
Asterism: Operational Logics as a Game Engine Engine

Joseph C. Osborn, Cynthia Li, Katiana Wieser
Computer Science Department

Pomona College
joseph.osborn@pomona.edu

Abstract

Game development is challenging even for experienced pro-
grammers, and game engine programming carries the added
difficulty of creating a flexible, generic API with suitable per-
formance. Part of this difficulty is that both game programs
and game engines act in many ways like programming lan-
guages and their standard libraries, with the final game being
built in terms provided by the platform on which it is built.
In this work, we synthesize perspectives from platform stud-
ies and operational logics to devise Asterism, a game en-
gines engine: types, abstractions, and candidate implemen-
tations not only for features common across game engines,
but also for the “connective tissue” between disparate game
systems. Game engines defined in Asterism function anal-
ogously to domain-specific languages in which individual
games are coded.

1 Motivation
Programming videogames from scratch can be challenging
even for experienced programmers. The extra effort needed
to build game content editing and auditing tools like ani-
mation and level editors, AI players, and automated test-
ing tools compounds this difficulty. Many game developers
therefore turn to fully-featured engines like Unity or Unreal,
which have mature user interfaces and marketplaces full of
additional tools—or else designers use specialized game-
making tools like Bitsy, PuzzleScript, or Twine.

It is very difficult to make a new game engine for all the
same reasons it is difficult to make games, multiplied by the
generality that engines are expected to afford. This is be-
cause, like games, game engines are sui generis software
products—unique unto themselves. It is difficult to share
all but the lowest-level features (e.g., loading assets from
disk, abstracting over controller inputs, or compiling shader
programs) from engine to engine, because there is no stan-
dardized, shared theoretical foundation on top of which en-
gines are built. This is not to say that game engines don’t
sometimes share certain characteristics or architectural deci-
sions (?), but they each invent these notions for themselves.
A notable exception in this area is physics engines, any given

Copyright © 2021for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY
4.0).

Figure 1: Apple Catching, Clowder, and Paddles (three
games made with the same composition of OLs), plus Ex-
treme Dungeon Crawler, a simple boxsy game.

example of which might present a well-defined interface that
can be plugged into a variety of game engines.

Taking Unity and Unreal as examples, Unity settles on an
architecture where GameObjects carry sets of Components
which are updated each frame, while Unreal’s similar Actor
and Component architecture has substantially different af-
fordances due to the different semantics of subclassing and
instancing in Unreal. The metaphors are in some sense com-
patible, but only by taking them to a very high level of ab-
straction. They function more like design patterns and less
like an ontology for games and game engines.

In this work, we investigate the problem of building a
game engine engine, noting that the design of a game engine
and a game on top of it is a project in successively more spe-
cific domain-specific languages (DSLs): from a general pur-
pose programming language to a set of engine-specific data
structures, protocols, and other commitments down to the
level of a particular game program in terms of which game
rules and content are expressed. Each successive layer im-
poses language-like restrictions and affordances on the lay-
ers above. We showcase a few Asterism games in Figure 1.

As our theoretical contribution, Asterism builds on the
game studies formalism of operational logics and their com-
positions, with individual engines defined as compositions
of such logics (called OLs henceforth to avoid ambiguity
around the term logic). OLs are not mathematical logics,
but ways of characterizing how a player comes to mentally
model observations of phenomena due to a system with re-
spect to the inputs they are providing to a system. In other
words, an OL is the linkage of an hypothesized process with
observed events supporting a particular gameplay experi-
ence. Importantly for this work, a particular set of OLs have
been labeled as foundational and these can be identified with
mathematical logics and formalisms (?), and these are the

ones around which Asterism is designed.
Each composition, or engine, is something like a new,

game-genre-specialized programming language: it defines
some base terms and allows for their combination and elab-
oration into game rules and data. We also show an imple-
mentation of Asterism in the Rust programming language
(with at least one implementation each of collision, control,
entity-state, linking, physics, and resource logics), two dis-
tinct engines defined in Asterism, and one game in each of
those engines. Our code is available under the Non-Violent
Public License (NVPL+) and is made available on GitHub1

or by correspondence with the authors.

2 Related Work
Game programs are characterized by tight loops over sets of
interesting objects performing similar computations. Exam-
ples include iterating through all colliders to check overlaps,
iterating through all enemies updating their AI behaviors, or
enumerating and updating simulated objects according to a
spatial partitioning scheme or a schedule of objects that need
updating.

The code responsible for organizing each type of data and
performing the computation is often called a system: a col-
lision system, AI system, inventory system, dialogue sys-
tem, and so on. Often, some state machine governs handoffs
between different systems, and each system itself has some
state to indicate what sort of processing it should perform
on a given frame. This kind of structure is seen to separate
concerns in a way which is relevant to game programs, and
it has been reified in so-called entity-component systems un-
der the umbrella project of data-oriented design (?). This ap-
proach dovetails well with OLs, the formalism underwriting
Asterism.

A complete game design must include not only its rules
and instantial assets like graphics and level configurations,
but also the terms in which those rules are defined—in the
same way that a high-level game engine gives an ontology in
which specific games are implemented. The Gemini project
is one recent approach to specifying a game design in (for-
mal) logical terms (?). Like the earlier BIPED and Ludocore
systems (?), it uses Answer Set Prolog as a specification
language. Also like BIPED, Gemini games can be judged
against various criteria or transformed into game programs
that humans can play. It is also typical of game-making tools
(e.g., PuzzleScript, Bitsy, Flickgame), as distinct from en-
gines, to define explicit textual or UI-driven “languages” for
defining games.

The main obstacle to generality for Gemini—and a key
reason for extensive duplication in its proceduralist reading
rules—is that it enforces the choice of a particular set of op-
erational logics in a particular arrangement, but it does not
treat these logics or their fundamental operations as first-
class objects. Specific integrations of logics are considered
as units, which leads to awkward situations like separately
defining feedback loop detection for resource growth, the
amount of a particular color drawn on the playfield, and
per-entity health. This issue is not unique to Gemini by any

1https://github.com/faim-lab/asterism

means, so the search for more orthogonal sets of primitives
is a key motivation of the present work.

Not only these systems, but also the VideoGame De-
scription Language (?) commit to particular compositions of
OLs, i.e., a particular definition of what games are made of.
Having a common ontological framework for diverse classes
of games is extremely valuable, and this work can be seen as
extending that effort into the space of procedural program-
ming languages and simultaneously allowing for transfer
across different game schema—not only arcade-style games,
but also role-playing games, sports games, puzzle games,
and so on.

3 Modeling Game Engines
Since their initial development and further exposition (???),
operational logics (OLs) have enjoyed broad use and in-
spired several approaches to game studies. An OL (e.g.,
collision logic) is a combination of an abstract process
(overlap detection) with its communicative roles (objects
in space) in a game, connected through an ongoing game
state presentation (sprites matching hit-boxes) and support-
ing a gameplay experience (stuff can happen when things
touch) (?). Besides their direct application in describing spe-
cific games (?), OLs underlie several approaches to under-
standing how games communicate ideas (??) and a variety
of projects in player and game modeling and game genera-
tion (??????).

OLs let us view games not as bags of mechanics but as
assemblages of abstract operations from diverse logics. So
far this has mainly been done on a case-by-case basis: OLs
have been used to describe individual games or certain broad
classes of games (e.g., graphical logic games comprising
collision, physics, resource, and control logics).

In this work, we start from the core idea of platform stud-
ies—that platforms make certain ontological commitments
regarding the games that best fit them, whether due to tech-
nical or social reasons—which applies equally to game con-
soles like the Atari 2600 (?) and more fully-featured soft-
ware frameworks like Flash (?) or Unity. Instead of focus-
ing on particular features of these (hardware or software)
game engines, we want to draw attention to the operational
logics they reify: in the case of the Atari 2600, that takes
the form of hardware support for moving sprites, collision
tests, controller mappings, and resource counters; for an en-
gine like Unity, we see collision, physics, resource, control,
camera, and persistence logics made primary. Notably, many
popular game making tools (to varying extents, e.g. Game
Maker, Bitsy, Unity’s or Godot’s standard library) privilege
the arcade-game style of so-called graphical logics: char-
acters moving about in simulated continuous spaces with
resources (a composition of collision, control, entity-state,
linking, physics, and resource logics).

Composing Operational Logics
OLs compose together into games or game platforms in
three main ways: structural syntheses, joint operational in-
tegrations, and shared communication channels (?). This in-
nate compositionality is a key reason for the effectiveness of
OLs in the present work.

The most fundamental connections between OLs are
when they jointly produce a game’s ontology of concepts:
player characters, enemies, projectiles, inventories, equip-
ment, rooms. Structural syntheses map game notions be-
tween distinct OLs: When we have a concept of a game
character which interacts with the physics, collision, con-
trol, and entity-state logics, that is a structural synthesis at
work. A game like Super Mario Bros. might be defined in
terms of syntheses representing enemies, Mario, interactable
blocks, levels, and so on. Several common syntheses ex-
ist, but the space of structural syntheses is not bounded and
under-explored or new syntheses might represent areas of
novelty in game design (since game genres may be thought
of as popular, conventional assemblages of operational log-
ics (?)).

The term synthesis here does not refer to program syn-
thesis, but to the idea that a new concept is composed by
unifying some (aspects of) existing concepts. This includes
but is not limited to concept co-occurrence: for example, a
game’s inventory may have consist of items laid out spatially
in “bags”, while the crafting mechanics work only in terms
of the number of input and output items. Both the numerical
view and the spatial view are the inventory from the point of
view of their respective systems.

Structural syntheses can be seen as a set of logical rela-
tions between the terms of different OLs: e.g., the colliders
and positions of a collision logic, the physics state and bod-
ies of a physics logic, and the resource pools and quantities
of a resource logic.

Once OLs are structured together, game mechanics are
built by combining their operations. For example, “lose ten
health when you touch a wall” or “regain full health when
you touch a powerup” share a similar template: “When you
touch something, something else might happen.” These are
operational integrations of collision and resource logics.
Addressing the infinite space of possible mechanics by com-
bining elements from a fixed set of OLs gives useful con-
straints on automated game analysis, game generation, and
game design in general. Not all such integrations have the
“when X, do Y” format—in the crafting example from be-
fore, an item should only be craftable if there is a space big
enough for it to fit in the spatial inventory; crafting uses up
some resources and produces new ones; and so on. We view
OLs as defining both predicates and actions, and these can
be combined arbitrarily across OLs to define operational in-
tegrations. Structural syntheses define a kind of grammar in
which operational integrations can be established.

OLs can also overlap by sharing communication chan-
nels, where OLs provide and can make use of communica-
tive affordances. For example, games with distinct charac-
ters or sprites commonly share the space around the sprite
as a channel for other information.

Game engine engines
Game-making tools like Bitsy that are intentionally con-
strained to specific genres or types of games can yield
highly user-friendly programming environments, bringing
elements of play to the experience of software development.
They achieve this by fixing particular structural syntheses

and sets of possible operational integrations, and therefore
constraining the space of authorial interventions. More gen-
eral tools like GameMaker or Unity also commit to partic-
ular syntheses to varying degrees, but give an escape hatch
in the form of a general-purpose programming language in
which programmers can implement or reimplement aspects
of the game however they like.

Game engines have some important commonalities with
games: they commit to particular structural syntheses, com-
munication channels, and operational integrations. However,
whereas a game is complete in the sense that all its defi-
nitions, rules, and instantial assets like images, music, and
3D models are given, game engines and game-making tools
provide schemata which are to be filled in by a game de-
signer. Similarly, a given game could in principle be mod-
ded, changing the appearance and behavior of the characters
in its world, and potentially changing even the world and
the scripted events of the game—but the OLs and their in-
tegrations would remain the same. Each game therefore has
some base “platform”—the particular composition of OLs
in terms of which the game proper is defined.

A game engine is therefore a composition of OLs: A set of
logics, a set of structural syntheses between and communi-
cation channels shared among these logics, and some mech-
anism for defining operational integrations. An individual
game will define data in terms of these syntheses and me-
chanics as new operational integrations.

It may be helpful to consider the metaphor of Lego bricks:
there are combinatorially many different types of building
blocks (studs, flats, blocks, poles, and so on, customized by
length, width, and color); but they share a common set of in-
terfaces by which they can connect and support each other.
This commitment to a particular method of composing block
designs limits the range of possible constructs to those which
are sensible (e.g., there are no unstable connections due to
mixing Lego bricks and Mega Bloks). A particular composi-
tion of OLs functions similarly: we have carved off a space
where certain ideas are easily expressed, and we can offer in-
dividual compositions as a kind of kit to game makers while
also admitting the creation of entirely new sorts of game en-
gines.

Our goal with Asterism is to make the task of defining
new game-making tools as compositional and modular as
the task of defining new DSLs—this motivates our project
of finding shared engine-level concepts across distinct game
engines, so that tools can be written in terms of these con-
cepts rather than being tied to particular game engines. In
pursuit of that goal, we will show that game engines can be
defined as compositions of OLs, casting the creation of new
types of game engine as the composition of OLs, and al-
lowing for greater portability of tools, AI support, and other
interventions between game engines.

To sum up, a game engine engine should provide a set
of components with which game engines can be built. To
take advantage of an existing type checker and compiler
toolchain, we show an example of such a game engine en-
gine in the Rust programming language, defining types and
computations in the base programming language rather than
in a higher-level DSL.

We are particularly eager to draw connections to recent
work on games and their abstractions, using more or less
abstract versions of particular operational logics to admit
modular, abstraction-refinement approaches to game AI and
game design support (?).

4 Asterism
Asterism is a library written in the Rust programming lan-
guage. It provides two key concepts: first, a data-oriented
query table mechanism for efficiently processing lists; and
second, types and interfaces describing OLs. As a conve-
nience, Asterism also provides example implementations of
various OLs (collision, control, entity-state, linking, physics,
and resource logics) and a declarative sprite animation sys-
tem. Of these, the main contribution in this work is the set of
Rust traits (something like type-classes) representing OLs,
their associated concepts, and their compositions.

The first main component of Asterism, the query table
system, acts as a kind of blackboard for sharing data be-
tween OLs and processing events to define operational in-
tegrations. While Asterism defines the notion of an OL
and a mechanism for sharing information across OLs and
through time, a game engine defines specific structural syn-
theses, communication channels, and/or operational integra-
tions while a game per se defines mainly operational inte-
grations.

There are two types of query tables in Asterism: output
tables and condition tables. An output table is a collection
of values of a particular type, from which a contiguous vec-
tor of that type of element can be produced (not unlike, say,
an Iterator). A condition table is a collection of queries
arranged in some data-flow (e.g., one query might be map-
ping a function over another query, or zipping the results of
two other queries together, or filtering another query based
on some predicate). Query tables arise from the need for op-
erational integrations to be defined across diverse logics and
structural syntheses, and our representation structures that
data sharing as data (the graph of query dataflow). A similar
motivation underlies blackboard architectures and other data
sharing approaches, and ours is inspired by existence-based
processing in the data-oriented style (?).

Asterism’s core trait, and a key contribution of this work
towards operationalizing the theory of OLs, is Logic, rep-
resenting an individual OL. Implementors of a Logic must
define several types (notably, since a Logic may itself have
type parameters, this also gives engine and even game de-
velopers the option of parameterizing the Logic):

• Ident: The type of objects governed by this OL. Must
be cheaply copyable.

• IdentData: Data associated with each Ident by the
OL. Must be cloneable (i.e., copyable).

• Event: The events this OL can trigger, or the predi-
cates it defines; implementors of Event must define an
EventType and a way to get the type of a particular
event.

• Reaction: The abstract actions this OL can be made to
perform. Must implement Reaction.

Implementors of Logic must also define trait methods
for handling this logic’s predicates and for getting and set-
ting the IdentData for a particular Ident. Moreover,
Logic instances must provide a way to iterate through their
objects and through Events which have just occurred. The
traits EventType and Reaction are marker traits that
have no behavior—when defining a particular OL, a pro-
grammer provides types implementing these marker traits.
Ident and IdentData allow for the definition of con-

cept co-occurrence structural syntheses and shared com-
munication channels wherever multiple OLs share the
same identifier type. More complex structural syntheses
may involve the definition of intermediate concepts and
more complex Ident types that combine several iden-
tifiers. Event and Reaction provide for operational
integrations (along with each OL’s required implemen-
tation of OutputTable<(Ident,IdentData)> and
OutputTable<Event>, which produce the streams of
object states and events that feed into operational integra-
tions).

By way of example, a collision logic might be instantiated
with numerical identifiers for Ident (e.g., “Body 1”, “Body
2”, and so on), objects’ shapes and collision flags as their
IdentData, produce for its Event new contacts between
objects, and support triggering a Reaction such as chang-
ing an object’s position or which set of objects it should
collide with. To retrieve the current contacts to realize e.g.
a teleporter, a game or engine would pose a query joining
both the identifiers (and their collision shape data) and the
contacts, look up the teleporter’s destination using its cor-
responding Ident, and trigger a collision Reaction that
moves the other contact to its new location. To synthesize
this collision logic with a physics logic for continuous move-
ment in space, we might instantiate a physics logic with the
same Ident type. This move is not unique to Asterism—
note that data-oriented entity-component systems also use
identifiers as opaque handles to index into specialized re-
gions of contiguous memory storage.

One useful consequence of defining Logic as a trait with
so many parameters (of which several are marker traits) is
that a single OL (e.g., a linking logic) can be instantiated
multiple ways in a single game engine or program, serving
in multiple roles (for example, a network of linked rooms as
well as a network of dialogue options).

In Asterism, we implement two collision logics (one in
a continuous space and one with a simpler tile-based grid
space), a control logic, an entity-state logic, a linking logic,
a physics logic, and a resource logic.

Composing a Game Engine
Asterism provides both OLs and a means of composing
them. We have built two small game engines using different
combinations of OLs, each of which defines specific struc-
tural syntheses as types, with fields providing a mapping be-
tween the data of their constitutive OLs. One such synthe-
sis is the notion of a Paddle in our Atari 2600-inspired
paddles engine, integrating collision, control, physics,
and resource logics:

pub struct Paddle {
pub pos: Vec2,
pub size: Vec2,
pub controls: Vec<(ActionID,

KeyCode,
bool)>,

}

A paddle’s position and size feed into the collision logic,
while the control scheme is given to the control logic. In
paddles games each player’s control is localized in a
Paddle: part of defining a game means creating some
ActionID values and keybindings (e.g., move up, move
down, serve the ball) and assigning them to particular
Paddles. The control map in each Paddle describes for
each action which key triggers that action and whether the
action is presently available.

Meanwhile, a Ball in paddles has a position, size,
and velocity, but no controls, participating in collision and
physics logics (with its position synchronized between the
two). Other syntheses we define in paddles include Wall
and Score. This supports not only games like Pong and
Breakout, but also our cat-herding game Clowder and Ka-
boom!-like Apple Catching (as shown earlier in Figure 1).
While Clowder and Apple Catching are not currently imple-
mented in paddles (they are animation prototypes rather
than structural synthesis examples), they use the same com-
positions of OLs.

For convenience, paddles defines a set of helper func-
tions (e.g. add paddle and remove paddle) for each
structural synthesis, so that whenever new objects of a par-
ticular type are created or destroyed their representations in
the corresponding OLs are updated. In future work, this type
of code could be generated by a macro or from a specifica-
tion language, or indeed represented as data rather than code.
For example, when a paddle is added to the game, the colli-
sion and control logics are updated to address the new entity
(adding a collision body and defining a controller or key-
board mapping to its movement); when a ball is removed,
its collision body and physics state are also removed.

Unlike paddles, boxsy (the fourth example in Fig-
ure 1) is a Bitsy-like engine composing control, linking,
and resource logics with a custom collision logic based on
discrete, tile-based collision. Moreover, whereas paddles
provides the full query table interface to its games, boxsy
only gives the user access to a closed set of operational in-
tegrations. Like Bitsy, the engine strictly limits the possible
events a user can define reactions for, only allowing them to
create links between physical positions on the map or make
events trigger when two things touch.

At the moment, shared communication channels are de-
fined mainly in the engine. If Asterism could be parameter-
ized with a rendering system, perhaps using the query tables
mechanism, we might be able to explicitly describe com-
munication channels at the Asterism level and offer them to
engines globally. This is a key next step in the development
of Asterism: to bring mechanisms for audiovisual presenta-
tion into the types and constraints governing the connections
between logics.

From Logics to Rules
Asterism’s OLs, game engines, and games communicate

via query tables, which hold lists of data generated by OLs
that are filtered, zipped with other lists, and otherwise pro-
cessed in a dataflow style (?). As such, every implementa-
tion of Logic must also implement the OutputTable
trait both for its internal identifiers (and their data) and for
its generated events, allowing for either to be used as a
data source for query processing. Engine or game program-
mers can compose conditions for the query table, which ul-
timately result in reactions that can be applied back to OLs.

In paddles, we have defined a Rust macro (in effect,
a tiny DSL) to generate game-relevant queries at compile-
time. This macro defines game-specific Event types in a
predicate/action style, which is one common way of defining
operational integrations. A Pong game might be defined as
in Listings 1 and 2.

Like the query filtering the appropriate types of collid-
ing objects, bounce ball itself is defined as a closure.
In these closures, the first parameter is the event (after be-
ing processed in the query table), the second is the game
state, and the third exposes the OLs provided by the engine.
Through these data, a game programmer can produce any
operational integration of the paddles OLs.

By way of contrast, boxsy rules are defined in a more
data-driven style (see Listing 3). Resources, characters, tiles,
and rooms are the key concepts, and events take place when
resource quantities change, collisions occur, or the player
moves between rooms; reactions to events can include mov-
ing between rooms or changing resource quantities.

Visual Presentation
Game rules are incomprehensible if they are not commu-
nicated to players: unless a player sees a reaction when
two objects collide on the screen, it is difficult to form a
mental model of the simulation. In Asterism, we provide a
declarative sprite animation module that ties basic flipbook
sprite animations to specific game objects. This module han-
dles loading, storing, and accessing correct image data for
a sprite’s current animation state, and supports both ani-
mated objects and static backgrounds. At the engine level,
structural syntheses like characters or terrain can be ren-
dered conveniently by storing animation state with analo-
gous Ident types and values, maintaining a mapping be-
tween game objects and their appearance (constituting a
simple version of shared communication channels).

While ultimately rendering is highly engine-specific, we
believe that just as Asterism provides a default collision and
resource logic, a default windowing-system-independent 2D
rendering system seems valuable. Visual animation state can
be tied via query tables to information from the OLs (e.g.,
when a left-arrow control input is given the sprite can be
faced left), or specific animation sequences can be triggered
when events occur.

Other Game Engines
We have shown two distinct engines—paddles and
boxsy—implemented in Asterism. Each composes a par-

paddles_engine::rules!(game =>
control: [/* ... */]
physics: [/* ... */]
collision: [

{
// Define the "bounce" query as a filter...
filter bounce,
// over collision events...
QueryType::ColEvent => ColEvent,
// between a ball and either a wall or paddle.
// This closure checks the types of the colliders, but it could
// instead be represented as data like collision masks.
|(i, j), _, logics| {

// From the collision logic, obtain collider types
let i_id = logics.collision.metadata[*i].id;
let j_id = logics.collision.metadata[*j].id;
i_id == CollisionEnt::Ball &&
(j_id == CollisionEnt::Wall || j_id == CollisionEnt::Paddle)

},
// The side effect is to call the bounce_ball function for each bounce,
// which triggers physics reactions
foreach |col, state, logics| {

bounce_ball(col, state, logics);
}

},
// The "score" filter is defined similarly, except that if the ball
// touches the left or right walls, a resource transaction increasing
// the opposing player's score is executed.
{ /* ... */ }

]
resources: [/* ... */]

);

Listing 1: The rules! macro in paddles defining a Pong-like game.

// A closure; i and j are the colliding objects in the collision logic's terms.
let bounce_ball = |(i, j): &ColEvent, state: &mut State, logics: &mut Logics| {

// Use the composition identifier of the first collider
let id = state.get_id(*i);
// Apply this reaction to the ball in particular
if let EntID::Ball(ball_id) = id {

// Determine from the collision logic which sides were touched
let sides_touched = logics.collision.sides_touched(*i, *j);
// Obtain a copy of the ball's corresponding physics representation
let mut vals = logics.physics.get_ident_data(ball_id.idx());
// If this is a touch against the top or bottom...
if sides_touched.y != 0.0 {

vals.vel.y *= -1.0;
}
// If this is a touch against the left or right...
if sides_touched.x != 0.0 {

vals.vel.x *= -1.0;
}
// Finally, update the physics data for this ball.
logics.physics.update_ident_data(ball_id.idx(), vals);

}
};

Listing 2: The bounce ball reaction for a Pong-like game, defined in terms of paddles concepts.

// Define rooms as a grid of tile types...
let rooms = [r#"
00000000
0 0
0 2 0
0 0
0 0
0 3 0
0 0
00000000"#, r#"..."#];
// Then add the rooms to the world
game.add_rooms_from_strs(rooms).unwrap();

// Rocks are a type of resource
let rocks = game.log_rsrc();
// There is one pool of rocks...
let num_rocks = Resource::new();
// registered in the player's inventory.
player.add_inventory_item(rocks, num_rocks);

// There is a link from (3,5) in room 0...
// to (1,1) in room 1
let from = (0, IVec2::new(3, 5));
let to = (1, IVec2::new(1, 1));
game.add_link(from, to);

Listing 3: The layout of a map in boxsy.

ticular set of operational OLs and defines its own engine-
specific syntheses and terms, and each exposes a differ-
ent level of control to game programmers; the former is
more open-ended and allows for new rules in a precon-
dition/postcondition style, while the latter essentially asks
game makers to define a data structure giving the game map
and dialogue.

Other engines can readily be made using other OLs and
renderers: for example, a Twine-like engine would compose
linking, selection, and resource logics, while a platformer
game engine might build on the paddles example with
entity-state machines and a linking logic of game levels. As
another example, a match-3 puzzle game engine would re-
quire defining a spatial matching logic, but could reuse the
resource and control logics from Asterism.

5 Future Work
Besides expanding Asterism to incorporate more OLs and
develop a declarative account of structural syntheses and
communication channels (including not only spatialized
channels like character locations but also UI elements,
menus, and heads-up-displays), we hope to show that defin-
ing engines in shared base terms allows for more generic
game design support tools, including but not limited to level
editors, game data editors, AI playtesters, and so on. Since
the hooks for these tools are defined by the OLs and their
compositions, it seems plausible that shared hooks—or at
least the trait mechanism underlying them—gives us hope
that a small number of tools can be used in a large num-
ber of engines. This seems like a good foundation for the
engineering of games amenable to automated game design
tools (?).

We also need to expand Asterism’s communication chan-
nels beyond visual communication and accommodate audio,
haptic, and other forms of feedback. There is also no funda-
mental reason why generalizing to three dimensional games
wouldn’t work, since Asterism itself doesn’t really commit
to any encoding of space.

The choice to use a mechanism like query tables was
made for flexibility as well as performance reasons. Mea-
suring whether this table-based approach allows for good
performance is important future work, as is expanding the
range of table operations beyond zipping and filtering and
into proper joins and other iterator operations.

All of the example engines so far require that games them-
selves are written as Rust programs and compiled with the
engine. This is not a fundamental limitation, and engines
could instead be implemented in a data-driven style as in
e.g. Bitsy.

The most important next step for this project is to find
collaborators interested in making game engines and games
with Asterism. In particular, we believe Asterism would
be well-suited for game design courses where students are
asked to make many different kinds of games; traditionally,
such courses introduce students to several different tools
(e.g., Twine, Bitsy, and GameMaker) but it is plausible that
staying within one universe of related tools would be bet-
ter for students where one super-flexible game engine might
have too many degrees of freedom to adequately support
non-specialists. This could even be done at the high school
level.

One of the authors taught such a course based on the the-
ory of operational logics to early undergraduates. Another
author has taught similar game-making courses at the early
high school level. Videogames are known to be a motivating
domain for early CS students, and the table-oriented style of
Asterism could also make it appropriate for teaching stream
processing, relational algebra, and related advanced com-
puter science topics.

References
Bogost, I. 2007. Persuasive Games: The Expressive Power
of Videogames. MIT Press. ISBN 978-0-262-02614-7.

Cardona-Rivera, R. 2020. Foundations of a computational
science of game design: Abstractions and tradeoffs. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment, volume 16, 167–174.

Cook, M. 2020. Software Engineering For Automated Game
Design. In Proceedings of the IEEE Conference on Games,
487–494. IEEE.

Doirado, E.; and Martinho, C. 2010. I mean it!: detect-
ing user intentions to create believable behaviour for virtual
agents in games. In Proceedings of the 9th International
Conference on Autonomous Agents and Multiagent Systems:
volume 1-Volume 1, 83–90. International Foundation for Au-
tonomous Agents and Multiagent Systems.

Duplantis, T.; Karth, I.; Kreminski, M.; Smith, A. M.; and
Mateas, M. 2021. A Genre-Specific Game Description Lan-

guage for Game Boy RPGs. In Proceedings of the IEEE
Conference on Games.

Fabian, R. 2018. Data-oriented design. R. Fabian.

Gregory, J. 2018. Game engine architecture. CRC Press.

Llopis, N. 2010. Data oriented design: Now and in the fu-
ture. Game Developers Magazine 17(8): 31–33.

Martens, C. 2015. Ceptre: A language for modeling gener-
ative interactive systems. In Eleventh Artificial Intelligence
and Interactive Digital Entertainment Conference.

Martens, C.; Summerville, A.; Mateas, M.; Osborn, J.; Har-
mon, S.; Wardrip-Fruin, N.; and Jhala, A. 2016. Procedu-
ralist readings, procedurally. In Experimental AI in Games
Workshop, volume 3.

Mateas, M.; and Wardrip-Fruin, N. 2009. Defining opera-
tional logics. Digital Games Research Association (DiGRA)
4.

McCoy, J.; Treanor, M.; Samuel, B.; Reed, A. A.; Mateas,
M.; and Wardrip-Fruin, N. 2013. Prom Week: Designing
past the game/story dilemma. In FDG, 94–101.

Montfort, N.; and Bogost, I. 2009. Racing the beam: The
Atari video computer system. Mit Press.

Osborn, J. C.; Lederle-Ensign, D.; Wardrip-Fruin, N.; and
Mateas, M. 2015. Combat in Games. In Proceedings of
the Tenth International Conference on the Foundations of
Digital Games.

Osborn, J. C.; Wardrip-Fruin, N.; and Mateas, M. 2017. Re-
fining operational logics. In Proceedings of the 12th Inter-
national Conference on the Foundations of Digital Games,
1–10.

Salter, A.; and Murray, J. 2014. Flash: Building the interac-
tive web. MIT Press.

Schaul, T. 2013. A video game description language for
model-based or interactive learning. In 2013 IEEE Confer-
ence on Computational Intelligence in Games (CIG), 1–8.
doi:10.1109/CIG.2013.6633610.

Smith, A. M.; Nelson, M. J.; and Mateas, M. 2009. Compu-
tational Support for Play Testing Game Sketches. In AAAI
Conference on Artificial Intelligence and Interactive Digital
Entertainment.

Summerville, A.; Martens, C.; Harmon, S.; Mateas, M.; Os-
born, J. C.; Wardrip-Fruin, N.; and Jhala, A. 2017a. From
Mechanics to Meaning. IEEE Transactions on Computa-
tional Intelligence and AI in Games .

Summerville, A.; Osborn, J. C.; Holmgård, C.; Zhang, D.;
and Mateas, M. 2017b. Mechanics Automatically Recog-
nized via Interactive Observation: Jumping. In Proceedings
of the 12th International Conference on the Foundations of
Digital Games.

Summerville, A.; Osborn, J. C.; and Mateas, M. 2017.
CHARDA: Causal Hybrid Automata Recovery via Dynamic
Analysis. In Proceedings of the International Joint Confer-
ence on Artificial Intelligence.

Treanor, M.; Blackford, B.; Mateas, M.; and Bogost, I.
2012. Game-O-Matic: Generating Videogames That Rep-
resent Ideas. In Proceedings of the The Third Work-
shop on Procedural Content Generation in Games, PCG’12,
11:1–11:8. ACM. ISBN 978-1-4503-1447-3. doi:10.
1145/2538528.2538537. URL http://doi.acm.org/10.1145/
2538528.2538537.
Treanor, M.; Schweizer, B.; Bogost, I.; and Mateas, M.
2011. Proceduralist Readings: How to find meaning in
games with graphical logics. In Proceedings of the 6th In-
ternational Conference on Foundations of Digital Games,
115–122. ACM.
Wardrip-Fruin, N. 2005. Playable media and textual instru-
ments. Dichtung Digital 34: 211–253.
Wardrip-Fruin, N. 2006. Expressive Processing: On
Process-Intensive Literature and Digital Media.

