
TileTerror: A System for Procedurally Generating 2D Horror Maps

Arunpreet Sandhu1

Kyle Mitchell2

Joshua McCoy3

University of California, Davis
Davis CA 95616, USA

1asisandhu@ucdavis.edu
2kdmitch@ucdavis.edu
3jamccoy@ucdavis.edu

Abstract

Procedural content generation (PCG) algorithms pervade the 
world of game development. They are useful tools that al-
low creators to unshoulder a degree of authorial burden of 
non-trivial virtual worlds. Such a goal necessitates a well-
defined m odel o f w hat t he a lgorithm i s p roducing. I n this 
work, a PCG system called TileTerror is presented that uses 
a model of horror constructed from a ludological analysis 
of well-known horror games to embed horror story features 
in a procedurally generated 2D tilemap. The horror features 
found in the ludology are separated into a distinct hierarchy: 
low-level features and high-level features. These features are 
used in conjunction with a procedurally generated tilemap 
to create an annotated map denoting candidate locations for 
strong horror moments. This system is evaluated using a se-
ries of pathfinding agents which score the annotated tilemap. 
TileTerror represents a first step into exploring what story ele-
ments can be embedded in procedurally generated constructs 
like 2D tilemaps.

Introduction
From fully-generated simulations with Dwarf Fortress 
(Bay12 Games 2006) to dungeon crawlers like Unexplored 
(Ludomotion 2017) to social worlds within Prom Week (Mc-
Coy et al. 2011), many video games today use procedural 
content generation (PCG) systems to create virtual worlds. 
The common thread among gameplay-pervasive PCG tech-
niques is creating a cohesive experience for the player, such 
as generating content for gameplay or sound or narrative. 
Such PCG techniques include modeling physics to generate 
platformer levels (Summerville et al. 2020), modeling mu-
sic to create themes for nonplayer character (NPC) music 
(Washburn and Khosmood 2020), and modeling of commu-
nication to generate dialogue (Horswill 2020).

PCG techniques are necessary for generating non-trivial 
virtual worlds. We say this to focus on how each game treats 
design differently; for example, a platformer is concerned 
with a different set of design goals than a shooter game. In 
turn, the virtual worlds generated by PCG algorithms are 
only as good as the model, and how well the model maps to

Copyright © 2021 for this paper by its authors. Use permitted 
under Creative Commons License Attribution 4.0 International 
(CC BY 4.0).

the original design constraints and goals. In a similar vein,
our work attempts to build cohesive worlds by modeling the
horror genre for the procedural generation of annotated 2D
tilemaps.

The horror genre has received academic attention from
film and literary studies to interactive experiences (Perron
2009b; Therrien 2009). We chose horror because of the fre-
quent use of environmental storytelling in levels to evoke
feeling. We analyzed well-known horror games to build our
model of low and high-level features. We restricted our
model to two horror subgenres: slasher and psychological
horror. We did this to keep the model concise and better
understand the output of our PCG system, TileTerror. This
should be considered the first step towards a more robust
horror model. We define these features in the technical de-
scription of our system. TileTerror uses a design-oriented
version of WaveFunctionCollapse (WFC), a PCG algorithm
for tilemap generation (Sandhu, Chen, and McCoy 2019).
Using a graveyard tileset as input to WFC, TileTerror gen-
erates a level, mapping low-level features to individual tiles
and then annotates them for evaluation.

Thus, this paper contributes a PCG system that gener-
ates 2D tilemaps and evaluates their opportunities for hor-
ror. First, this paper describes a domain decomposition of
horror aspects in video games, which features level design
models that promote specific horror types a player expe-
riences. Next, this paper describes the system architecture
of TileTerror, which consists of two major parts: a prepro-
cessing algorithm and a generator. Finally, five pathfinding
agents analyze the tilemap for evaluation. Each pathfinding
agent maps to a possible player type, inspired by the persona
evaluations by Holmgård et al. (2019). Our system offers a
unique bottom-up approach to this daunting task and an ini-
tial evaluation system for our generated artifacts.

Related Works
From the drama manager of Left 4 Dead (Valve 2008)
to the character AI of Alien Isolation (Creative Assembly
2014) to the reactive agents within FEAR (Monolith Pro-
ductions 2005), horror AI dips into different areas of design.
Most horror AI focuses on character or pacing. But some
games like Dead By Daylight (Behaviour Interactive 2016),



an asymmetric player versus player horror game, place key
game objects randomly on a 3D map. But the level gener-
ation is minimal at most, since objects are the only things
changing, and not the parts of the 3D world. Inspired by this
kind of level dynamic, TileTerror plans to expand to gen-
erating entire horror levels, not just randomizing objective
locations like in Dead By Daylight.

Another inspiration for this work is Tanagra (Smith,
Whitehead, and Mateas 2010) and how it generates levels
through reactive planning via underlying beats, capturing
2D platformer pacing. Tanagra uses ABL, A Behavior Lan-
guage (Mateas and Stern 2005), for beat generation, and
Choco, a constraint solver, uses those beats to generate a
satisfying configuration for the partially solved level, which
inspired TileTerror. But we use WFC and focus on 2D top-
down horror tilemaps.

Yet another inspiration for TileTerror is Subcutanean
(Reed 2020), a procedurally generated psychological hor-
ror book, which focuses on two characters discovering more
about themselves and their relationship. Written in a way
where no two copies are the same, Subcutanean uses PCG
techniques to keep the experience different for each reader.
But the overall form of the story remains intact throughout
the generation. Because of its horror roots and PCG tech-
niques, Subcutanean is one of the closest siblings to TileTer-
ror.

Games are the confluence of multiple creative fields, as
Liapis et al. (2019) argue, and thus there is a heavy autho-
rial burden that arises. PCG techniques lower this authorial
burden by offloading work to an algorithm. Of all the cre-
ative outlets within games, world generation is one of the
most fertile grounds for PCG, such as Perlin Noise to gener-
ate 3D worlds, as in Minecraft (Xbox Game Studios 2011),
or mixing hand-authored content with the level generation,
as in Dead Cells (Motion Twin 2017). Other games, such as
Caves of Qud (Freehold Games 2019), use PCG techniques
to generate the entire game world. But there hasn’t been a
technique, from our search, that focuses on how genre in
particular impacts level generation.

The Horror Genre in TileTerror
This section discusses how TileTerror treats horror. First, we
define horror from a games studies perspective in terms of
two overlapping horror subgenres: slasher and psycholog-
ical. Subgenres were chosen over the overall horror genre
to avoid cluttering the high-level features with non-related
genre tags when evaluating for subgenres. Then, an analysis
of well-known horror games is provided which showcases
how each game uses our identified set of low- and high-level
features contained in the model.

A Word on Genre
Since the horror genre is the focus of TileTerror, this work
defines the term genre as a loose definition, as described by
Taylor (2009). By treating the genre as descriptive rather
than prescriptive, TileTerror treats the horror genre as a col-
lection of techniques and tropes. The jumpscare is one such
technique that is commonly used across media, while the

seemingly abandoned, isolated structure meant to trap indi-
viduals could be considered an example trope.

Slasher and Psychological Horror
Slasher horror features a character or cast of characters
that face a threat that stalks them, eliminating characters
throughout the story. The name has cinematic roots, with
Psycho (Hitchcock 1960) being a foundational movie for the
slasher genre. The setting of a slasher is often well-isolated
from outside help or means of escape. Until Dawn (Super-
massive Games 2015) exemplifies this by placing the main
characters in a secluded location and eliminating characters
based on the player’s choices.

In contrast, psychological horror focuses on a character’s
mental, emotional, and psychological states to frighten and
unsettle the player. Psychological horror often uses mys-
tery, uncertainty, and unreliability surrounding the charac-
ters, plot, and setting to heighten tension and paranoia. A
cinematic exemplar of this genre is The Thing (Carpenter
1982), throughout which the audience constantly questions
who is the monster and who is still a human. A game exem-
plar is Pathologic 2 (Ice-Pick Lodge 2019), where the sur-
realistic, unreliable world leads the player to feel a sense of
dread.

Ludological Analysis
Below are game examples that showcase both slasher and
psychological aspects and the importance of environmental
features, such as ambient creep, low visibility, jumpscare,
and isolation—the four features used in our model.

Amnesia: The Dark Descent Amnesia: The Dark De-
scent (Frictional Games 2010) focuses on Daniel, who
awakes in the Prussian Brennenburg Castle with no mem-
ory of his past. Daniel must navigate the decaying castle,
escaping from surreal monstrosities while keeping himself
sane. Amnesia draws on the balance between darkness and
light, so much so that an entire mechanic revolves around
it: If Daniel finds himself in a dark space without light, he
will lose his sanity, visually warping his perception of the
world. Ambient creep lives in every room within the castle,
showing itself as maddening drops of water pouring in from
broken stone ceilings, the oscillation between silence and
startling creaks or screams, the constant dirge of halls once
occupied. The immediate isolation of the castle–its thin cor-
ridors and crowded rooms–elevates the horrors by creating
the necessary atmosphere in which monsters can success-
fully jumpscare the player.

Alien: Isolation Alien: Isolation places the player in the
shoes of Amanda Ripley, who becomes trapped on a dam-
aged space station, the Sevastopol. It is revealed to the
player that Sevastopol has become the hunting ground for
the Xenomorph, the antagonist from the Alien (Ridley 1979)
film franchise. The player must complete objectives to get
off Sevastopol alive, but the Xenomorph hunts the player
throughout the ship, popping out of vents and shocking
the player with jumpscares. The Xenomorph encounters be-
come far more terrifying because of Sevastopol’s design,



like its use of low lighting to hinder sight or having the
player move through grim settings, establishing a heavy at-
mosphere. These choices highlight the importance of low
visibility and ambient creep to help deliver a horror atmo-
sphere, making moments even more terrifying.

Misao In the 2D world of Misao (Sen 2011), the player
follows a young woman named Aki, a classmate of the titu-
lar character Misao. A target of bullying, Misao goes miss-
ing three months before the start of the story. Aki begins
hearing Misao’s voice in class. Later, the school is torn from
the world, trapping the students in a demonic dimension.
Misao builds ambient creep and atmosphere by its horror
tileset, which contains bones, blood, and tombstones. While
Misao does not lean on light and darkness to block sight,
the designers use objects to hinder vision. At one point, Aki
finds herself in a dismal laboratory with large vats situated
in the upper portion of the map, occluding the tiles around
them. The player can guide Aki behind these vats to investi-
gate what they hide, but a jumpscare awaits them: a shadowy
fiend emerges and attacks Aki.

Transcending the Z-Dimension Alien Isolation’s Sev-
astopol station, Amnesia’s Brennenburg Castle, and Misao’s
supernatural school succeed in environmental story-
telling—in that they provide enough set decoration to estab-
lish a horror atmosphere. Even though Sevastopol and Bren-
nenburg Castle benefit from 3D environments and lighting
systems, 2D horror manages to create a horror atmosphere
by using appropriate tilesets and similar horror techniques,
like jumpscares and isolation.

Technical Description
This section provides a walkthrough of our technical im-
plementation, as shown in Figure 1. We begin by describ-
ing the various components involved in the generation pro-
cess. First, there is a degree of preprocessing involved with
the selection of a tileset that exhibits the low-level features
identified in our ludological analysis; identifying the intrin-
sic local constraints of the chosen tileset; and designing any
partial patterns of tiles we wish to be present in the out-
put. This work uses a graveyard-themed tileset1. Second,
both the original tileset with its intrinsic constraints and the
added constraints of any partials are given as input to WFC,
which generates the remaining unsolved sections of the out-
put. Third, a feature detector analyzes the solved tilemap,
creating an annotated map of low- and high-level features
combined, which are visualized in Figure 3. Lastly, we pro-
vide a description of our evaluation process, which involves
a series of pathfinding agents that solve the fully annotated
tilemap and score it based on its potential for horror.

Preprocessing: Local Constraints
Critical components of WFC are hand-authored neighbor
pairings that are made with design domain knowledge. In
our work that uses the graveyard tileset, for example, it
makes reasonable sense that tombstone tiles can appear next
to each other. Thus, WFC uses these neighbor constraints

1https://angrysnail.itch.io/pixel-art-graveyard-tileset

and the tileset to generate graveyard tilemaps. The simple
stress test for this work was generating a tilemap with a
row of tombstones and one mausoleum; however, TileTerror
wasn’t always able to generate this particular construction.
To both help WFC generate appropriate levels and to allow
the designer to have more agency in the generation process,
our system includes support for additional preprocessing in
the way of designerly partial patterns, or more simply, par-
tials.

Preprocessing: Solving for Partials
To overcome multi-tile design constraints, TileTerror intro-
duces partially solved tilemaps. Figure 2 shows an example
of a tilemap partial; they are hand-authored designs, like the
set of tiles that collectively illustrate a unified mausoleum.
To achieve this effect, TileTerror takes the tilemap partials
and places the partials within the map, ensuring no overlap.
TileTerror generates a 2D matrix, representing a 2D tilemap,
setting each cell to false, stating that the cell hasn’t been
used yet for the partial generation. The algorithm randomly
chooses a location, checking if the tilemap partial can fit.
If the partial is too big, or the space already has another
partial, the algorithm will move to a new location, trying to
find space for the partial. If there is no space, the solver will
move on to another partial until there are no more. If there is
space, the algorithm will resolve the undecided sub-matrix
to the partial. After generating this partially solved tilemap,
TileTerror inputs the results into WFC.

Generation: WaveFunctionCollapse
WaveFunctionCollapse then takes in both the partially
solved map and the local neighbor constraints. Using the
partially solved map, WFC generates a new 2D matrix,
where each cell contains an array of true booleans, effec-
tively creating a 3D tensor. Each boolean represents a tile
from the tileset.

WFC generates a choice heuristic by using an entropy cal-
culation for each cell. The value represents how stable a cell
is, and the lower the entropy value is, the closer a cell is
to stability. Stability in WFC refers to how close a boolean
array is to containing only one true value. WFC uses the
entropy value when choosing matrix cells, prioritizing cells
with the lowest entropy score.

Upon generating the entropy value, WFC generates a set
of neighbors for each tile. This set contains the four cardinal
directions for each tile. Each tile must have a neighbor for all
four directions, and if a tile does not have a neighbor for one
of the four, it will be incompatible with whatever neighbors
it borders, at least with the WFC variant TileTerror uses.

WFC chooses a random cell and chooses a random
boolean index to keep true, switching all other booleans
to false. WFC updates the adjacent neighbors based on the
neighbor constraints, validating each neighbor and ensuring
it is still compatible with the newly chosen tile. If there are
any incompatible tiles, WFC sets their boolean flags to false
within the boolean array, propagating the removed tiles to
the adjacent tile’s neighbors, beginning the validation pro-
cess once more. This removal propagation stops when all
matrix cells are compatible with their adjacent neighbors; or



Figure 1: A system diagram for TileTerror. Each box represents a different phase of the pipeline. Phases highlighted in green,
with rounded edges, are those that require hand-authoring. Phases in red, in square boxes, are those that are performed algo-
rithmically. Phases in blue, in diamonds, represent output.

Figure 2: Top left: A mausoleum partial constructed with
16 separate tiles. Right: A graveyard partial with 42 tiles.
Bottom left: A series of tiles illustrating low-level features.

a cell reaches an incompatibility point, where every boolean
flag within a cell’s array is false. If this happens, then the
generation process has failed, and WFC will return nothing.

If there are no incompatibilities, WFC chooses another
cell, using the entropy calculation as a guide. This choice-
propagation pattern continues until every cell’s array has
only one true value or an incompatibility occurs. After gen-
eration, feature annotations are added to the map, search-
ing for high-level features and appending them as they are
found.

Generation: Features and Detection
This paper identifies four features an environment can use
to generate horror: ambient creep, low-visibility, jumpscare
potential, and isolation. As a caveat, these are not the only
features a horror environment can contain, but the four we
believe are the basis for other features. All features we de-
scribe here are added to an annotation matrix which directly
maps to the generated tilemap, cell by cell.

Low-Level Features For this paper, low-level features are
intrinsic qualities, like a tombstone on the tile. Tiles can also
have multiple low-level features, such as a tree being creepy
and blocking the line of sight, i.e. low-visibility. The first
low-level feature is ambient creep which describes the tile’s
atmospheric horror quality. This work assigns ambient creep
to tombstones, dead trees, and bone tiles. Figure 2 gives an
example of ambient creep with the first four tiles on the left:
bones and tombstones. The next low-level feature is low-
visibility, which describes how a tile obscures a player’s line

of sight. Given that the horror genre makes heavy use of
obscuring sight, low-visibility becomes the more important
of the two low-level features for high-level feature detec-
tion. Figure 2 contains an example of low-visibility with
the far right tile, a dead tree. Finally, the low-level feature
set includes a traversability feature. It should be noted that
traversability is not a horror-specific domain feature, but a
feature needed for evaluation.

High-Level Features While low-level features focus on
single tiles, high-level features focus on the relationship be-
tween tiles. To find these relationships, detectors are used on
each tile within the tilemap, inspecting both the tile and its
neighbors. If the detector discovers a high-level feature, then
the detector appends the feature to the tile’s feature set. This
work uses the following high-level features: jumpscare and
isolation. For this work, the combination of low-visibility
and traversability determines the jumpscare potential and
isolation potential of a tile. Figure 3 shows the high-level
features through heatmaps of a generated tilemap.

To determine a tile’s jumpscare value, a tile is checked
for its low-visibility. If there is no low-visibility property,
no changes occur. If the tile has a low-visibility feature,
traversability becomes the next checked feature. If the tile
is also traversable, then it is marked as a location for a po-
tential jumpscare. If the tile is not traversable, the tile’s im-
mediate neighbors are checked, seeing if any of them are
traversable. If those neighbors are traversable, the detector
marks the neighbor as a potential jumpscare location.

The next high-level feature is isolation, which can be
elicited in two ways: one, if a tile is surrounded by a num-
ber of low-visibility tiles, it is marked as isolated; and two,
if a tile is not neighboring any tiles with features other than
traversability, it is marked as isolated. This duality comes
from the idea that isolation is not only linked to claustro-
phobia, but also to a general sense of vastness. To detect
isolation, the detector moves through the matrix, checking
if a tile is traversable. If the tile is not traversable, the de-
tector moves on to the next tile. If the tile is traversable,
the immediate neighbors are gathered, evaluating how many
of them have a low-visibility feature. If the number of low-
visibility neighbor tiles reaches a threshold, the detector an-
notates the chosen tile with an isolation feature. This work
sets the threshold to 3. If a tile is next to another isolation
tile, then it will be marked with a temporary lonely tag. This
tag is used for increasing the tile’s isolation score.



Figure 3: A “horrorscope” of high-level features being detected in a generated tilemap. Far left: The generated tilemap. Middle
left: A heatmap representation of low-level features (ambient creep and low-visibility). Middle right: A heatmap representation
of the jumpscare potential for tiles. Far right: A heatmap representation of the isolation potential for tiles.

Evaluation
Our evaluation focuses on the expressive range of TileTerror
through pathfinding agents that solve the map, scoring for
both slasher and psychological horror potential. Five agents
start at the same point: the origin, or the upper left cor-
ner of the map. Each agent navigates the map, reaching the
goal of the furthest corner from the start point: the bottom
right corner for these experiments. The pathfinding algo-
rithm TileTerror uses is the A* algorithm (Hart, Nilsson, and
Raphael 1968), favoring the lowest score for the next step.

Pathfinding Agents and Scoring Mechanism
The first agent employed is a speed-running pathfinder,
which takes the shortest path to the goal. This agent takes the
Euclidean distance function as its score. The second agent,
the completionist, takes the longest route by scoring the re-
ciprocal of the Euclidean distance. These two agents show-
case what parts of the level might need a designer’s atten-
tion. The shortest path helps show developers where speed-
runners might go, and the longest path gives the developers
a chance to place rewards for those who complete the entire
level or add more opportunities for horror.

The three other agents solve both for the goal and pri-
oritizing either slasher or psychological horror features. The
first of the horror-focused agents is a horror-avoidance agent
or the scaredy-cat agent. The scaredy-cat agent’s scoring
function sums up all the feature scores across ambient creep,
low-visibility, jumpscare, and isolation, using the sum as the
score. If a tile has more horror features, its score is higher,
and the agent tries to avoid the tile. If there is no better op-
tion, then the agent must traverse over the scary tile. The
distance from the goal is also a part of the score, making the
agent find the shortest path if there is no nearby horror. This
score is given as distance times the total horror score.

The fourth agent is a slasher horror-prioritized agent,
which searches for all horror, but it prizes jumpscares over
all else. Unlike the scaredy-cat agent, the horror-prioritized
agents use the reciprocal of the total horror score, prioritiz-
ing horror potential rather than avoiding it. By not removing
the total horror score (THS), TileTerror co-opts all of the
horror values together, summing them up for each tile. But,

each feature is weighted differently. The total horror score
for the slasher agent is given as: THS = (1 ∗ AC) + (4 ∗
JS)+(2∗LV )+(0.1∗I). For this formula, we denote ambi-
ent creep with the variable AC, jumpscare with the variable
JS, low-visibility with the variable LV , and isolation with
the variable I . Finally, The THS is multiplied by the distance
from the goal for the total score.

The final agent is a psychological horror-prioritized agent
that seeks out isolation and ambient creep, devaluing jump-
scares. Below is a formula for this agent’s valuation of total
horror, altering the weights to reflect those features we think
are salient to psychological horror: THS = (2 ∗ AC) +
(0.1∗JS)+(1∗LV )+(4∗I). Its final score is given by the
distance times the reciprocal of the above total horror score.

TileTerror reconstructs each agent’s path and evaluates
each tile for its slasher and psychological score. The first
is the slasher score, which only takes into account the two
low-level features and jumpscare. The psychological score
takes into account the two low-level features and isolation.
These scores are the basis of TileTerror’s expressive range,
further elaborated in the results section.

Results
We ran TileTerror for 10,000 iterations, producing 9,613
maps, which the pathfinding agents then evaluate. Figure
4 contains a summary of our results. Because the starting
and the ending locations may not have a reachable path and
WFC can fail, there is a probability of failure within TileTer-
ror—which in our experimentation was approximately 0.04.
In case of failure, TileTerror can produce a new result since
we envision this tool for offline generation.

The completionist path results seem strange at first, with
psychological being the greater of the two. Yet, TileTerror’s
output often has large swatches of empty tiles that increase
the psychological horror, which can be seen as a more dif-
fused experience. And slasher horror requires tiles with ob-
jects on them, like gravestones or buildings or fences, to ap-
pear within a level. Thus, an agent with more moves taken
will, on average, experience more psychological horror than
a slasher because TileTerror seems to generate more open
levels. But, these parameters are mutable, letting the devel-



Figure 4: Results of 10,000 iterations of TileTerror for a 40x40 tilemap. Values denoted by a paranthetical N are normalized by
distance.

oper change how often a tile appears within a level. Thus,
the completionist path scoring gives developers a warning
sign if the generation parameters need tuning for either psy-
chological or slasher horror.

Surprisingly, the shortest path agent was only a few points
away from the scaredy-cat agent, but the scaredy-cat agent
took twice as long to complete the maps. This increase in
moves could indicate that when the scaredy-cat agent sensed
horror, they ran away, increasing steps in the map but not
increasing their overall score. And thus, it seems there is
often a less terrifying path within the level that developers
can discover. With this path, developers can alter the level’s
flow by adding more scares in that section or blocking the
path entirely.

Between slasher and psychological, it was unexpected to
see a slight bump for the slasher score. However, when com-
paring the moves taken, the same argument from the longest
path can be used here: The slasher agent roams the map
longer, hitting more psychological horror, while the psycho-
logical agent spends less time on the map overall. Figure 4
illustrates each agent’s slasher and psychological scores nor-
malized by distance taken.

As shown by the normalized scores, each of the agents
does what is expected. What was interesting seems to be the
tradeoff between moves taken and the overall slasher score.
It seems the longer an agent is in the level, the more psycho-
logical horror they gain. This result corroborates the shortest
path agent having a lower overall psychological score while
having a higher slasher score and the longest path agent hav-
ing a higher psychological score than the slasher.

Future Work
We view this work as a stepping stone to more robust
bottom-up generation and feature detection algorithms. The
first step is to create a denser set of features for our model,
looking towards game studies literature such as Perron’s
study of videoludic horror games (2009a) and integrating
temporal features such as tension into generation and evalu-
ation. By introducing temporal features, we hope to eke out
a sense of flow (Csikszentmihalyi 1990) within the map and
introduce flow-like generation within this system. By intro-
ducing a flow-focused generation procedure, we hope to de-

crease the number of maps with long tension segments, en-
suring the player doesn’t get worn out from a constant state
of agitation.

Given that horror often employs adversaries that char-
acters encounter, encoding features like enemy placement
would enhance the tilemap and be another reasonable next
step. To this end, we envision including a set of adversarial
pathfinders in our collection of navigational agents. By do-
ing so, the evaluation agents can attempt to move through
the map given a starting and ending location, while the ad-
versaries give chase or lie in wait in certain areas. By discov-
ering where the adversaries and evaluation pathfinders meet,
a possible “confrontation” module can be used for the gener-
ation, nudging the map towards generating a more deliberate
setting for the confrontation.

Conclusion

This work describes a bottom-up architecture for evaluat-
ing horror story devices in procedurally generated tilemaps.
First, TileTerror examines two subgenres of horror—slasher
and psychological—to acquire a baseline understanding
of low- and high-level features for tilemap evaluation.
TileTerror defines these low-level features as ambient creep,
traversability, and low-visibility—horror qualities discov-
ered from a preliminary examination of the horror genre.
Combining the low-level features, TileTerror creates a set
of high-level features for evaluation.

These high-level features map directly to commonly used
horror devices: jumpscares and isolation. Our technical
implementation uses WFC to generate a tilemap, the
template for the low-level matrix, and detectors run through
the feature matrix, finding high-level features. Finally,
TileTerror uses a system of evaluation that scores the
resulting tilemaps on each map’s horror potential through a
set of navigational agents.



References
Bay12 Games. 2006. Dwarf Fortress.
Behaviour Interactive. 2016. Dead By Daylight.
Carpenter, J. 1982. The Thing.
Creative Assembly. 2014. Alien Isolation.
Csikszentmihalyi, M. 1990. Flow: The Psychology of Opti-
mal Experience. Harper and Row.
Freehold Games. 2019. Caves of Qud.
Frictional Games. 2010. Amnesia: The Dark Descent.
Hart, P.; Nilsson, N.; and Raphael, B. 1968. A Formal
Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Transactions on Systems Science and Cyber-
netics 4(2):100–107.
Hitchcock, A. 1960. Psycho.
Holmgård, C.; Green, M. C.; Liapis, A.; and Togelius, J.
2019. Automated Playtesting With Procedural Personas
Through MCTS With Evolved Heuristics. IEEE Transac-
tions on Games 11(4):352–362. Conference Name: IEEE
Transactions on Games.
Horswill, I. 2020. Generative Text using Classical Nonde-
terminism.
Ice-Pick Lodge. 2019. Pathologic 2.
Liapis, A.; Yannakakis, G. N.; Nelson, M. J.; Preuss, M.; and
Bidarra, R. 2019. Orchestrating Game Generation. IEEE
Transactions on Games 11(1):48–68. Conference Name:
IEEE Transactions on Games.
Ludomotion. 2017. Unexplored.
Mateas, M., and Stern, A. 2005. Structuring Content in the
Façade Interactive Drama Architecture. In Artificial Intelli-
gence and Interactive Digital Entertainment (AIIDE 2005),
volume 3.
McCoy, J.; Treanor, M.; Samuel, B.; Reed, A. A.; Mateas,
M.; and Wardrip-Fruin, N. 2011. Prom Week: Designing
past the game/story dilemma.
Monolith Productions. 2005. F.E.A.R.
Motion Twin. 2017. Dead Cells.
Perron, B. 2009a. Horror Video Games: Essays on the Fu-
sion of Fear and Play. McFarland, 1st edition.
Perron, B. 2009b. Introduction: Gaming After Dark. In Hor-
ror Video Games: Essays on the Fusion of Fear and Play.
McFarland, 1st edition edition.
Reed, A. 2020. Subcutanean. Independently published, 1st
edition.
Ridley, S. 1979. Alien.
Sandhu, A.; Chen, Z.; and McCoy, J. 2019. Enhancing wave
function collapse with design-level constraints. In Proceed-
ings of the 14th International Conference on the Founda-
tions of Digital Games, 1–9. San Luis Obispo California
USA: ACM.
Sen. 2011. Misao.
Smith, G.; Whitehead, J.; and Mateas, M. 2010. Tanagra:
a mixed-initiative level design tool. In Proceedings of the
Fifth International Conference on the Foundations of Digital

Games - FDG ’10, 209–216. Monterey, California: ACM
Press.
Summerville, A.; Sarkar, A.; Snodgrass, S.; and Osborn, J.
2020. Extracting Physics from Blended Platformer Game
Levels.
Supermassive Games. 2015. Until Dawn.
Taylor, L. 2009. Gothic Bloodlines in Survival Horror Gam-
ing. 46–61.
Therrien, C. 2009. Games of Fear: A Multi-Faceted Histori-
cal Account of the Horror Genre in Video Games. In Horror
Video Games: Essays on the Fusion of Fear and Play. Mc-
Farland, 1st edition edition.
Valve. 2008. Left 4 Dead.
Washburn, M., and Khosmood, F. 2020. Dynamic Proce-
dural Music Generation from NPC Attributes. In Interna-
tional Conference on the Foundations of Digital Games, 1–
4. Bugibba Malta: ACM.
Xbox Game Studios. 2011. Minecraft.


