over time. In this
paper, we consider citation networks, a dynamic graph
which evolves over time as new citations and papers are
added to the network. Leveraging the structured data
in the graph allows us to discover complex relationships
between papers. We want to tap into that knowledge
and treat the citation data as a network, such that we
can further exploit topological information and not just
temporal information. By doing so, we investigate the
hypothesis of paper citation counts being correlated with
features such as authors, venue, and topics.

We use the well-established Semantic Scholar
dataset [4] to construct our citation network. Its
meta-data allows us to construct a dynamic citation
network which covers a 42 year time-line, with an
updated graph for each year. The Semantic Scholar
dataset’s meta-data also contains information about
each paper’s authors, venue, and topics, allowing us to
study the correlation between these features and the
citation count of a paper when considering the evolving
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nature of the citation network. The correlation between
these features and citation counts is well-known and
studied by prior work [5]. Prior studies show that
citations are correlated and there is a strong correlation
between features such as authors, but are limited by
only predicting a single citation, and not predicting the
natural evolution of a papers growth.

We propose to use the constructed dynamic citation
network (see Section 4.2) to predict the trajectory of the
number of citations papers will receive over time, a new
sequence prediction task introduced in this work. Fur-
thermore, we propose an encoder-decoder model to solve
the proposed task, which uses graph convolutional lay-
ers [6] to exploit the graphs’ topological features and an
LSTM to model the temporal component of the graphs.
We compare our model against a vanilla graph convolu-
tional neural network (GCN) and a vanilla LSTM, which
individually incorporate either the topological informa-
tion or the temporal information, but not both.

Our contributions are as follows: 1) A dynamic cita-
tion network based on the Semantic Scholar dataset. The
dynamic citation network contains 42 time-steps, with an
updated graph at each time-step, based on yearly informa-
tion. 2) We introduce the task of sequence citation count
prediction. 3) A novel encoder-decoder model based on
a GCN and LSTM to extract the dynamic graph’s topo-
logical and temporal components. 4) A thorough study
of the correlation between citation counts and temporal
components.

2. Related Work
The task of predicting a paper’s citations aims to predict
the number of citations which a paper has obtained either
by a given year or after 𝑛 years. The task itself is not
new and has been researched throughout the years, and
multiple different approaches have been tried and shown
to be effective. Some of these studies, have focused on
feature vectors [5, 7] and explored distinct feature vectors’
performance, where they primarily rely on meta-data,
e.g. venue and authors. As peer review data has become
available [8], recent research has focused on using non-
meta-data information, such as peer-reviews [9, 10] to
predict a paper’s citation count.

What is common in existing research is the target: pre-
dicting a single citation count. This count can be set as
one of the following years, or the citation count 𝑛 years
in the future. To predict these citation counts, we see a
variety of different neural network models with distinct
architectures [10, 11], as well as papers which focus on
deeper feature vector analysis, where regression mod-
els are used [12, 7]. A side effect from prior research’s
focus on predicting single citation counts is that the uti-
lized citation networks are static graphs, based on paper

databases such as ArnetMiner [13], Arxiv HEP-TH [14]
and CiteSeerX [15]. These static citation networks are
not suitable for our proposed task because they only con-
tain the topological information at a single point in time.
As longitudinal citation datasets are rare, we derive a
dataset from Semantic Scholar.

Citation networks are not exclusively used for cita-
tion count prediction. Other citation networks such as
Cora [16], CiteSeer [17] or PubMed [16], all well known
benchmark graphs, are used for node classification tasks,
where the task is to predict a paper’s topic. These net-
works are provided with minimal content. They consist
of an adjacency matrix, the connections between cita-
tions, and a simple feature vector for each node of either
0/1-valued vector or a tf-idf vector, based on the dictio-
nary of the paper content. These existing datasets do not
fit our purpose, hence we derive our own, described in
Sec. 4.2.

3. Temporal Graph Neural
Network

Our model is an encoder-decoder model and therefore
consists of two major components. The first component
is the encoder, which takes an adjacency matrix of node
connections and a node feature matrix as input, where
the node feature matrix can e.g. consist of author infor-
mation (illustrated in Figure 2). It uses the topological
information from the graphs and creates feature vectors
containing both the topological node features via a GCN.
It should be noted that due to the use of dynamic graphs,
the encoder generates a sequence of graph embeddings,
one for each graph in the sequence. The second com-
ponent, the decoder, utilizes the sequence of graph em-
beddings created by the encoder. By using an LSTM, we
extract the temporal elements and create a sequence of
citation count predictions (CCP) for each node in the
dynamic graph.

3.1. Problem Definition
While the task of CCP has been researched before, in
this paper, we are interested in predicting a sequence of
citation counts, which to our knowledge is so far unex-
plored.

Let us start by introducing our graph notation. We
denote our dynamic graph as 𝐺 = {𝐺0…𝐺𝑇−1}, where 𝐺𝑡
is a graph, at the given time 𝑡. Each graph in the dynamic
graph set is defined as 𝐺𝑡 = (𝑉𝑡, 𝐸𝑡), where 𝑉𝑡 is the set
of vertices at time 𝑡 and 𝐸𝑡 is the set of edges at time
𝑡. With a given dynamic graph, we aim to predict the
sequence of citations for a given paper. We formalize this
as 𝑦 𝑣 = {𝑦 𝑣1 …𝑦 𝑣𝑇}, where 𝑦 𝑣𝑡 is the number of citations for
𝑣𝑡 ∈ 𝑉𝑡 and 𝑦 𝑣𝑡 = |𝐸𝑣𝑡 |. For our proposed task, we are given



the dynamic graph 𝐺, and are to predict the sequence of
citation counts 𝑦.

3.2. Topological Feature Extraction
One of the central hypotheses we want to examine is if
complex structural dependencies in a citation network
can help predict the citation count of a paper. To test this,
we employ a GCN to extract topological dependencies
from the graphs. We choose a GCN over other methods
as they work in Euclidean space, and are thus easy to
use with other neural architectures such as convolutional
neural networks (CNN) [3].

The GCN uses the data flow between edges in the
graph to create a graph embedding. As such, we can
create an embedding influenced by all of the neighboring
nodes in the graph. In this, we hypothesize that there is
a relationship between the number of citations a given
paper receives and that of its neighbors. The connections
between the papers is described by an adjacency matrix
𝐴. Using our notation, we describe the GCN as follows:

𝐻 (𝑙+1) = 𝜎 (𝐷̃− 1
2 𝐴̃𝐷̃− 1

2𝐻 (𝑙)𝑊 (𝑙)) , (1)

where 𝐴̃ = 𝐴 + 𝐼; 𝐼 is the identity matrix (which enables
self-loops in 𝐴̃); 𝐷̃𝑖𝑖 = ∑𝑗 𝐴̃𝑖𝑗, 𝑙 is the 𝑙’th layer in the

model; 𝜎 is an activation function; and𝐻 (𝑙+1) is the output
of the GCN layer 𝐻 (𝑙). We can then simplify the above
equation:

𝐻 (𝑙+1) = 𝜎 (𝐴̂𝑡𝐻
(𝑙)
𝑡 𝑊 (𝑙)) (2)

where 𝐴̂ is defined as 𝐴̂ = 𝐷̃− 1
2 𝐴̃𝐷̃− 1

2 and 𝑡 is the time
step in the dynamic graph. It should be noted that 𝑡
has been left out in the first equation for simplicity. We
also observe here that by adding multiple GCN layers,
we allow the the graph embeddings to be affected by
extended neighbours.

Since we work on a dynamic citation network, we have
𝑇 distinct adjacency matrices, and we have to create a
graph embedding for each graph in the sequence:

𝑍 = {𝑍0…𝑍𝑇} = {𝑓 (𝑋 , 𝐴𝑡) | 𝐴𝑡 ∈ 𝐴}, (3)

where the function 𝑓 is the GCN network, 𝑍𝑡 ∈ ℝ𝑚×𝑛 is
a single graph embedding of dimensionality 𝑛 with 𝑚
nodes, and 𝑍 is the set of graph embeddings created by
the GCN. It should be noted that 𝑋 is shown as being
independent of time, which is true for some of our node
embeddings. However, some of our node embeddings are
based on citations, which change through time, which
makes 𝑋 dependent on time. We will explore the distinct
node embeddings in a later section. As shown in the
equation, we also keep the same model over time, and
do not change the GCN even though the graph changes.
We instead try to generalize the model, working on all
the graphs in the dynamic graph.

Figure 2: Our proposed encoder-decoder model

3.2.1. Temporal Feature Extraction

With the constructed graph embeddings, containing both
topological information and node information. We want
to extract the temporal information, which we use the
sequence of graph embeddings to do. To extract the
temporal information, we utilize an LSTM, where we can
formalize the input and output as 𝑌 = 𝑙(𝑍), where the
function 𝑙 is the LSTM and 𝑌 ∈ ℝ𝑚∗𝑇 are the CCPs.

3.2.2. Encoder-Decoder

In the final model, we combine the GCN and LSTM in
an encoder-decoder model. The primary challenge in
combining these two models though is that they operate
on vastly different inputs. The GCN operates on entire
graphs and needs all the nodes to appear in the graphs,
including nodes which it intends to predict. The LSTM,
however, does not have this requirement and can work
on batches. To solve this issue in a simple yet effective
approach, we embed the entire graph prior to the LSTM
steps so that in the LSTM step, we can still split the data
into batches for training, validation and testing. While
other approaches have been researched, like embedding
the GCN into the LSTM [18], we found the simple ap-
proach to perform better.

Figure 2 shows the architecture of our model. The
GCN uses two layers to create the graph embedding. The
LSTM is a single one-directional layer whose outputs are
reduced to a sequence of scalars through a linear layer.



4. Dynamic Citation Count
Prediction

As discussed earlier, we differentiate ourselves from prior
work by predicting a sequence of citation counts over
time as opposed to a single final citation count. Datasets
for the latter exist, but are based on paper databases.
However, existing citation networks are not usable for
our task due to the graph of the citation network being
static in those works, i.e., the citation network does not
evolve over time. Given this, we construct a dataset,
where we reconstruct the citation networks, at each time-
step, for the purpose of studying citation count prediction
over time.

4.1. Dataset
The dataset which we used to create our dynamic graph
is based on Semantic Scholar [4].1 The dataset is a col-
lection of close to 200, 000, 000 scientific papers; the size
of a graph of this size requires an immense system to
run experiments on (recall the size of 𝑌 ∈ ℝ𝑚∗𝑇 where
𝑚 is the number of papers). To reduce the dataset to a
manageable size, we only kept papers from the following
venues related to AI, Machine Learning and Natural Lan-
guage Processing: ACL, COLING, NAACL, EMNLP, AAAI,
NeurIPS and CoNLL. With the dataset only containing
papers from the listed venues, we reduced the dataset’s
size to 47, 091 papers. Furthermore, the Semantic Scholar
dataset also holds an extensive collection of meta-data
for each paper. We use this meta-data to construct our
dynamic graph, as well as the graph’s node embeddings.

4.2. Graph Construction
With the dataset reduced to a more manageable size, we
search for an ideal dynamic graph of the citation net-
work. We do this because working with graphs can be
computationally heavy and the size of the graph based
on the full semantic scholar dataset, can make some com-
putations near unfeasible. We define an ideal dynamic
graph as the sequence of graphs which has the largest
connected graph in the final graph and has the most sig-
nificant increase of nodes over time. We do not use the
largest connected graph at each time step, as it can trick
us into selecting a sub-optimal dynamic graph. A sub-
optimal dynamic graph may present itself as the largest
connected graph at a point in time, but will not stay as the
largest connected graph through time, and will contain
less nodes through time, compared to the ideal dynamic
graph. To solve the issue of being tricked into selecting
a less ideal dynamic graph, we have to probe each node
in the data to observe the graphs’ evolution. We define

1https://api.semanticscholar.org/

Algorithm 1: Dynamic Graph Construction

Input: data
Output: G

1 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑_𝑔𝑟𝑎𝑝ℎ𝑠 = dict()
2 for 𝑦 ∈ years do
3 𝑔𝑠 ← find_connected_graphs(𝑑𝑎𝑡𝑎[𝑦])
4 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑_𝑔𝑟𝑎𝑝ℎ𝑠[𝑦] ← sort(𝑔𝑠)
5 end
6 for 𝑝𝑎𝑝𝑒𝑟 ∈ 𝑑𝑎𝑡𝑎[min](𝑦𝑒𝑎𝑟𝑠) do
7 𝑘𝑒𝑦_𝑠𝑖𝑧𝑒[𝑝𝑎𝑝𝑒𝑟] = 0
8 for 𝑦 ∈ years do
9 𝑏𝑒𝑠𝑡 = 0

10 for 𝑔 ∈ 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑_𝑔𝑟𝑎𝑝ℎ𝑠[𝑦] do
11 if 𝑝𝑎𝑝𝑒𝑟 ∈ 𝑔 and |𝑔| > 𝑏𝑒𝑠𝑡 then
12 𝑏𝑒𝑠𝑡 = |𝑔|
13 end
14 end
15 𝑘𝑒𝑦_𝑠𝑖𝑧𝑒[𝑝𝑎𝑝𝑒𝑟]+ = 𝑏𝑒𝑠𝑡
16 end
17 end
18 𝑏𝑒𝑠𝑡_𝑝𝑎𝑝𝑒𝑟 = argmax(𝑘𝑒𝑦_𝑠𝑖𝑧𝑒)
19 𝐺 = dict()
20 for 𝑦 ∈ years do
21 for 𝑔 ∈ 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑_𝑔𝑟𝑎𝑝ℎ𝑠[𝑦] do
22 if 𝑏𝑒𝑠𝑡_𝑝𝑎𝑝𝑒𝑟 ∈ 𝑔 then
23 𝐺[𝑦] = 𝑔
24 break
25 end
26 end
27 end

probing as the process of observing the evolution of the
graph connected to the probed node. This process is auto-
matically performed on all nodes of the largest connected
graph in the final step. By probing all the nodes, we can
choose the sequence of graphs which contains the most
nodes over time. In Algorithm 1, we describe the process
in the form of pseudo-code for a more precise insight in
the process of constructing the ideal dynamic graph.

In Table 1, we show some of the properties of the
last 10 graphs in the dynamic graph. It is clear how the
graph is evolving over time, as can be seen in how both
the number of vertices and edges increases, and how the
degree𝐷 increases, indicating that the nodes in the graph
obtains more citations over time. This indicates that the
dynamic graph reflects the natural growth of a paper’s
citations.

By only using a subset of the nodes from the full graph
to construct the dynamic graph, we ablate some of the
full graph’s properties. One notable property of the full
graph is that the citation count of a paper is tied to the
degree of a node; by using a subset of the full graph
this property does not hold anymore, which leads to the
following definition of the size of the set of edges 𝑦 𝑣𝑡 = |𝐸𝑣𝑡 |



2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

|𝑉 | 14, 584 16, 603 18, 529 20, 760 23, 327 26, 529 29, 293 33, 759 38, 080 38, 168
|𝐸| 103, 519 127, 277 152, 869 181, 666 217, 807 267, 940 308, 186 387, 738 475, 007 476, 015

Mean 𝐷 7.1 7.67 8.25 8.75 9.34 10.1 10.52 11.49 12.47 12.47
Max 𝐷 614 761 923 1, 072 1, 220 1, 371 1, 496 1, 763 2, 084 2, 086

Max citation count 2, 584 3, 110 3, 637 4, 186 4, 740 5, 403 11, 385 20, 893 32, 278 35, 200
Avg. citation count 26.33 27.48 28.87 30.15 31.49 32.94 35.84 38.31 43.0 45.41

Table 1
Key values of the graphs.

changing to the following for a given node 𝑦 𝑣𝑡 ≥ |𝐸𝑣𝑡 |.
Another important point is that removing edges from
the graph removes some of the information contained in
the full graph (e.g. links to papers in other fields). Such
edges are usually connected to more prominent papers
because it is often the high impact papers, which obtain
citations from papers outside the main field.

4.3. Feature Generation
The created dynamic graph nodes are not dependent on
a set of specific features, and we can therefore select
and create a set of features for each node containing our
desired information. With a wide variety of meta-data
fields available, we created a set of distinct features which
we used for our predictions. Furthermore, we studied
how each of these features affect the performance of the
model.

The choice of using authors and venues as features
for our model is based on the hypothesis that authors
listed on a paper have a major impact on the number of
citations gained. We assume the same goes for venues: if
a paper is published at a more highly ranked venue, it is
more likely to gain a large amount of citations compared
to a paper published at a lower ranking venue. We fur-
ther motivate the choice of these two features based on
prior work [5], who shows that author rank and venue
rank are indeed two of the three features that are most
predictive. We motivate the choice of using the abstract
based on the assumption that the abstract of a paper con-
tains information on the topics discussed in the paper,
which can be used to identify if paper’s topic is currently
popular [19]. We further motivate the choice of using
author and venue rank, as prior work shows them to be
the most descriptive features [5]. The following sections
provide short descriptions of the meta-data used to create
these feature vectors and how each of them is calculated.
Abstract: To base our model on more than meta-data, we
use the abstract of the papers to create a feature vector. To
create an embedding of the abstract, we utilize BERT [20],
specifically the pre-trained SciBERT [21] model. SciB-
ERT is a contextualized embedding model trained using
a masked language modeling objective on a large amount
of scholarly literature. Representations from SciBERT

have been shown to be useful for learning downstream
tasks with scientific text, this is why we use them here.
To obtain a feature vector of a given abstract, we tok-
enize the abstract text and pass this through SciBERT.
SciBERT prepends a special [CLS] token for performing
classification tasks, so we use the output representation
of this token as the final feature vector for an abstract.
Author rank: To include the author information, we
created a feature vector which ranks the authors based on
their number of citations sorted by highest to lowest. Due
to many authors having the same amount of citations,
we allow authors to be of the same rank. As the final step
for the feature calculation, we normalize the rankings by
𝑋 ′ = 𝑋−𝑋min

𝑋max−𝑋min
.

Venue rank: Together with the author rank, we also
hypothesize that the venue has an impact on the num-
ber of citations of a paper. Therefore, we also created a
feature ranking for the venues. The feature is calculated
identically to the author rank. It should be mentioned
that the meta-data contains a high amount of different
labels for each of the venues which we are using. We
reduce all the different labels of the same venue down
to a single label for each venue, but keep each venue
separated by year.

5. Experiments
In this section we present our experiments and results,
and explore the importance of exploiting topological and
temporal information.

5.1. Data
We use the constructed dynamic graph for our experi-
ments and test each of the three distinct feature vectors.
A detailed description of the feature vectors and the dy-
namic graph’s construction can be found in Section 4.
We split our data into a training, validation, and test set,
with the following splits: 60%, 20%, and 20%. With the
splits, we achieve a training set consisting of 22, 900, and
a validation and test set of 7, 634. The training, validation
and test sets are generated randomly, but are kept fixed
throughout the experiments.



GCN + LSTM LSTM GCN

Abstract 0.8284 ± 0.0162 1.0164 ± 0.0140 1.279 ± 0.1350
Author 0.7477 ± 0.0166 1.0184 ± 0.0273 1.1089 ± 0.0357
Venue 0.9259 ± 0.1161 1.0414 ± 0.0197 1.0828 ± 0.0030

Author + Venue 0.7572 ± 0.0131 1.0186 ± 0.0240 1.1248 ± 0.0271
All 0.7940 ± 0.0138 1.0152 ± 0.0157 1.3115 ± 0.1681

Table 2
The performance of our 3 models over a 10 year period. The results are reported as the MAE of the log citations. For the
10-year period, our deterministic approach have a MAE of 1.6378.

GCN + LSTM LSTM GCN

Abstract 0.8001 ± 0.0147 1.0149 ± 0.0414 1.6690 ± 0.4404
Author 0.7462 ± 0.0911 1.0179 ± 0.0536 1.3756 ± 0.0334
Venue 0.8525 ± 0.1348 1.0156 ± 0.0388 1.3212 ± 0.0039

Author + Venue 0.7515 ± 0.0889 1.0132 ± 0.0480 1.3598 ± 0.0461
All 0.7803 ± 0.0167 1.0165 ± 0.0383 1.5177 ± 0.1892

Table 3
The performance of our 3 models over a 20 year period. The results are reported as the MAE of the log citations. For the
20-year period, our deterministic approach have a MAE of 2.0796.

Due to the large number of time-steps in the dynamic
graph, we chose to create two different setups for our ex-
periments. One which uses the last 10 years and another,
which uses the last 20 years of the dynamic graph. We
use the later years in the dynamic graph as these years
contain the most papers and the graph has evolved the
most.

While not mentioned in Section 4.3, we perform some
further pre-processing of the data. For the feature vectors
of author rank and venue rank, we perform a normal-
ization of the values. We also perform pre-processing of
the labels due to the high fluctuation of the number of
citations. We take the 𝑙𝑜𝑔(𝑐 + 1) of the citation of a paper
as the labels [22]. Taking the log of the citation increases
the stability of the model during training.

5.2. Experimental Setup
We perform experiments with three distinct models: 1)
Our proposed model, consisting of a GCN and LSTM; 2) a
standard LSTM; 3) a standard GCN. All hyper-parameters
are shared across the models. We evaluate models at
specific times and over time.

For our selected models, we used the Adam [23] op-
timizer, with a learning rate of 0.001. For the GCN we
used two layers, with each layer consisting of 256 hidden
units. Both the GCN and the GCN with LSTM used this
setup. The LSTM was set to have a single uni-directional
layer of 128 hidden units, with the output being reduced
to 1 dimension by a linear layer. For the models using an
LSTM, we its batch size to 256. We ran the models for
1000 epochs and if no update to the best validation score
have been observed over 10 epochs, we terminate the

training early. As mentioned, we used SciBERT to encode
the abstracts, with an output vector of size 768. The mod-
els have been run using random seeds, and each of the
experiments have been executed 10 times. In the results
section, we report the mean and the standard deviation
of the 10 runs.

We compare to a simple deterministic baseline: predict-
ing the mean citation count of the training and validation
at each time step.

5.3. Evaluation Metric
To evaluate the performance of the models, we measure
the mean absolute error, defined as

𝑀𝐴𝐸 = 1
𝑁

𝑁
∑
𝑖=1

|𝑦 − ̂𝑦 |, (4)

where 𝑌 are the citation counts and 𝑌̂ are the predicted
values. We also use the MAE to optimize the model. We
chose to use MAE, instead of mean squared error (MSE),
to mitigate outlier papers which have a high amount
of citations. We additionally use MAE as the training
objective for the same reason.

5.4. Results
As previously mentioned, we ran our experiments on
dynamic graphs of 10 years and 20 years. The results
of the 10 year experiment is shown in Table 2, and the
results of the 20 years experiment is shown in Table 3.
The tables show that our models outperform the simple
deterministic approach. Figure 3 shows results over time.



Figure 3: MAE at each time-step, where left show the MAE for our 10 year experiments and right show the MAE at each
time-step for our 20 year experiments, where the 𝑥-axis shows the time and 𝑦-axis the MAE.

By inspecting the results, one can clearly observe that
the GCN-LSTM has the best performance among the
three models. We further observe that the GCN-LSTM
improves on the performance of the pure GCN and LSTM
individually, indicating that it learns from both the tem-
poral and the topological information provided by the
dynamic citation network. Furthermore, the GCN in-
creases in error going from a 10 year interval to a 20 year
interval, where we see the other models slightly improve.
To further study this, we plot the error of the different
time steps in Figure 3, which show the models’ perfor-
mances over time. By inspecting the plots, we observe a
trend of the pure models i.e. the GCN and LSTM models,
struggle and deteriorate over time, compared to the com-
bined GCN-LSTM model, which keeps improving over
time until it starts plateauing. Comparing the 10-year
and 20-year plots, one can observe that the deterioration
continues, where the 10-year plot stops. It can also be
seen, that the GCN-LSTM keeps improving up until year
10, where it levels out. All of the models decrease drasti-
cally in error up until two time-steps; afterward, the pure
models start deteriorating.

5.5. Discussion
Tables 2 and 3 show the impact of single feature types. We
hypothesize that author information is very predictive,
as shown by prior work. Inspecting the results from the

different feature ablations, we can observe that the author
features performs the best, confirming our hypothesis.
Figure 3 further confirms this, showing that large parts
of the gain of the model over time stems from author
information.

The feature vector created by the venues performs
the worst in both experiments. We hypothesize that
the venues’ performance could be increased if a more
generalized notation for venue meta-data were available.
They are noisy (also due to OCR errors) and have many
spelling variants.

To further study the impact of features, we calculate
the average MAE for each distinct author and venue,
where we use the predictions made by the GCN-LSTM,
trained on the author feature vectors over 20 years. We
show the result for the venues in Table 4 and the ones for
authors in Table 5. One can observe that the difference
between the top and the bottom venue is drastically lower
than the difference between the top and bottom author.
This further indicates that author features are a strongly
predictive feature for citation counts.

We also show the average degree and the number of
papers for each of the venues in Table 4. With a higher
representation of papers in the collection, we expect a
more reliable prediction. This is indeed the case – we
observe the top venues often have a higher number of
papers in their collection. To further analyse this, we



Venue MAE Avg. degree 𝑛
1 COLING 1973 0.04295 1 20
2 AAAI 2020 0.06397 4.67 240
3 NAACL 2019 0.0863 15.25 2160
⋮
185 ACL 1983 0.7714 2 20
186 ACL 1988 0.7794 19.6 100
187 EMNLP 1998 0.8917 4.5 40

Table 4
The top 3 and bottom 3 venues, sorted by the mean MAE,
going from lowest to highest.

Author ID MAE Avg. degree 𝑛
1 32968 0.0131 14 1
2 22037 0.0131 14 1
3 32969 0.0131 14 1
⋮
24536 1375 2.6356 5 1
24537 807 2.6356 5 1
24358 4290 2.6356 5 1

Table 5
The top 3 and bottom 3 authors, sorted by the mean MAE,
going from lowest to highest.

observe the average degree of the papers in the collection,
however, we do not notice a higher performance where
the degree is higher. This indicates that the model is
better at predicting papers with higher citation counts,
because the degree of a node is tightly bound to the
number of citations.

6. Conclusions
In this paper, we propose the task of citation sequence
prediction. We introduce a new dataset of scholarly doc-
uments for this task based on a dynamic citation graph
evolving of 42 years, starting from a single node growing
to a large graph. We further study the effect of tempo-
ral and topological information, and propose a model to
benefit from both information (GCN+LSTM). Our results
show that utilizing both the temporal and topological in-
formation is superior to only utilizing either the temporal
or topological information. Using the proposed model,
we study the effect of different features, to identify which
information is most predictive of a paper’s citation count
over time. We find author information to be the most
predictive and informative over time.

In future work, the impact of training a single GCN
on the dynamic graph could be explored, since the error
over time of the GCN is deteriorates fast.
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