CEUR-WS.org/Vol-3217/paperl’.pdf

Wordgrind: a Logic Programming Language for Creating Quality-Based
Narrative

Jan Wanot
Royal Holloway University of London
Egham, Surrey, United Kingdom
Jjan.wanot.2017 @rhul.ac.uk

Abstract

We present a tool for writing interactive fiction based on the
storylet model (Kreminski and Wardrip-Fruin 2018), which
allows for crafting an interactive narrative out of many dis-
crete “chunks®, the order and presence of which is based on
player choices and the structure of game logic. To facilitate
creation of the latter, our tool is equipped with an integrated
declarative logic programming capability, similar to a logic
programming language such as Prolog. The created narrative
systems can be exported to a browser-readable format, which
allows for easy distribution and future preservation.

Introduction

Quality-based narrative, also known as the storylet model
(Kreminski and Wardrip-Fruin 2018) allows for structuring
narrative content in a way that enables the content to be se-
lected and ordered in a dynamic way depending on the game
state and player choices. Our tool incorporates a full logic
programming capability that allows for creation, manipu-
lation and selection of content in an intuitive and efficient
way, along with more advanced state tracking then offered
by most other QBN interactive fiction authoring systems.

The functionality of Wordgrind as a tool can be separated
into three discrete aspects bound together by the underlying
logic programming engine:

* A textual templating system, allowing parts of longer text
chunks to be substituted, reordered or omitted based on
programmatic conditions, as well as allowing for creating
multiple variants of a given text chunk to be created based
on logical terms.

* A content selection system, allowing both for present-
ing various available context-dependent player choices, as
well as more automated “actions‘, which are executed au-
tomatically as soon as their preconditions are met.

* A dynamic database of current game state, presented in a
form of structured logic programming terms, along with
convenience features for simpler state management.

All of these aspects are enabled by the logic program-
ming functionality, which allows for a declarative style of

Copyright © 2021for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY
4.0).

writing game logic while being completely flexible. Despite
requiring little to no conventional programming experience,
Wordgrind can be used for creating interactive systems of
great complexity.

Example

Suppose we want to create an interactive system with a
world model evocative of traditional parser-based interac-
tive fiction: a series of rooms that the player can navigate,
containing items that can be pick up and placed in the in-
ventory. It should be noted that while unlike more special-
ized IF creation tools such as Inform 7 (2006), Wordgrind
itself contains no built-in preference for that model of in-
teraction compared to any other alternative (i.e. one could
just as easily use Wordgrind to create a dialogue system, a
social simulation system, or a resource management game),
such a system can still be created very simply and without
much boilerplate code by utilizing some of the logic pro-
gramming features of the language in conjunction with the
storylet model.

Predicates:

- <kitchen> is a room

- <living room> is a room
— <bathroom> is a room

— <pbedroom> is a room

— <kitchen> is connected to <living room>
— <living room> is connected to <bathroom>

- <living room> is connected to <bedroom>

— ?A and ?B can be walked between:
or:
- ?A 1is connected to ?B
- ?B is connected to ?A

Unique facts:

- Player is in ?_

Initial state:
condition:
- Player is in <bedroom>
- <soap> 1is in <bathroom>
- <TV remote> is in <living room>
- <knife> is in <kitchen>
displays:
You wake up in a cold sweat. You had nightmares

all night, and now you have a horrible headache.

default:
Choices:
Walk from ?A to ?B:
available when:
- Player is in ?A
such that:
and:
- ?B is a room
- ?A is a room
— ?A and ?B can be walked between
displays:
You walk from ?A to ?B.
causes:

- Player is in ?B

Pick up ?Item:

available when:

- Player is in ?Place

- ?Item is in ?Place
displays:

You have picked up ?Item.
causes:

— Player has ?Item

— removes: ?Item is in ?Place

Drop ?Item:
available when:
- Player is in ?Place
- Player has ?Item
displays:
You have dropped ?Item.
causes:
- ?Item is in ?Place

- removes: Player has ?Item

Our example scenario consists of four rooms (kitchen, liv-
ing room, bathroom and a bedroom) which are declared us-
ing the “{} is a room* predicate. We establish connections
between rooms using the “{} is connected to { }* predicate,
but for actual choices given to the player we will be using
the “{} and {} can be walked between* predicate, to allow
player to walk in both directions (we assume there are no
one-way passages in this system for convenience).

Since the locations of the player and the items are dy-
namic, we use database terms rather than a predicate to rep-
resent them. The initial condition of the system, along with
the starting text, is placed in the initial state section. In ad-
dition, we declare the player location to be a unique fact,
meaning that the old value in the database will be deleted au-
tomatically when the new one is inserted, without the need
to declare so explicitly.

Our scenario consists of a single default deck with three
choices: one for walking between the rooms, and two for
interacting with items. Note that the “Walk from {} to {}“
choice makes use of the logical predicates we have defined
before, whereas the other two choices work only by match-
ing the terms available in the dynamic database. Simply
augmenting the precondition/effects syntax with variables is
sufficient to achieve non-determinism and allow for a single
element to serve as a template for an entire class of interac-

tions.
Here is an example interaction with the system:

You wake up in a cold sweat. You had nightmares all

night, and now you have a horrible headache.
> Walk from bedroom to living room

You walk from bedroom to living room.

Walk from living room to kitchen

Walk from living room to bathroom

Walk from living room to bedroom

vV V V VvV

Pick up TV remote
You have picked up TV remote.
Walk from living room to kitchen

Walk from living room to bathroom

Walk from living room to bedroom

vV V. V V

Drop TV remote
You walk from living room to bathroom.
> Walk from bathroom to living room

> Pick up soap
> Drop TV remote

Content selection overview

| Player chooses from a list of Choices |

Actions No more
present Actions
Leads to Action

‘ Early Action is executed

Push current E’o Leads to

another Deck

—

[Late Action is executed |

If indicator set
to post choice

Pop a Deck
from the stack

T If Deck stack

Leads to Action

More
isn't empty No more late Actions late Actions

Since content selection is one of the most important as-
pects of every interactive storytelling system, we implement
a relatively robust solution that allows for authoring both
the pattern of interaction with the player and more the au-
tomated simulation-like systems (such as NPCs or dynamic
state of the world) using the same storylet-based content sys-
tem.

In Wordgrind, content is divided into pieces of content
called Elements. Elements can be either Actions or Choices,
and are grouped into Decks.

Each Element contains preconditions which must be met
in order for the element to be selected. These preconditions
take a form of a list of (partially of fully instantiated) logic
terms, which are matched with the dynamic database. If a
given term unifies with a term in the database, this precon-
dition is considered to be fulfilled. Optionally, a precondi-
tion can be negative, in the sense that it is only considered
to be fulfilled if no term in the database unifies with it. In

addition to these preconditions, which are dependent on the
dynamic database, Elements can optionally also have direct
logic statements embedded inside of them, which must also
be satisfied in order for the Element to be selected.

Elements also contain effects which are the changes to the
game state that occur as a result of a given Element being
executed. Like preconditions, the effects also take the form
of a list of logic terms. Each effect represents a term to ei-
ther be added or removed from the database. Certain kinds
of terms can be marked as Unique in a specific section of
the file, meaning that only one term with a specific top-level
functor name can be held in the database at one time. This
means that when a new such term is added, the previous one
is automatically removed. This is useful for types of state
which should not contain duplicate values, such as player
location, or a plot-tracking stat value.

The execution of the selected Elements depends on their
type. Actions are executed automatically as soon as they are
selected, in order of their priority level. Choices are pre-
sented to the player, and only the one that is chosen is exe-
cuted. In addition, Actions can be further divided into those
that are selected and executed before and after the player
makes a choice.

All Elements are grouped into Decks, with those not ex-
plicitly marked with one being grouped into the default
Deck. One Deck is active at the time, with content selection
always happening within the Elements from the currently
active Deck. Each Element can specify a Deck that it “leads*
to, and once that Element is executed, that Deck becomes ac-
tive. This is intended as an easier way of grouping together
content, as well as a method of optimizing selection time in
more sophisticated interactive systems.

In the current version of Wordgrind, Decks operate on a
stack-based system - when a new Deck becomes active, it is
pushed onto the stack on top of the old one, and when an Ele-
ment that does not lead to a new Deck is executed the active
Deck is popped from the stack and the previous Deck be-
comes active. This is intended to make Decks more reusable
and enable easier creation of nested menu structures. How-
ever, as of writing, the details of this particular system are
still being refined.

Logic programming aspects

As previously mentioned, Wordgrind owes much of its ex-
pressivity to the logic programming language that extends
throughout the whole tool. Logic variables and terms can be
substituted into any piece of textual content shown to the
player, which allows for simple text templating being inte-
grated directly into the language.

Along with each Action and Choice Elements being able
to specify its own logic, Wordgrind file includes a section
for predicates, allowing for code reusability. All predicates
in Wordgrind, along with all the structured data terms used
in the predicates and the dynamic database, are in the form
of natural language sentences with variables and data terms
“embedded” inside of them. This solution, while only devi-
ating from the standard logic programming convention on
the syntax level, provides a simpler foundation for the tem-

plating system, as well as enables a more “literate program-
ming* style suited to non-technical content creators.

Both the logic terms embedded in the Action and Choice
Elements as well as the standalone predicates are compiled
directly to high-level JavaScript code, which is intended to
be human-readable. Using a method inspired by the Mer-
cury logic programming language, each predicate is com-
piled into a separate JavaScript function, where the non-
deterministic aspect is handled through continuation passing
(Henderson and Somogyi 2002). This one-predicate-one-
function correspondence allows for easier human compre-
hension of the generated code, which is valuable when de-
bugging or embedding the generated code within external
systems and frameworks.

The non-deterministic capability is an important feature
of the system in itself. Since each predicate can have a num-
ber of valid “results* (bindings of variables which are con-
sidered true), it is very easy to create a number of differ-
ent available Choices or Actions working from the same
template, by introducing inside of it a variable with sev-
eral possible valid bindings. For instance, when implement-
ing a system where a player character can move freely be-
tween rooms, instead of manually writing a Choice for each
connection, one can create a single Choice for walking be-
tween two locations designated with variables, and then cre-
ate logic that ensures that this option is only available if these
two variables represent two directly connected rooms. This
feature is similar to the “parameterized storylet* concept in-
troduced by (Kreminski and Wardrip-Fruin 2018).

Related work

While both interactive fiction tools making usage of logic
programming and those that allow for QBN exist, to our
knowledge those two concepts had not previously been used
together in one authoring tool. Our design is partially influ-
enced by the Dialog interactive fiction language (2018), es-
pecially with regards to the usage of natural language with
embedded logic terms and variables as a way of structuring
data (in contrast to the more traditional functor-like notation
used by the Prolog family of logic programming languages).

Despite the fact that it is a rule specification language
rather than an interactive narrative tool, Ceptre (Martens
2021) offers an approach to content selection similar to ours,
with stages and rules being the equivalent of Decks and El-
ements in Wordgrind. In place of preconditions and effects
commonly seen in QBN systems, Ceptre instead uses linear
logic to describe changes to the game state happening due to
the application of its rules.

The exclusion logic used within the Praxis logic lan-
guage, one of the components of the Versu storytelling sys-
tem (Evans and Short 2014), is used within that tool to solve
a similar problem as the Unique facts feature in Wordgrind,
namely the necessity of repeatedly removing and adding a
persistent stat property every time it needs to be changed.
Exclusion logic however allows for more sophisticated con-
trol, as well as the ability to easily express tree data struc-
tures.

While the concept of QBN has existed for over a decade, it
wasn’t until recent years that a number of tools for creating

QBN fiction have emerged, including SimpleQBN (2020),
StoryletManager (2021) and Tiny QBN (2019). A popular
data format for an existing interactive fiction tool Twine,
Harlowe, had recently added support for a storylet-based
selection mode as well (2021). Most of these tools so far
only support simple methods of content selection based on
integer-based state values and preconditions, or otherwise
lack the ability to use structured data for game state. The
main exception is SimpleQBN, which uses the MongoDB
database query language that permits more advanced forms
of state and condition tracking. Of the mentioned systems,
only StoryletManager has support for parameterized sto-
rylets, a feature which emerges in Wordgrind naturally as a
direct result of augmenting content with logic variables and
terms.

Conclusions & Future Work

In this paper we introduced Wordgrind, a tool for authoring
storylet-based interactive fiction based on logic program-
ming, and demonstrated both its content selection mecha-
nism and how it uses logic to augment its functionality.

While our tool in its current implementation has suffi-
cient functionality to demonstrate the underlying concepts,
more work will be needed in the future to ensure both tech-
nical stability and user convenience sufficient for a public
release. In particular, the question of syntax had only been
mentioned in this paper in broad strokes, as it is one of the
aspects of the tool that will require heavy user feedback and
iteration. The current implementation uses a simple YAML
file as a document format, however it is most likely that a
custom parser will be used at some point in the future.

The current logic programming system, while complete
enough for most purposes, still lacks some features that we
hope to make it into the final version. In particular, logical
negation and if/else statements are still to be implemented,
as well as syntax and library functions for dealing with list
data structures. In the farther future, we also hope to im-
plement a mode-based compilation system, similar to the
one used by the Mercury programming language (Hender-
son and Somogyi 2002), which would allow for better gen-
erated code performance.

References

2018. Dialog. http://www.linusakesson.net/dialog/index.
php. Accessed: 2021-08-16.

Evans, R., and Short, E. 2014. Versu—a simulationist sto-
rytelling system. [EEE Transactions on Computational In-
telligence and Al in Games 6(2):113-130.

Henderson, F., and Somogyi, Z. 2002. Compiling mer-
cury to high-level ¢ code. In Proceedings of the 2002 Inter-
national Conference on Compiler Construction. Grenoble,
France: Springer.

2006. Inform 7. http://inform7.com. Accessed: 2021-09-27.

Kreminski, M., and Wardrip-Fruin, N. 2018. Sketching a
map of the storylets design space. In ICIDS 2018: Interac-
tive Storytelling, 160-164. Dublin, Ireland: Springer.

Martens, C. 2021. Ceptre: A language for modeling gener-
ative interactive systems. Proceedings of the AAAI Confer-
ence on Artificial Intelligence and Interactive Digital Enter-
tainment 11(1):51-57.

2020. Simplegbn. https://github.com/videlais/simple-gbn.
Accessed: 2021-08-16.

2021. Storyletmanager. https://github.com/dmasad/
StoryletManager. Accessed: 2021-08-16.

2019. Tinygbn. https://github.com/JoshuaGrams/tiny-gbn.
Accessed: 2021-08-16.

2021. Twine harlowe. https://twine2.neocities.org/#macro_
storylet. Accessed: 2021-08-16.

