
TableParser: Automatic Table Parsing with Weak
Supervision from Spreadsheets
Susie Xi Rao1,2,3, Johannes Rausch1,3, Peter Egger2 and Ce Zhang1

1Systems Group, Department of Computer Science (ETH Zurich), Stampfenbachstrasse 114, 8092 Zurich, Switzerland
2Chair of Applied Economics, Department of Management, Technology, and Economics (ETH Zurich), Leonhardstrasse 21, 8092 Zurich,
Switzerland
3These authors contributed equally to this work.

Abstract
Tables have been an ever-existing structure to store data. There exist now different approaches to store tabular data physically.
PDFs, images, spreadsheets, and CSVs are leading examples. Being able to parse table structures and extract content bounded
by these structures is of high importance in many applications. In this paper, we devise TableParser, a system capable of
parsing tables in both native PDFs and scanned images with high precision. We have conducted extensive experiments to
show the efficacy of domain adaptation in developing such a tool. Moreover, we create TableAnnotator and ExcelAnnotator,
which constitute a spreadsheet-based weak supervision mechanism and a pipeline to enable table parsing. We share these
resources with the research community to facilitate further research in this interesting direction.

Keywords
table structure parsing, table annotation, Mask R-CNN, weak supervision, domain adaptation

1. Introduction
Automated processing of electronic documents is a com-
mon task in industry and research. However, the lack of
structures in formats such as native PDF files or scanned
documents remains a major obstacle, even for state-of-
the-art OCR systems. In practice, extensive engineering
and ad-hoc code are required to recover the document
structures, e.g., for headings, tables, or nested figures.
Sometimes this is required even for text, e.g., in case of
PDFs built on the basis of scans, especially, low-quality
scans. These structures are hierarchically organized,
which many existing systems often fail to recognize.

With the advance of machine learning (ML) and deep
learning (DL) techniques, parsing documents can be done
more efficiently than ever. As the first end-to-end system
for parsing renderings into hierarchical document struc-
tures, DocParser [1] was recently introduced. It presents
a robust way to parse complete document structures from
rendered PDFs. Such learning-based systems require
large amounts of labeled training data. This problem is

SDU@AAAI’22: The AAAI-22 Workshop on Scientific Document
Understanding at the Thirty-Sixth AAAI Conference on Artificial
Intelligence (AAAI-22), virtual.
Envelope-Open srao@ethz.ch (S. X. Rao); johannes.rausch@inf.ethz.ch
(J. Rausch); pegger@ethz.ch (P. Egger); ce.zhang@inf.ethz.ch
(C. Zhang)
GLOBE https://susierao.github.io/ (S. X. Rao);
https://github.com/j-rausch (J. Rausch); https://https://cae.ethz.ch/
(P. Egger); https://ds3lab.inf.ethz.ch/ (C. Zhang)
Orcid 0000-0003-2379-1506 (S. X. Rao); 0000-0002-9409-4401
(J. Rausch); 0000-0002-0546-1207 (P. Egger)

Twitter https://twitter.com/ds3lab (C. Zhang)
© 2022 Copyright for this paper by its authors. Use permitted under Attribution-
NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

alleviated through a novel weak supervision approach
that automatically generates training data from struc-
tured LaTeX source files in readily available scientific
articles. DocParser demonstrates a significant reduction
of the labeling complexity through this weak supervision
in their experiments.

As a special document type, tables are one of the most
natural ways to organize structured contents. Tabular
data are ubiquitous and come in different formats, e.g.,
CSV (plain and unformatted) and Microsoft Excel (an-
notated and formatted), depending on the file creation.
Many data processing tasks require tables to be repre-
sented in a structured format. However, structured infor-
mation is not always available in rendered file formats
such as PDF. Especially when PDFs are generated from
image scans, such information is missing. Luckily, the ex-
isting matrix-type organization of spreadsheets can assist
to automatically generate document annotations to PDFs.
With spreadsheets as weak supervision, this paper
proposes a pipeline to provide an automated pro-
cess of reading tables from PDFs and utilize them
as a weak supervision source for DL systems.
There are three different types of tasks discussed in

the literature about table processing in PDFs, namely,
table detection, table structure parsing/recognition [2].1

1Table detection is a task to draw the bounding boxes of tables
in documents; table structure recognition/parsing refers to the (ad-
ditional) identification of the structural (row and column layout)
information of tables. We distinguish between bottom-up and top-
down approaches in table structure detection. Bottom-up typically
refers to structure detection by recognizing formatting cues such as
text, lines, and spacing, while top-down entails table cell detection
(see [3, 4, 2]).

mailto:srao@ethz.ch
mailto:johannes.rausch@inf.ethz.ch
mailto:pegger@ethz.ch
mailto:ce.zhang@inf.ethz.ch
https://susierao.github.io/
https://github.com/j-rausch
https://https://cae.ethz.ch/
https://ds3lab.inf.ethz.ch/
https://orcid.org/0000-0003-2379-1506
https://orcid.org/0000-0002-9409-4401
https://orcid.org/0000-0002-0546-1207
https://twitter.com/ds3lab
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Table detection is a popular task with a large body of
literature, table structure parsing and table recognition
were revisited2 after the pioneering work of [7] using
state-of-the-art deep neural networks. Before DL started
to gain success in object detection, table structure pars-
ing was done by bottom-up approaches, using heuristics
or ML-based methods like [8, 9]. See [4, 10] for compre-
hensive reviews on ML methods. The purposes of table
structure detection are either layout detection [3] or in-
formation retrieval [4] from tabular structures, usually
with the former as a preprocessing step for the latter.

The DL-based methods in [7, 11] are among the first to
apply neural networks designed for object detection to
table parsing. Typically, taking pretrained object detec-
tion models e.g., Faster RCNN [12, 13] on benchmarking
datasets like ImageNet [14], Pascal VOC [15], and Mi-
crosoft COCO [16], they fine-tune the pretrained models
with in-domain images for table detection and table struc-
ture parsing (domain adaption and transfer learning). In
some best performing frameworks [17, 18, 19], they all
jointly optimize the structure detection and entity rela-
tions in the structure, as in DocParser.

However, a key problem in training DL-based systems
is the labeling complexity of generating high-quality in-
domain annotations. More generally, an essential limit-
ing factor is the lack of large amounts of training data.
Efforts have been put into generating datasets to enable
tasks with weak supervision. TableBank [20] is built
upon a data set of Word and LaTeX files and extracts
annotations directly from the sources. They use 4-gram
BLEU score to evaluate the cell content alignments. How-
ever, the table layout structure is not of particular focus
in TableBank. PubTabNet [2] enables table detection
and table cell content detection. arXivdocs-target and
arXivdocs-weak by DocParser [1] enables an end-to-end
document parsing system of the hierarchical document
structure.
In this paper, we devise TableParser with inspiration

fromDocParser, due to its flexibility in processing both ta-
bles and more general documents. We demonstrate that
TableParser is an effective tool for recognizing table
structures and content. The application of TableParser to
a new target domain requires newly generated training
data. Depending on the target domain, we specify two
TableParsers: ModernTableParser fine-tuned with na-
tive PDFs and HistoricalTableParser fine-tuned with
scan images. TableParser works in conjunction with
TableAnnotator (Figure 1) which efficiently assists de-
velopers in visualizing the output, as well as help users
to generate high-quality human annotations.3 To gener-

2Some recent works on Cascade R-CNN [5, 6] manage to push
the frontier of table detection. See [1] for a general review on table
detection and [2] for a general review on table recognition.

3For a live demo of table annotations using our annotation tool,
refer to the video under https://github.com/DS3Lab/TableParser/

Figure 1: TableAnnotator.

ate training instances, we develop ExcelAnnotator to
interact with spreadsheets and produce annotations for
weak supervision.

With ExcelAnnotator, we have compiled a spread-
sheet dataset ZHYearbooks-Excel, which is processed
via a Python library on Excel (PyWin324) to leverage
the structured information stored in the spreadsheets.
TableParser is trained with 16’041 Excel-rendered tables
using detectron2 ([21, 22]) and fine-tuned with 17 high-
quality manual annotations in each domain. We have
conducted extensive experiments of domain adaptation.
Finally, we evaluate different TableParsers in two do-
mains and make the following observations:

1. In general, domain adaptation works well with
fine-tuning the pretrained model (𝑀𝑊𝑆 in Fig-
ure 2) with high-quality in-domain data.

2. On the test set of 20 tables rendered by Excel,
withModernTableParserwe are able to achieve an
average precision score (IoU ≥ 0.5) of 83.53% and
73.28% on table rows and columns, respectively.

3. We have tested our HistoricalTableParser on
scanned tables in both historical (medium-
quality, scan-based) and modern tables. Over-
all, HistoricalTableParser works better than Mod-
ernTableParser on tables stored in image scans.

4. Interestingly, we find that ModernTableParser
built on top of DocParser [1] is very robust in
adapting to new domains, such as scanned histor-
ical tables.

We are willing to open source the ZHYearbook-Excel
dataset, TableAnnotator, TableParser system, and its
pipeline to the research communities.5 Moreover, we

blob/main/demo/2021-06-15%2002-05-58.gif.
4https://pypi.org/project/pywin32/ (last accessed: Sep. 30, 2021).
5The source code, data, and/or other artifacts for the complete

TableParser pipeline have been made available at https://github.com/
DS3Lab/TableParser.

https://github.com/DS3Lab/TableParser/blob/main/demo/2021-06-15%2002-05-58.gif
https://github.com/DS3Lab/TableParser/blob/main/demo/2021-06-15%2002-05-58.gif
https://github.com/DS3Lab/TableParser/blob/main/demo/2021-06-15%2002-05-58.gif
https://github.com/DS3Lab/TableParser/blob/main/demo/2021-06-15%2002-05-58.gif
https://github.com/DS3Lab/TableParser/blob/main/demo/2021-06-15%2002-05-58.gif
https://github.com/DS3Lab/TableParser/blob/main/demo/2021-06-15%2002-05-58.gif
https://github.com/DS3Lab/TableParser/blob/main/demo/2021-06-15%2002-05-58.gif
https://github.com/DS3Lab/TableParser/blob/main/demo/2021-06-15%2002-05-58.gif
https://github.com/DS3Lab/TableParser/blob/main/demo/2021-06-15%2002-05-58.gif
https://github.com/DS3Lab/TableParser/blob/main/demo/2021-06-15%2002-05-58.gif
https://github.com/DS3Lab/TableParser/blob/main/demo/2021-06-15%2002-05-58.gif
https://github.com/DS3Lab/TableParser/blob/main/demo/2021-06-15%2002-05-58.gif
https://github.com/DS3Lab/TableParser/blob/main/demo/2021-06-15%2002-05-58.gif
https://github.com/DS3Lab/TableParser/blob/main/demo/2021-06-15%2002-05-58.gif
https://github.com/DS3Lab/TableParser/blob/main/demo/2021-06-15%2002-05-58.gif
https://github.com/DS3Lab/TableParser/blob/main/demo/2021-06-15%2002-05-58.gif
https://github.com/DS3Lab/TableParser/blob/main/demo/2021-06-15%2002-05-58.gif
https://github.com/DS3Lab/TableParser/blob/main/demo/2021-06-15%2002-05-58.gif
https://github.com/DS3Lab/TableParser/blob/main/demo/2021-06-15%2002-05-58.gif
https://github.com/DS3Lab/TableParser/blob/main/demo/2021-06-15%2002-05-58.gif
https://github.com/DS3Lab/TableParser/blob/main/demo/2021-06-15%2002-05-58.gif
https://github.com/DS3Lab/TableParser/blob/main/demo/2021-06-15%2002-05-58.gif
https://github.com/DS3Lab/TableParser/blob/main/demo/2021-06-15%2002-05-58.gif
https://github.com/DS3Lab/TableParser/blob/main/demo/2021-06-15%2002-05-58.gif
https://github.com/DS3Lab/TableParser/blob/main/demo/2021-06-15%2002-05-58.gif
https://github.com/DS3Lab/TableParser/blob/main/demo/2021-06-15%2002-05-58.gif
https://github.com/DS3Lab/TableParser/blob/main/demo/2021-06-15%2002-05-58.gif
https://github.com/DS3Lab/TableParser/blob/main/demo/2021-06-15%2002-05-58.gif
https://github.com/DS3Lab/TableParser/blob/main/demo/2021-06-15%2002-05-58.gif
https://github.com/DS3Lab/TableParser/blob/main/demo/2021-06-15%2002-05-58.gif
https://github.com/DS3Lab/TableParser/blob/main/demo/2021-06-15%2002-05-58.gif
https://github.com/DS3Lab/TableParser/blob/main/demo/2021-06-15%2002-05-58.gif
https://github.com/DS3Lab/TableParser/blob/main/demo/2021-06-15%2002-05-58.gif
https://github.com/DS3Lab/TableParser/blob/main/demo/2021-06-15%2002-05-58.gif
https://pypi.org/project/pywin32/
https://github.com/DS3Lab/TableParser
https://github.com/DS3Lab/TableParser

Finetuning

MWS

Document Rendering

Annotations

Excel

Annotator

DocParser

Parsed Table Structure

Weak Supervision ModernTableParser

HistoricalTableParser

M1

Finetuning

MWS

M2

Human

Heuristics

Human

Heuristics

OCR

MWS

Figure 2: System design of TableParser: Weak supervision, ExcelAnnotator, ModernTableParser and HistoricalTableParser.
𝑀𝑊𝑆: the pretrained model with the dataset ZHYearbooks-Excel-WS. M1: for ModernTableParser, fine-tuned on Excel-rendered
images; M2: for HistoricalTableParser, fine-tuned on scan images.

welcome future contributions to the project to further
increase the usability of TableParser in various domains.

To summarize, our key contributions in this paper are:

1. We present TableParser which is a robust tool
for parsing modern and historical tables stored
in native PDFs or image scans.

2. We conduct experiments to show the efficacy of
domain adaptation in TableParser.

3. We contribute a new pipeline (using ExcelAnno-
tator as the main component) to automatically
generate weakly labeled data for DL-based table
parsing.

4. We contribute TableAnnotator as a graphical
interface to assist table structure understanding
and manual labeling.

5. We open-source the spreadsheet weak supervi-
sion dataset and the pipeline of TableParser to
encourage further research in this direction.

2. TableParser System

2.1. Problem Description
Following the hierarchical document parsing in Doc-
Parser, our objective is to generate a hierarchical struc-
ture for a table which consists of the entities (table, tabu-
lar, table_caption, table_row, table_column, table_footnote)
and their relations in the document tree.

Our ultimate goal of table structure parsing is (1) to es-
tablish row/column relationships between the table cells,
and (2) post-process the established structure and cell
content (e.g., with PDFMiner6 or OCR engines) to enable
a CSV export function. In this paper, we emphasize (1)
and are still in development to enable (2). Our work will

6https://pypi.org/project/pdfminer/ (last accessed: Nov. 11,
2021).

enable a user to parse a table stored in a PDF format and
obtain (i) the location of a certain cell (specified by its
row range and column range) and (ii) the cell content
mapped to the cell location.

2.2. System Components
We introduce the main system components in
TableParser, incl. TableAnnotator, ExcelAnnotator,
ModernTableParser, and HistoricalTableParser.

2.2.1. TableAnnotator.

In Figure 1 we show TableAnnotator, which is mainly
composed of two parts: image panel (left) and document
tree (right). In the code repository7, there is a manual
describing its functionalities in details. In a nutshell,
annotators can draw bounding boxes on the left panel
and create their entities and relationships on the right.
In Figure 1, the highlighted bounding box (the red thick
contour on the left) corresponds to the table_cell on the
second row and second column, indexed by 1-1, 1-1 (the
blue highlight on the right). Note that TableAnnotator
is versatile and can be used to annotate not only tables,
but also generic documents. The output of the tree is in
JSON format, as shown in the following code snippet.

1 [{"id": 28,
2 "category": "table_cell",
3 "properties": "1-1,1-1",
4 "row_range": [1,1],
5 "col_range": [1,1],
6 "parent": 9},
7 {"id": 29,
8 "category": "box",
9 "page": 0,
10 "bbox": [365,332,299,27],
11 "parent": 28}]

7TableAnnotator repo: https://anonymous.4open.science/r/doc_
annotation-SDU-AAAI22.

https://pypi.org/project/pdfminer/
https://anonymous.4open.science/r/doc_annotation-SDU-AAAI22
https://anonymous.4open.science/r/doc_annotation-SDU-AAAI22

(a) Example worksheet from ZHYearbook-Excel-WS. (b) Annotations with DeExcelerator.

(c) Representing bounding boxes in Excel. (d) Visualization of bounding boxes with TableAnnotator.

Figure 3: Working example in ExcelAnnotator.

2.2.2. ModernTableParser.

We train ModernTableParser using the data generated
by weak supervision signals from Excel sheets and fine-
tuned by high-quality manual annotations in this domain.
In Figure 2, we show the system design following the
underlying components of DocParser.8 We denote the
model that produces ModernTableParser as M1.

Weak Supervision with ExcelAnnotator. Now we
present the crucial steps in generating weak supervision
(the model𝑀𝑊𝑆 in Figure 2) for TableParser. These steps
are mainly conducted by ExcelAnnotator in Figure 2 (left).
Take a worksheet-like Figure 3 (a) from our ZHYearbook-
Excel-WS dataset (cf. Section 3), where we see caption,
tabular, and footnote areas. We subsequently use DeEx-
celerator [23] to extract relations from the spreadsheets.

8The model structure of DocParser is sketched in Figure 11 of
the DocParser paper [1], see https://arxiv.org/pdf/1911.01702.pdf.
The model structure (Mask R-CNN) can also be found here.

We utilize DeExcelerator to categorize the content, such
that we can differentiate among table captions, table foot-
notes and tabular data and create a correct auxiliary file
to each PDF containing the structural information of the
represented table(s). Illustrated in Figure 3 (b), in this
case we annotate the table caption and footnote as ‘meta’,
and mark the range of content with ‘content’ and ‘empty’.
We use PyWin32 in Python to interact with Excel, so that
intermediate representations like Figure 3 (c) can be cre-
ated to retrieve entity locations in the PDF rendering.
Concretely, we mark neighboring cells with distinct col-
ors, remove all borders, and set the font color to white.
To summarize, ExcelAnnotator detects spreadsheet meta-
data and cell types, as well as retrieves entity locations
via intermediate representations. Finally, we are able to
load the annotations into TableAnnotator to inspect the
quality of weak supervision (Figure 3 (d)).

https://arxiv.org/pdf/1911.01702.pdf
https://github.com/DS3Lab/TableParser/blob/main/figures/mask-rcnn.drawio.pdf

(a) Bad quality of OCR (left). (b) Good quality of OCR (left).

Figure 4: Google Vision OCR API output (left) of scan image (right).

(a) Input into HistoricalTableParser. (b) Table structure parsing by TableParser.

(c) Merging the layout by TableParser and the OCR bounding boxes. (d) Run LayoutParser [24] on tables.

Figure 5: Working example in HistoricalTableParser.

2.2.3. HistoricalTableParser.

We use the OCR engine from Google Vision API to rec-
ognize the text bounding boxes. Then we convert bound-
ing boxes into the input format TableParser requires.
Now we are able to manually adjust the bounding boxes
in TableAnnotator to produce high-quality annotations.
Note that the quality of OCR highly depends on the ta-
ble layout (see (a) vs. (b) in Figure 4), we often need to
adjust the locations of bounding boxes and redraw the

bounding boxes of individual cells.
In Figure 2 (lower right), we show the system design

by adding an OCR component and a fine-tuning compo-
nent for domain adaptation. We denote the model that
produces HistoricalTableParser as M2. Take Figure 5 (a)
as input, TableParser can produce a parsed layout-like
Figure 5 (b) which can be combined with the OCR bound-
ing boxes in the subsequent steps and export as a CSV

file (Figure 5 (c)).9

For domain adaptation, we assume that an out-
of-domain model performs worse than an in-domain
model in one domain. Namely, we would expect Mod-
ernTableParser to work better on Excel-rendered PDFs
or tables created similarly; on the contrary, we would
expect HistoricalTableParser to perform better on older
table scans.

3. Datasets
We have compiled various datasets to train, fine-tune,
test, and evaluate TableParser.
ZHYearbooks-Excel. We create three datasets

from this source: ZHYearbooks-Excel-WS, ZHYearbooks-
Excel-FT, and ZHYearbooks-Excel-Test, with 16’041, 17,
and 20 tables in each set. On average, it takes 3 minutes
30 seconds for an annotator to produce high-quality anno-
tations of a table. The manual annotations are done with
automatically generated bounding boxes and document
tree as aid.
ZHYearbooks-OCR. We create the dataset

ZHYearbook-OCR-Test, with 20 tables. On average, it
takes 2 minutes and 45 seconds to annotate a table with
the similar annotation aids mentioned above.
EUYearbooks-OCR. We create two datasets from

this source: EUYearbook-OCR-FT and EUYearbook-OCR-
Test, with 17 and 10 tables, respectively. Note that these
datasets contain various languages like Hungarian and
German, with various formats depending on the language.
On average, it takes 8 minutes and 15 seconds to annotate
a table with the similar annotation aids mentioned above.

Miscellaneous historical yearbooks. We ran Mod-
ernTableParser and HistoricalTableParser on Chinese (in
Simplified Chinese) and South Korean historical year-
books (in Classical Chinese) and inspect their outputs
qualitatively (see Section 5.2).
Human labeling efforts. We observe a large vari-

ance in labeling intensity across the datasets. The
EUYearbooks-OCR datasets require more corrections per
table compared to the datasets of modern tables. More-
over, they also require more iterations of human annota-
tions with heuristics as aid.

9c.f. The performance of LayoutParser is quite poor on the tab-
ular data in Figure 5 (d) using the best model from its model zoo
(PubLayNet/faster_rcnn_R_50_FPN_3x). Input and annotated fig-
ures of original size can be found under https://github.com/DS3Lab/
TableParser/tree/main/figures.

4. Computational Setup

4.1. Mask R-CNN
In line with DocParser, we use the same model but with
an updated backend implementation. Namely, we utilize
Detectron2 to apply an updated version of Mask R-CNN
[25]. For technical details of Mask R-CNN, we refer to
DocParser [1]. In Appendix A, we illustrate the architec-
ture of Mask R-CNN used in this paper.

4.1.1. Training Procedure: Weak Supervision +
Fine-Tuning.

All neural models are initialized with weights trained on
the MS COCO dataset. We first pretrain on the weak su-
pervision data ZHYearbook-Excel-WS for 540k iterations,
then fine-tune on our target datasets ZHYearbook-Excel-
FT and EUYearbook-OCR-FT for M1 andM2, respectively.
We then fine-tune each model across three phrases for
a total of 30k iterations. This is split into 22k, 4k, 4k
iterations, respectively. The performance is measured
every 500 iterations via the IoU with a threshold of 0.5.
We train all models in a multi-GPU setting, using 8 GPUs
with a vRAM of 12 GB. Each GPU was fed with one im-
age per training iteration. Accordingly, the batch size
per training iteration is set to 8. Furthermore, we use
stochastic gradient descent with a learning rate of 0.005
and learning momentum of 0.9.

4.1.2. Parameter Settings.

During training, we sampled randomly 100 entities from
the ground truth per document image (i.e., up to 100
entities, as some document images might have less). In
Mask R-CNN, the maximum number of entity predictions
per image is set to 100. During prediction, we only keep
entities with a confidence score of 0.5 or higher.

5. Results and Discussion
Here, we evaluate the performance of TableParser in two
domains quantitatively and qualitatively.

5.1. Quantitative assessment
Metric. We first introduce the evaluation metric for
the object detection/classification tasks. The metric we
report is Average Precision (AP), which corresponds to
an Intersection over Union rate of IoU=.50:.05:.95.10 IoU
ranges from 0 to 1 and specifies the amount of overlap
between the predicted and ground truth bounding box.
It is a common metric used when calculating AP.

10We refer readers to https://cocodataset.org/#detection-eval for
more details on the evaluation metrics (last accessed: Nov. 1, 2021).

https://github.com/DS3Lab/TableParser/tree/main/figures
https://github.com/DS3Lab/TableParser/tree/main/figures
https://cocodataset.org/#detection-eval

Table 1
Fine-tuning results of M1 and M2. M1: for ModernTableParser, fine-tuned on Excel-rendered images; M2: for Histori-
calTableParser, fine-tuned on scan images; FT: fine-tune.

ZHYearbook-Excel-FT EUYearbook-OCR-FT

Category # instances Average Precision Category # instances Average Precision
M1 (FT) M2 (Test) M1 (Test) M2 (FT)

(1) (2) (3) (4) (5) (6) (7) (8)

table 17 90.973 38.034 table 17 67.467 93.011
tabular 17 100.000 57.897 tabular 17 76.423 100.000

table_column 134 96.730 15.253 table_column 260 24.930 81.376
table_row 548 79.228 39.485 table_row 1180 19.256 60.899

Table 2
Test results of M1 and M2 on various data sets.

ZHYearbook-Excel-Test ZHYearbook-OCR-Test EUYearbook-OCR-Test

Category # instances Average Precision Category # instances Average Precision Category # instances Average Precision
M1 M2 M1 M2 M1 M2

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

table 20 85.407 32.821 table 10 56.942 53.356 table 10 57.151 81.907
tabular 21 80.193 43.801 tabular 10 64.175 52.563 tabular 10 85.956 91.429

table_column 176 73.277 14.927 table_column 74 43.094 21.997 table_column 136 36.616 40.509
table_row 513 83.528 48.912 table_row 226 50.055 36.619 table_row 665 25.645 40.229

Performances in various domains. As we discussed
in Section 2, we have developed ModernTableParser to
parse tables with input images rendered by Excel (M1).
Then, to work with historical tables in scans, we adapt
the pretrained TableParser by fine-tuning it on scanned
documents (M2). Now, we present the performances of
M1 and M2 in two different domains in the following
aspects:

1. (P1) the performances on fine-tuning sets on M1
and M2 in Table 1;

2. (P2) the performances on fine-tuning sets as test
sets on M1 and M2 in Table 1;11

3. (P3) the performances on three test sets from two
domains on M1 and M2 in Table 2.

(P1) & (P2). We want to study the impact of fine-
tuning of a pretrained model (using a large body of tables
generated by weak supervision signals). The instances
used to fine-tune must be high-quality in-domain data.
Concretely, we create in-domain annotations for mod-
ern tables (rendered by Excel) and historical tables (from
scans) with high human efforts assisted by automatic
preprocessing: ZHYearbook-Excel-FT and EUYearbook-
OCR-FT, each with 17 tables. Note that the latter has
much denser rows and columns than the former (see
the tables in Figures 3 (a) vs. 5 (a) for an illustration).
It is apparent from Table 1 that the AP performance
of models on the fine-tuning sets is highly optimized
(columns (3) and (8) in Table 1), and it should be better
than using those datasets as test sets. This means, if we

11This means we evaluate the performance of M1 on the fine-
tuned set for M2 (as a test set for M1) and vice versa.

run M1 (fine-tuned by modern tables) on EUYearbook-
OCR-FT (column (7) in Table 1), its performance is worse
than fine-tuning; and if we run M2 (fine-tuned by his-
torical tables) on ZHYearbook-Excel-FT (column (4) in
Table 1), it performs worse than fine-tuning. Interest-
ingly, if we compare the performance of M2 on modern
tables (column (4) in Table 1) with the performance of
M1 on historical tables (column (7) in Table 1), we clearly
see that the latter has a better performance in all other
categories than the class of table_row. This can be ex-
plained by the fact that the model trained on modern
tables is robust in annotating historical tables, at least on
the column level. We see this in Figures 9 and 10, where
ModernTableParser clearly performs better. However,
the algorithm has problems in delineating narrow
and less clearly separated rows. This could be due to
the setting of the maximum number of entities being 100
when predicting per table (Section 4.1).

(P3). In Table 2, we show the performances of
three test sets from two domains (Excel-rendered PDFs
and historical scans), namely, ZHYearbook-Excel-Test,
ZHYearbook-OCR-Test, and EUYearbook-OCR-Test. We
see that M2 which is fine-tuned by historical scans per-
forms worse than M1 on both ZHYearbook-Excel-Test
and ZHYearbook-OCR-Test. Vice versa, M1 that is fine-
tuned by Excel-rendered PDFs performs worse than M2
on EUYearbook-OCR-Test. This suggests that domain
adaptation by fine-tuning the pretrained TableParser
with in-domain high-quality data works well.

Additionally, if we compare the Δ𝐴𝑃|(𝑀1−𝑀2)| under
each test set (e.g., the differences of columns (3) and (4),
of (7) and (8), of (11) and (12) in Table 2), the Δ𝐴𝑃 on

*-OCR-Test in all categories is smaller than ZHYearbook-
Excel-Test, with M1 already achieving medium-high per-
formance on the test set. Although M1 is not fine-tuned
by in-domain historical images, ModernTableParser is
still able to parse historical scans with moderate perfor-
mance. This suggests that TableParser trained onmodern
table structures can be used to parse the layout of tabular
historical scans. Because the cost is often too high in
generating a large amount of training data of historical
scans (see Section 3 for the discussion of labeling efforts),
our approach shows a promising direction in first devel-
oping TableParser that works well for modern tables, and
then adapting TableParser to the historical domain by
fine-tuning on only a few manually annotated historical
scans of good quality.

5.2. Qualitative Assessment
In Figures 7, 8, 9, and 10 in Appendix C, we show the
qualitative outputs of ModernTableParser and Histori-
calTableParser on various types of inputs.12 The quality
of structure parsing varies across inputs, but overall, the
quality is high. Even if we simply useModernTableParser
to parse old scans, it achieves a moderate performance,
sometimes better than HistoricalTableParser (see Figures
9 and 10). This substantiates our claim that knowing the
table structure (caption, tabular, row, column, multi-cell,
etc.) is of foremost importance for parsing tables. We see
that the performance of LayoutParser is quite poor on
the tabular data in Figure 5 (d) using the best model from
its model zoo (PubLayNet/faster_rcnn_R_50_FPN_3x).

6. Related Work
Table Annotation. TableLab [26] provides an active
learning based annotation GUI for users to jointly opti-
mize the model performance under the hood. Layout-
Parser [24] has also promoted an interactive document
annotation tool13, but the tool is not optimized for table
annotations.

Table Structure Parsing. As pioneering works in ta-
ble structure parsing, [3] and [7] have both included a
review of works in table structure recognition prior to
DL. Prior methods typically required high human efforts
in creating the feature extraction. After [7], researchers
have started to revisit table structure parsing with DL
methods, which turned out highly promising compared
to the rule-based (e.g., [3, 4]) and ML-based methods
(e.g., [8, 10, 9]).

12Input and annotated figures of original size can be found under
https://github.com/DS3Lab/TableParser/tree/main/figures.

13See https://github.com/Layout-Parser/annotation-service (last
accessed: Nov. 1, 2021).

The success of DL has marked the revisiting of ta-
ble structure parsing by [7], which inspired follow-up
research [27, 1, 6, 2, 28, 29, 30, 19, 31, 18, 32, 17]. To high-
light a few, [2] proposed EDD (encoder-dual-decoder) to
covert table images into HTML code, and they evaluate
table recognition (parsing both table structures and cell
contents) using a newly devised metric, TEDS (Tree-Edit-
Distance-based Similarity). [29] proposed TGRNet as an
effective end-to-end trainable table graph construction
network, which encodes a table by combining the cell lo-
cation detection and cell relation prediction. [28] used bi-
LSTM on table cell detection by encoding rows/columns
in neural networks before the softmax layer. Researchers
also started discussing effectively parsing tables in the
wild [30], which is relevant to the perturbation tests we
want to conduct for historical tables. TabCellNet by [19]
adopts a Hybrid Task Cascade network, interweaving
object detection and instance segmentation tasks to pro-
gressively improve model performance. We see from the
previous works, the most effective methods [17, 18, 19]
always jointly optimize the cell locations and cell rela-
tionships. In our work, we consider these two aspects by
learning the row and column alignments in a hierarchical
structure, where we know the relationship of entities in
the table (row, column, cell, caption, footnote).

7. Discussion and Conclusion

7.1. Efficiency
PyWin32 uses the component object model (COM), which
only supports single-thread processing and only runs un-
der Windows. But with 20 VMs, we managed to process
a large amount of files. This is a one-time development
cost. On average – on the fastest machine used (with
16 GB memory, 6 cores, each of 4.8GHz max (2.9 base)) –
it took 15.25 seconds to process one document (a work-
sheet in this case). To fine-tune a pretrained TableParser
with 17 images, it takes 3-4 hours to fine-tune the model
with 30k iterations.

7.2. Future Work
Based on our findings, we will further improve the pars-
ing performance on table row/column/cell. Besides, we
plan to enable a CSV-export functionality in TableParser,
which allows users to export a CSV file that attends to
both bounding boxes generated by the OCR’ed and the
hierarchical table structure. We will also benchmark this
functionality against human efforts. Another practical
functionality we add to facilitate users’ assessment of ta-
ble parsing quality, is that we enable TableParser to com-
pute row and column sums when exporting to the CSV
format. Because tables sometimes come with row/col-
umn sums in the rendered format, this functionality can

https://github.com/DS3Lab/TableParser/tree/main/figures
https://github.com/Layout-Parser/annotation-service

help users to assess their manual efforts in post-editing
the CSV output. We also plan to conduct perturbation
tests of table structures and quantify the robustness of
our models in those scenarios. These exercises will be
highly valuable because, as we see in Figure 7, we of-
ten encounter scan images of tables where the rectangle
structures cannot be maintained (the upper right corner).
This brings us to another interesting research direction:
how to efficiently annotate the non-rectangle elements in
a table, e.g., [30] have provided the benchmarking dataset
and method for parsing tables in the wild. Finally, we
would like to benchmark TableParser using the popu-
lar benchmarking datasets such as ICDAR-2013, ICDAR-
2019, TableBank, and PubTabNet. Note that since we
develop TableParser on top of the DocParser [1], where
the reported F1 score has shown superior performance
of our method on ICDAR-2013.

7.3. Conclusion
We present in this work our DL-based pipeline to parse
table structures and its components: TableAnnotator,
TableParser (Modern and Historical), and ExcelAnnota-
tor. We also demonstrate that pre-training TableParser
on weakly annotated data allows highly accurate parsing
of structured data in real-world table-form data docu-
ments. Fine-tuning the pretrained TableParser in various
domains has shown large improvements in detection ac-
curacy. We have observed that the state-of-the-art for
table extraction is shifting towards DL-based approaches.
However, devising suitable tools to facilitate training of
such DL approaches for the research community is still
lacking. Hence, we provide a pipeline and open-source
code and data to invite the active contribution of the
community.

Acknowledgments
Peter Egger acknowledges Swiss National Science Foun-
dation (Project Number 100018_204647) for supporting
this research project. Ce Zhang and the DS3Lab grate-
fully acknowledge the support from Swiss National Sci-
ence Foundation (Project Number 200021_184628, and
197485), Innosuisse/SNF BRIDGE Discovery (Project
Number 40B2-0_187132), European Union Horizon 2020
Research and Innovation Programme (DAPHNE, 957407),
Botnar Research Centre for Child Health, Swiss Data
Science Center, Alibaba, Cisco, eBay, Google Focused
Research Awards, Kuaishou Inc., Oracle Labs, Zurich In-
surance, and the Department of Computer Science at
ETH Zurich. Besides, this work would not be possible
without our student assistants: We thank Ms. Ada Lan-
genfeld for assisting us in finding the Hungarian scans
and annotating the tables; we thank Mr. Livio Kaiser for

building an ExcelAnnotator prototype during his master
thesis. We also appreciate the users’ insights on Layout-
Parser [24] shared by Mr. Cheongyeon Won. Moreover,
the comments and feedback from Sascha Becker and his
colleagues at SoDa Labs, Monash University, are valu-
able in producing the current version of TableParser. We
also thank Sascha and Won for providing us with various
South Korean/European table scans. Finally, we thank
the reviewers at SDU@AAAI22 for carefully evaluating
our manuscripts and their constructive comments.

References
[1] J. Rausch, J. O. Martinez Bermudez, F. Bissig,

C. Zhang, S. Feuerriegel, Docparser: Hierarchi-
cal document structure parsing from renderings,
in: 35th AAAI Conference on Artificial Intelligence
(AAAI-21)(virtual), 2021.

[2] X. Zhong, E. ShafieiBavani, A. Jimeno Yepes, Image-
based table recognition: data, model, and evalua-
tion, in: Computer Vision–ECCV 2020: 16th Eu-
ropean Conference, Glasgow, UK, August 23–28,
2020, Proceedings, Part XXI 16, Springer, 2020, pp.
564–580.

[3] T. Kieninger, A. Dengel, The t-recs table recognition
and analysis system, in: International Workshop
on Document Analysis Systems, Springer, 1998, pp.
255–270.

[4] A. Pivk, P. Cimiano, Y. Sure, M. Gams, V. Rajkovič,
R. Studer, Transforming arbitrary tables into logical
form with tartar, Data & Knowledge Engineering
60 (2007) 567–595.

[5] J. Fernandes, M. Simsek, B. Kantarci, S. Khan,
Tabledet: An end-to-end deep learning approach
for table detection and table image classification
in data sheet images, Neurocomputing 468 (2022)
317–334.

[6] D. Prasad, A. Gadpal, K. Kapadni, M. Visave, K. Sul-
tanpure, Cascadetabnet: An approach for end to
end table detection and structure recognition from
image-based documents, in: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition Workshops, 2020, pp. 572–573.

[7] S. Schreiber, S. Agne, I. Wolf, A. Dengel, S. Ahmed,
Deepdesrt: Deep learning for detection and struc-
ture recognition of tables in document images, in:
2017 14th IAPR international conference on docu-
ment analysis and recognition (ICDAR), volume 1,
IEEE, 2017, pp. 1162–1167.

[8] D. Pinto, A. McCallum, X. Wei, W. B. Croft, Ta-
ble extraction using conditional random fields, in:
Proceedings of the 26th annual international ACM
SIGIR conference on Research and development in
informaion retrieval, 2003, pp. 235–242.

https://sites.google.com/view/sdu-aaai22/home

[9] W. Farrukh, A. Foncubierta-Rodriguez, A.-N. Ciub-
otaru, G. Jaume, C. Bejas, O. Goksel, M. Gabrani,
Interpreting data from scanned tables, in: 2017
14th IAPR International Conference on Document
Analysis and Recognition (ICDAR), volume 2, IEEE,
2017, pp. 5–6.

[10] Y. Wang, I. T. Phillips, R. M. Haralick, Table struc-
ture understanding and its performance evaluation,
Pattern recognition 37 (2004) 1479–1497.

[11] S. R. Qasim, H. Mahmood, F. Shafait, Rethink-
ing table recognition using graph neural networks,
in: 2019 International Conference on Document
Analysis and Recognition (ICDAR), IEEE, 2019, pp.
142–147.

[12] J. Long, E. Shelhamer, T. Darrell, Fully convolu-
tional networks for semantic segmentation, in: Pro-
ceedings of the IEEE conference on computer vision
and pattern recognition, 2015, pp. 3431–3440.

[13] S. Ren, K. He, R. Girshick, J. Sun, Faster r-cnn:
Towards real-time object detection with region pro-
posal networks, Advances in neural information
processing systems 28 (2015) 91–99.

[14] O. Russakovsky, J. Deng, H. Su, J. Krause,
S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, et al., Imagenet large scale
visual recognition challenge, International journal
of computer vision 115 (2015) 211–252.

[15] M. Everingham, L. Van Gool, C. K. Williams,
J. Winn, A. Zisserman, The pascal visual object
classes (voc) challenge, International journal of
computer vision 88 (2010) 303–338.

[16] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Gir-
shick, J. Hays, P. Perona, D. Ramanan, C. L. Zitnick,
P. Dollár, Microsoft coco: Common objects in con-
text, 2015. arXiv:1405.0312.

[17] S. Raja, A. Mondal, C. Jawahar, Table structure
recognition using top-down and bottom-up cues,
in: European Conference on Computer Vision,
Springer, 2020, pp. 70–86.

[18] X. Zheng, D. Burdick, L. Popa, X. Zhong, N. X. R.
Wang, Global table extractor (gte): A framework
for joint table identification and cell structure recog-
nition using visual context, in: Proceedings of the
IEEE/CVF Winter Conference on Applications of
Computer Vision, 2021, pp. 697–706.

[19] J. Jiang, M. Simsek, B. Kantarci, S. Khan, Tabcellnet:
Deep learning-based tabular cell structure detec-
tion, Neurocomputing 440 (2021) 12–23.

[20] M. Li, L. Cui, S. Huang, F. Wei, M. Zhou, Z. Li,
Tablebank: A benchmark dataset for table detection
and recognition, 2019. arXiv:1903.01949.

[21] K. He, G. Gkioxari, P. Dollár, R. Girshick, Mask
r-cnn, in: 2017 IEEE International Conference
on Computer Vision (ICCV), 2017, pp. 2980–2988.
doi:10.1109/ICCV.2017.322.

[22] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, R. Girshick,
Detectron2, https://github.com/facebookresearch/
detectron2, 2019.

[23] J. Eberius, C. Werner, M. Thiele, K. Braunschweig,
L. Dannecker, W. Lehner, Deexcelerator: a frame-
work for extracting relational data from partially
structured documents, in: 22nd ACM Interna-
tional Conference on Information and Knowledge
Management, CIKM’13, San Francisco, CA, USA,
October 27 - November 1, 2013, He, Qi; Iyengar,
Arun; Nejdl, Wolfgang; Pei, Jian & Rastogi, Ra-
jeev, 2013, pp. 2477–2480. URL: http://doi.acm.org/
10.1145/2505515.2508210.

[24] Z. Shen, R. Zhang, M. Dell, B. C. G. Lee, J. Carlson,
W. Li, Layoutparser: A unified toolkit for deep
learning based document image analysis, arXiv
preprint arXiv:2103.15348 (2021).

[25] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learn-
ing for image recognition, in: Proceedings of the
IEEE conference on computer vision and pattern
recognition, 2016, pp. 770–778.

[26] N. X. R. Wang, D. Burdick, Y. Li, Tablelab: An
interactive table extraction system with adaptive
deep learning, in: 26th International Conference
on Intelligent User Interfaces, 2021, pp. 87–89.

[27] Z. Chi, H. Huang, H.-D. Xu, H. Yu, W. Yin, X.-
L. Mao, Complicated table structure recognition,
arXiv preprint arXiv:1908.04729 (2019).

[28] Y. Li, Y. Huang, Z. Zhu, L. Pan, Y. Huang, L. Du,
Z. Tang, L. Gao, Rethinking table structure recog-
nition using sequence labeling methods, in: Inter-
national Conference on Document Analysis and
Recognition, Springer, 2021, pp. 541–553.

[29] W. Xue, B. Yu, W. Wang, D. Tao, Q. Li, Tgrnet: A
table graph reconstruction network for table struc-
ture recognition, arXiv preprint arXiv:2106.10598
(2021).

[30] R. Long, W. Wang, N. Xue, F. Gao, Z. Yang, Y. Wang,
G.-S. Xia, Parsing table structures in the wild, in:
Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, 2021, pp. 944–952.

[31] D. Nazir, K. A. Hashmi, A. Pagani, M. Liwicki,
D. Stricker, M. Z. Afzal, Hybridtabnet: Towards
better table detection in scanned document images,
Applied Sciences 11 (2021) 8396.

[32] S. Luo, M. Wu, Y. Gong, W. Zhou, J. Poon, Deep
structured feature networks for table detection and
tabular data extraction from scanned financial doc-
ument images, arXiv preprint arXiv:2102.10287
(2021).

http://arxiv.org/abs/1405.0312
http://arxiv.org/abs/1903.01949
http://dx.doi.org/10.1109/ICCV.2017.322
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
http://doi.acm.org/10.1145/2505515.2508210
http://doi.acm.org/10.1145/2505515.2508210

A. DocParser Mask R-CNN
For technical details of Mask R-CNN, we refer to Doc-
Parser [1]. In Figure 6, we illustrate the Mask R-CNN
model used.

ResNet
101 Feature MapsFPN

RoI
Align

Fully
Connected

Layers

Bounding Box Regression

Class Prediction

Convolution
Layers Mask Prediction

Input
Image

Candidate
Regions

RPN

Figure 6: Mask R-CNN overview.

B. Online Resources
The source code, data, and/or other artifacts for the com-
plete TableParser pipeline have been made available at
https://github.com/DS3Lab/TableParser.

The 10-minute lightning presentation at SDU@AAAI-
22 to the paper could be found under this recording, start-
ing at 1:42:35.

C. Images for Qualitative
Assessment

As we have discussed in Section 5.2, we show the
qualitative outputs of ModernTableParser and Histor-
icalTableParser on various types of inputs in Figures 7, 8,
9, and 10.14 The quality of structure parsing varies across
inputs, but overall, the quality is high.

14Input and annotated figures of original size can be found under
https://github.com/DS3Lab/TableParser/tree/main/figures.

https://github.com/DS3Lab/TableParser
https://sites.google.com/view/sdu-aaai22/home
https://sites.google.com/view/sdu-aaai22/home
https://www.youtube.com/watch?v=y7QtPEht0bI&ab_channel=SDUAAAI21
https://github.com/DS3Lab/TableParser/tree/main/figures

Figure 7: Hungarian table parsed by ModernTableParser (left) and HistoricalTableParser (right).

Figure 8: German table parsed by ModernTableParser (left) and HistoricalTableParser (right).

Figure 9: South Korean table parsed by ModernTableParser (left) and HistoricalTableParser (right).

Figure 10: Chinese table parsed by ModernTableParser (left) and HistoricalTableParser (right).

	1 Introduction
	2 TableParser System
	2.1 Problem Description
	2.2 System Components
	2.2.1 TableAnnotator.
	2.2.2 ModernTableParser.
	2.2.3 HistoricalTableParser.

	3 Datasets
	4 Computational Setup
	4.1 Mask R-CNN
	4.1.1 Training Procedure: Weak Supervision + Fine-Tuning.
	4.1.2 Parameter Settings.

	5 Results and Discussion
	5.1 Quantitative assessment
	5.2 Qualitative Assessment

	6 Related Work
	7 Discussion and Conclusion
	7.1 Efficiency
	7.2 Future Work
	7.3 Conclusion

	A DocParser Mask R-CNN
	B Online Resources
	C Images for Qualitative Assessment

