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Abstract 
Declarative languages allow designers to build procedural 
content generation systems without having to design and de-
bug specialized generation algorithms.  Instead, the designer 
describes the desired properties of the objects to be generated, 
and a general-purpose constraint-solver constructs the de-
sired artifact.  Answer-Set Prolog (Gebser et al., 2012; 
Lifschitz, 2008b) is a popular family of languages and solvers 
used in procedural content generation research.  Answer set 
programming is very powerful, with mature implementations 
and a significant user base outside the PCG community.  
However, ASP uses stable-model semantics (Gelfond & 
Lifschitz, 1992), which is subtle and difficult.  In this paper, 
I will present some of the history and motivation underlying 
stable model semantics in as non-technical manner as I can 
manage, and discuss its advantages and disadvantages.  I will 
argue that while it is appropriate for some very difficult PCG 
tasks, the simpler semantics of classical monotonic logic may 
be preferable for tasks not requiring ASP’s non-monotonic-
ity. 

Executive Summary 
This is basically a one-paragraph position paper intended to 
spark conversation, followed by several pages of tutorial on 
to explain this paragraph to those not steeped in stable model 
semantics.  Readers who are steeped in ASP may wish to 
read just the first three paragraphs of the paper, while those 
unfamiliar with logic programming, may wish to skip to the 
next section (Declarative PCG Example), and those unfa-
miliar with formal logic may wish to skip to the section after 
that (Introduction). 
 Answer-Set Programming (Gebser et al., 2012; Lifschitz, 
2019, 2008b) is an extremely useful tool for procedural con-
tent generation (A. M. Smith, 2017; A. M. Smith & Mateas, 
2011, 2010; Summerville et al., 2018).  It can express and 
solve problems that are beyond the capability of other de-
clarative languages.  However, it is also notoriously tricky.  
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This paper is an attempt to work through the sources of its 
difficulty and power in the hopes of teasing them apart. 
 The four claims of the paper are that (1) ASP’s difficulty 
comes in part from its nonmonotonicity: the ability to draw 
inferences based on the absence of information.  Nonmono-
tonicity is important for domains such as legal reasoning.  
But to the extent that procedural content generation is gen-
erally a perfect-information problem, default reasoning is of 
lesser value. I would argue that (2) being simpler, classical 
monotonic logic is preferable when applicable.  That said, 
ASP is more powerful than classical first-order logic insofar 
as it can express concepts such as transitive closure.  I would 
argue that (3) the source of that power is ASP’s use of min-
imization in its semantics.  Since minimization does not re-
quire nonmonotonicity, (4) I suggest we explore logics that 
support minimization while retaining monotonicity, such as 
FO(TC), first-order logic with the addition of a transitive 
closure operator. 
 In my experience, the difficulty of ASP is not especially 
controversial.  For the skeptical, I submit as evidence that 
my one-paragraph position statement is packaged with eight 
pages of tutorial.  One can also compare the standard text-
books on ASP (Gebser et al., 2012; Lifschitz, 2019) to text-
books for other languages.  It’s not quite as bad as if How to 
Design Programs (Felleisen et al., 2018) or Structure and 
Interpretation of Computer Programs (Abelson et al., 1996) 
began with the Church-Rosser theorem, but they require 
dramatically more mathematical sophistication than those 
texts or Clocksin and Mellish (Clocksin & Mellish, 2003), 
the canonical Prolog text.  While I do teach classes in which 
students without programming experience make PCG sys-
tems using constraint programming (Horswill, 2018b) and 
logic programming (Horswill, 2020), in my experience stu-
dents find ASP much more challenging. 
 One of the appeals of constraint programming for PCG is 
that constraints operate relatively independently of one 



another.  Something is a model of a program if and only if it 
satisfies each constraint in the program.  If your generator 
generates a problematic model, you can add a constraint to 
rule it out.  If it fails to generate what you believe to be a 
valid model, that model must violate at least one constraint.  
You can find it and fix it.  These properties do not hold in 
ASP: adding a rule can add models, remove them, or both.  
I once spent 20 minutes with a Ph.D. student working on an 
ASP thesis, one doing an SMT thesis, and one doing a PL 
semantics thesis, puzzling over why a 12-line ASP program 
was unsatisfiable.  We were able to write ASP programs that 
did the job, but we were never able to determine why that 
particular one didn’t. 

Declarative PCG Example 
 
The core idea of declarative PCG is to describe the objects 
to generate in terms of a set of choices or degrees of freedom 
for the objects, together with constraints on how those 
choices interact.  It’s difficult to generate an example that is 
compact, gets at the issues, is fair to both classical logic and 
ASP, and doesn’t require having first read the rest of the pa-
per.  But here’s my attempt. 
 Let suppose we’re generating personalities for characters, 
by selecting traits, as is common in commercial games such 
as Dwarf Fortress (Adams & Adams, 2006), The Sims 
(Evans, 2009; Maxis, 2009), and City of Gangsters (Zubek 
et al., 2021; Zubek & Viglione, 2021), which does use a ran-
domized SAT solver (Horswill, 2018a).  To keep things sim-
ple, we’ll assume there are two personality traits, ebullient 
and depressive.  A character can be either of these but not 
both at once.  And in homage to One Night Ultimate Were-
wolf (Alspach, 2009), all tanners are depressive.  This gives 
us two constraints: 
 

𝐶𝐶1: ¬(ebulluent ∧ depressive) 
C2: tanner → depressive 

 
This has three different propositions for eight different truth 
assignments, and two different constraints that may be sat-
isfied or contradicted by any given truth assignment: 
 

Ebullient Depressive Tanner Contradicts 
F F F None 
F F T C2 
F T F None 
F T T None 
T F F None 
T T F C1 
T T T C1 

 

Under classical logic, the models are the ones that don’t con-
tradict any constraints.  That gives us four different models 
(the ones in green), and so four possible characters that can 
be generated. 
 A naïve, line-by-line translation of the constraints above 
into ASP would read: 
 
:- ebullient, depressive. 
depressive :- tanner. 
 

The first line says ebullient and depressive together form a 
contradiction.  The second says that tanner implies depres-
sive.  However, this program only has one solution under 
ASP (one stable model): the model in which all propositions 
are false.  The technical description in terms of stable-model 
semantics is complicated, but in this case it boils down to 
our not having provided any rules for concluding ebullient 
or tanner are true.  In the absence of such rules, ASP requires 
them be false.  And indeed ASP solvers such as clingo 
(Gebser et al., 2010) issue warnings when reading such a 
program.  Depressive can’t be true either because it can only 
be true when tanner is true, and tanner is never true.  Thus, 
all three propositions are false. 
 This is unfair to ASP because an ASP programmer would 
know not to write it this way.  They would more likely write 
it as: 
 
0 { ebullient; depressive } 1. 
{ tanner }. 
depressive :- tanner. 

 
The first line here says that both ebullient and depressive 
can be freely chosen, but at most one can be true.  The sec-
ond says that tanner can be freely chosen.  These lines are 
syntactic sugar for more complicated systems of rules, 
which are outside the scope of this paper, see (Gebser et al., 
2012).  For this desugared ASP program, all four classical 
models are stable. 
 Again, this is an unfair comparison for ASP, both because 
it makes ASP look more verbose, and also because experi-
enced ASP programmers wouldn’t make this specific mis-
take.  But it is indicative of the kind of mistake that it’s easy 
to make as one develops a program, such as forgetting to 
explicitly include a choice rule, or being misled by different 
ways of saying something that one might naively assume to 
be equivalent, or simply forgetting they are different. 
 In the remainder of the paper, I’ll explain the background 
underlying the position statement.  I want to emphasize that 
ASP is unquestionably useful.  I am questioning only 
whether it makes sense to adopt the restriction to stable 
models when working on problems like the one above that 
don’t require it. 



Introduction 
Declarative programming languages (e.g. constraint pro-
gramming, Prolog, ASP) are very attractive for PCG.  They 
allow a designer to describe the choices involved in gener-
ating an artifact, along with constraints on the relationships 
between those choices, leaving it to the system to find ex-
amples (models) that satisfy those constraints.  They have 
been used successfully both by commercial game develop-
ers (Zubek & Viglione, 2021) and non-programmers 
(Horswill, 2018b) for generation of characters, in-game 
items, character relationship maps, and prompts for table-
top role-playing games.  
 Answer-Set Prolog (Lifschitz, 2008b) is an extremely 
powerful family of declarative languages and solvers.  It has 
been used for a number of procedural content generation 
tasks (A. M. Smith & Mateas, 2011), ranging from level 
generation (A. Smith, 2011) to generation of complete 
games and their critiques  (Summerville et al., 2018). 
 ASP provides a number of clear advantages: 
 

• It provides an expressive and concise first-order 
language for describing problems. 

• It supports pseudo-Boolean constraints, which al-
low natural expression of taxonomic constraints, 
build-point systems, and “pick 𝑁𝑁 from a menu” 
constraints. 

• It works in part by transforming programs to SAT 
problems, allowing users to leverage the consider-
able progress in high performance SAT solving. 

• It offers mature, highly optimized implementations 
with a sizable user base (Gebser et al., 2010, 2012) 

• It is a non-monotonic logic, which makes it natural 
for planning and default reasoning tasks. 

 
The first four of these, I think are non-problematic.  How-
ever, the last of these, its non-monotonic semantics based on 
“stable” models (Gelfond & Lifschitz, 1992), while power-
ful, is both subtle and difficult.  Here I will try to unpack 
those semantics in a way that is more accessible those that 
those that are often given (Gebser et al., 2012; Lifschitz, 
2008a). 
 I will assume here that the reader has a basic undergradu-
ate familiarity with set theory, (classical) propositional 
logic, and first-order logic, but will not assume the reader 
knows or remembers any of the details of Tarskian model 
theory.  I will begin by briefly reviewing the model-theoretic 
semantics of classical logic, the semantics of positive logic 

 
2 There are a number of more exotic logics, particularly substructural logics, 
that don’t fit cleanly into these distinctions.  For example, linear logic seeks 
to combine properties of both.  However, these come more naturally as ex-
plorations of proof theory, and their model theories are their semantic the-
ories are well outside the scope of this paper. 

programs (which are different), and the semantic difficulties 
encountered by traditional logic programming languages 
that motivated the development of stable-model semantics.  
Section headings are provided to help the reader to skip over 
material they’re already familiar with.  I will then present 
stable-model semantics and discuss the kinds of situations 
in which it is invaluable.  I will also discuss why it is so 
difficult to understand and some possible alternatives. 

Semantics of logic 
A formal logic is a compositional language for formulating 
truth statements.  It is a set of symbol strings, referred to as 
sentences or well-formed formulae (WFFs), defined by 
some recursive grammar, together with some set of semantic 
rules that relate the meaning of a sentence to the meaning of 
its constituents so that, for example, the meaning of 𝐴𝐴 ∧ 𝐵𝐵 
is derived from the meanings of 𝐴𝐴 and 𝐵𝐵. 

A theory in a logic is simply a set of sentences, all of 
which are asserted to be true.  In most logics, this will be 
equivalent to the conjunction of those sentences.  Thus, we 
will treat the theory {𝐴𝐴,𝐵𝐵} and the sentence 𝐴𝐴 ∧ 𝐵𝐵 as inter-
changeable. 

Formal logics largely divide into classical and intuition-
istic logics,2 with the distinction being roughly that classical 
logics commit to every sentence having a simple truth value, 
while intuitionistic logics do not.  Semantic systems for in-
tuitionistic logics often identify the meaning of a sentence 
with the possible proofs of the sentence, while those for clas-
sical logics identify it with the possible mathematical ob-
jects for which it is true (its models).3  Although intuition-
istic logics are more relevant for much of CS, logic program-
ming semantics is somewhat surprisingly grounded in clas-
sical logic. 

Important syntactic categories 
In most logics, an atom is a either a proposition symbol such 
as 𝐴𝐴 or 𝐵𝐵, or the application of a predicate to some argu-
ments, such as 𝑃𝑃(𝑎𝑎, 𝑏𝑏) or 𝑄𝑄(𝑓𝑓(𝑎𝑎), 𝑏𝑏)).  A literal is either an 
atom (a positive literal) or its negation (a negative literal).  
𝐴𝐴 is a positive literal, ¬𝐵𝐵 is a negative literal.  An atom/lit-
eral containing no variables is said to be a ground atom/lit-
eral.   
 In classical propositional logic, a (disjunctive) clause is a 
disjunction of literals, e.g. 𝐴𝐴 ∨ ¬𝐵𝐵.  Any theory has an 
equivalent form as a set of clauses.  Any clause is equivalent 
to one or more implications, in which one disjunct is 

3 Various non-Tarskian model theories exist for intuitionistic logics, such 
as those based on Heyting algebras.  In particular, Heyting showed that 
particular kinds of subsets of the real line can be used as a kind of model 
for intuitionistic logic.  However, these are more technical devices for stud-
ying proof systems than useful systems for relating a theory in the logic to 
some outside system it’s trying to describe. 



implied by the conjunction of the negations of the others.  
Thus 𝐴𝐴 ∨ ¬𝐵𝐵 ∨ 𝐶𝐶 is equivalent to ¬𝐴𝐴 ∧ 𝐵𝐵 → 𝐶𝐶, 𝐵𝐵 ∧ ¬𝐶𝐶 →
𝐴𝐴, and ¬𝐴𝐴 ∧ ¬𝐶𝐶 → ¬𝐵𝐵.  A Horn clause is a clause with at 
most one positive literal.  It is therefore equivalent to an im-
plication with no negative literals.  For example, ¬𝐴𝐴 ∨ ¬𝐵𝐵 ∨
𝐶𝐶 is a horn clause equivalent to 𝐴𝐴 ∧ 𝐵𝐵 → 𝐶𝐶. 
 Clauses in first-order logic are more complicated because 
of quantifiers.  Automated reasoning systems typically focus 
on theories composed of universally quantified clauses, that 
is, clauses of the form ∀𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 . 𝐿𝐿1 ∨ …∨ 𝐿𝐿𝑚𝑚 where the 𝐿𝐿𝑖𝑖 
are literals over the variables 𝑥𝑥𝑗𝑗. 

Satisfaction 
In abstract model theory (Chang & Keisler, 2012), the se-
mantics of a logic is defined in terms of a satisfaction rela-
tion: 
 

𝑀𝑀 ⊨ 𝑆𝑆 
 

stating that the mathematical object4 𝑀𝑀 satisfies, or is a 
model of, 𝑆𝑆.  To be a valid satisfaction relation, ⊨ must obey 
some obvious compositionality requirements, such as 𝑀𝑀 be-
ing a model of 𝐴𝐴 ∧ 𝐵𝐵 iff it’s a model of both 𝐴𝐴 and 𝐵𝐵, as well 
as the requirements that it is closed on the left under isomor-
phism (an object isomorphic to a model of 𝑆𝑆 is itself a model 
of 𝑆𝑆) and on the right by variable renaming (the models of 𝑆𝑆 
don’t depend on our choice of variable names). 
 If we fix a particular domain 𝐷𝐷 of objects we want to de-
scribe, then we can define an extensional meaning for 𝑺𝑺 as 
the set of its models: 
 

modelsD(𝑆𝑆) = { 𝑀𝑀 ∈ 𝐷𝐷 | 𝑀𝑀 ⊨ 𝑆𝑆 } 
 
The models of a theory are simply the intersection of the 
models of its sentences.   
 A sentence or theory is satisfiable if it has a model, i.e. if 
at least one object satisfies it.  In the logics we’re concerned 
with, a contradiction can be proven from a theory iff it is 
unsatisfiable. 

Entailment, inference, and proof 
Model theory was originally developed as a way of validat-
ing different proof systems for a given logic.  A sentence is 
(semantically) entailed by a theory iff it is true in all models 
of the theory, i.e. the models of the theory are a subset of the 
models of the entailed sentence.  A sentence is syntactically 
entailed from a theory within a proof system iff it is provable 
from the theory in that system.  The proof system is sound 

 
4 Specifically, a kind of object called a structure, which is a set equipped 
with some operations and relations that can be performed on it.  For exam-
ple, the natural numbers under arithmetic is a structure and one can ask 

and complete (i.e. good) iff syntactic entailment and seman-
tic entailment are the same. 

Minimal Herbrand models 
We will focus primarily on one particular domain of models, 
the Herbrand base, which consists of all of the ground atoms 
constructible from the symbols appearing in the theory.  
Many logic programming systems take 𝐷𝐷, the domain of 
possible models, to be the set of possible subsets of the Her-
brand base.  These Herbrand models are thus just sets of 
ground atoms.  In particular, they are the set of ground atoms 
taken to be true within the model. 
 If a theory has a model at all, it has a Herbrand model, so 
it’s sufficient for a logic programming system to restrict its 
attention to Herbrand models. 
 As we shall see, logic programming semantics are defined 
in terms of minimal Herbrand models: models of which 
no subset is also a model: 
 

minimal(𝑇𝑇) = {𝑀𝑀 ⊨ 𝑇𝑇 |  ∄𝑀𝑀′ ⊂ 𝑀𝑀 .𝑀𝑀′ ⊨ 𝑇𝑇 } 
 

Minimal Herbrand models are a kind of approximation to 
entailment.  If a theory only has one minimal Herbrand 
model, then that model’s atoms must be true in all models.  
That model is then exactly the set of atoms entailed by the 
theory. 
 If a theory has multiple minimal models, then the set of 
atoms entailed by the theory (if any), don’t form a model by 
themselves.  Moreover, at least one atom in each minimal 
model isn’t an entailment.  However, those models do still 
represent the atoms common to different clusters of models.  
So there’s a sense in which they loosely characterize the set 
of models. 

Minimality, transitive closure, and FOL 
Minimality comes up repeatedly in logic and computation.  
The difference between the primitive recursive functions 
and the general recursive functions is the addition of a min-
imization operator.  The 𝑌𝑌 combinator of the 𝜆𝜆-calculus 
doesn’t compute an arbitrary fixed-point of the function, it 
computes the least fixed-point: the one that assigns output 
values to as few inputs values as possible.  Inductively de-
fined sets are the least fixed-points of whatever process is 
being iterated to generate them. 
 One place where minimality frequently comes up is with 
transitive closure.  If 𝑅𝑅 is a relation (a set of pairs), then its 
transitive closure 𝑅𝑅∗ is the smallest relation that contains 𝑅𝑅 
and is transitive.  If we adopt the standard recursive formal-
ization of transitive closure: 

whether a specific theory does or does not include the natural numbers as a 
model, and what other kinds of systems might also be models of it. 



 
∀𝑥𝑥,𝑦𝑦.𝑅𝑅(𝑥𝑥, 𝑦𝑦) → 𝑅𝑅∗(𝑥𝑥, 𝑦𝑦) 
∀𝑥𝑥,𝑦𝑦, 𝑧𝑧.𝑅𝑅∗(𝑥𝑥, 𝑦𝑦) ∧ 𝑅𝑅∗(𝑦𝑦, 𝑧𝑧) → 𝑅𝑅∗(𝑥𝑥, 𝑧𝑧) 

 
Then this says only that 𝑅𝑅∗ must be transitive and contain 𝑅𝑅, 
not that 𝑅𝑅∗ must be minimal.  The model in which 𝑅𝑅 is empty 
but 𝑅𝑅∗ is all possible pairs, is a valid model of these axioms.  
It’s only in the minimal Herbrand model that 𝑅𝑅∗ is the true 
transitive closure of 𝑅𝑅. 
 This brings up the deeply inconvenient fact that first-or-
der logic is not strong enough to formalize transitive closure, 
despite the latter’s apparent simplicity.  While the formali-
zation includes the desired model, it also includes a number 
of unintended models, even though its entailments are only 
the true statements about the transitive closure.  FOL is not 
expressive enough to rule out the unintended models. 
 As a result, there has been a great deal of work in finite-
model theory on the expressiveness of so-called intermedi-
ate logics that add to FOL some operation, such as transitive 
closure or a fixed-point operator (Libkin, 2004).  The result-
ing logic is more expressive than FOL without making it full 
second-order logic, which doesn’t even have a proof system. 

Monotonicity 
First-order logic is monotonic: since the models of a theory 
are the intersection of the models of its sentences, adding a 
sentence to the theory can never add models, only remove 
them.  And since the entailments of a theory are the sen-
tences true of all its models, adding sentences to the theory 
can never remove entailments. 
 Monotonicity is a useful property.  If you are trying to 
debug your formalization of a domain and something that 
should be a model isn’t, there will be guaranteed to be at 
least one sentence in the theory of which your desired model 
isn’t a model.  That gives you a place to start debugging. 
 Unfortunately, monotonicity doesn’t match certain kinds 
of real-world human reasoning, such as reasoning about de-
faults.  If I tell you Bill is sitting down to dinner, you will 
draw one set of conclusions and imagine one set of situa-
tions.  But if I add that Bill is a vampire, you will suddenly 
imagine a very different set of circumstances. 
 While the set of models of a theory is monotonic as one 
adds sentences to the theory, the set of minimal models is 
not.  The theory 𝐴𝐴 → 𝐵𝐵 has the models {}, {𝐵𝐵}, and {𝐴𝐴,𝐵𝐵}, 
which have the single minimal model {}.  However, if we 
add the sentence 𝐴𝐴 to the theory, then the models narrow to 
just {𝐴𝐴,𝐵𝐵} and that is now minimal. 

 
5 The exposition is simpler in the propositional case.  For the first-order 
case, we think of each rule with variables as being universally quantified 
and as standing in for the set of all its possible ground instantiations. 

Semantics of Prolog-like languages 
Although logic programming languages aren’t logics per se, 
their semantics are typically defined by pretending that the 
statements of a logic program 𝑃𝑃 are really a theory 𝒯𝒯(𝑃𝑃) in 
some underlying logic, most commonly FOL or classical 
propositional logic, and then defining the meaning of the 
program in terms of the minimal Herbrand models of 𝒯𝒯(𝑃𝑃). 

Positive logic programs 
A propositional positive logic program is a set of rules of 
the form: 
 

𝐶𝐶 ← 𝑃𝑃1, … ,𝑃𝑃𝑛𝑛 
 
Where the conclusion, 𝐶𝐶, and the premises, 𝑃𝑃𝑖𝑖 , are proposi-
tions.5  Note that we are not allowing negation on either side 
of the arrow. 
 Consider the following two inference algorithms: 
 

Backward chaining: 
𝐶𝐶 is true if there is some rule 𝐶𝐶 ← 𝑃𝑃1, …𝑃𝑃𝑛𝑛 for which all 
𝑃𝑃𝑖𝑖  are true. (Note: 𝑛𝑛 may be zero in which case 𝐶𝐶 is trivi-
ally true). 

 
Forward chaining: 
𝑆𝑆 = {} 
repeat to convergence: 
 𝑆𝑆 = 𝑆𝑆 ∪ {𝐶𝐶 | 𝐶𝐶 ← 𝑃𝑃1, …𝑃𝑃𝑛𝑛 is a rule and all 𝑃𝑃𝑖𝑖 ∈ 𝑆𝑆}  

 
The former takes one proposition and recursively applies 
rules to attempt to prove it.  The latter finds all provable 
propositions by starting with the empty set and iteratively 
adding all propositions provable from the rules and the pre-
viously proven propositions, until there is no change. 
 Both these algorithms find propositions that can be con-
cluded from premises.  That said, a rule in this style of logic 
program has a directionality to it and so is not a clause in the 
logical sense.  In classical logic, 𝐴𝐴 → 𝐵𝐵 not only allows you 
to infer 𝐵𝐵 from 𝐴𝐴, but also to infer ¬𝐴𝐴 from ¬𝐵𝐵.  In Prolog 
(Warren et al., 1977) and Planner (Hewitt, 1969), 𝐵𝐵 ← 𝐴𝐴 
only allows you to infer 𝐵𝐵 from 𝐴𝐴. 
Minimal model semantics 
Nonetheless, if we pretend the rules of a program 𝑃𝑃 are Horn 
clauses, then we can compare 𝑃𝑃’s behavior to the models of 
𝒯𝒯(𝑃𝑃).  Here, 𝒯𝒯(𝑃𝑃) is simply the theory we get when we re-
write all the rules 𝐶𝐶 ← 𝑃𝑃1, … ,𝑃𝑃𝑛𝑛 into Horn clauses 𝑃𝑃1 ∧ …∧
𝑃𝑃𝑛𝑛 → 𝐶𝐶. 
 One could imagine the directionality of logic program-
ming rules leading the system to miss propositions that are 



entailed by 𝒯𝒯(𝑃𝑃).  However, Van Emden and Kowalski 
(1976) showed that for positive logic programs, 𝒯𝒯(𝑃𝑃) has a 
unique, minimal model.  This model: 
 

• consists of exactly the set of atoms entailed by the 
theory 

• is identical to the set 𝑆𝑆 computed by the forward-
chaining algorithm, and 

• is also identical to the set of propositions provable 
by the backward-chaining algorithm 

 
This minimal model was then taken by logic programming 
researchers to define the semantics of positive logic pro-
grams.  From that point on, semantics for logic program-
ming languages have been based on some notion of canoni-
cal or preferred models (Lifschitz, 2008a). 

General logic programs 
A general logic program is simply a logic program that al-
lows negations in the premises of rules, e.g.: 
 

𝐶𝐶 ← 𝑃𝑃1, …𝑃𝑃𝑛𝑛, ¬𝑄𝑄1, … , ¬𝑄𝑄𝑚𝑚 
 
where 𝑛𝑛 and/or 𝑚𝑚 might be zero, i.e. the 𝑃𝑃s or 𝑄𝑄s might be 
absent.  Unfortunately, the clausal form of such a rule is no 
longer a Horn clause when 𝑚𝑚 > 0.  When interpreted as a 
theory in classical logic, it no longer has a single minimal 
Herbrand model.  For example, the general logic program: 
 

𝐴𝐴 ← ¬𝐵𝐵 
𝐵𝐵 ← ¬𝐴𝐴 

 
when interpreted as a theory in classical logic, has the mod-
els {𝐴𝐴} and {𝐵𝐵}.  However, their intersection, {}, is not a 
model.  Both models are minimal, and there is no single min-
imal model to take as the meaning of the program.  Indeed, 
while the theory entails the sentence 𝐴𝐴 ∨ 𝐵𝐵, it entails no in-
dividual literals. 
 If one were interested in satisfaction, that is, just asking 
what all the different models of the program might be, then 
this wouldn’t be a problem; we would simply take the mean-
ing of the program to be the same as the meaning of the the-
ory: all the models.  Indeed, this is the view I will suggest 
below is more appropriate for PCG.  However, logic pro-
gramming has generally focused on trying to model infer-
ence/entailment, and so throwing one’s hands up and ac-
cepting all the models is less attractive. 
Negation as failure 
Negation is very useful.  It’s difficult to express many do-
mains without it.  Classical logic programming systems, 
which were implemented using backward chaining, imple-
mented negations of the form ¬𝑋𝑋 by exhaustively trying to 
prove 𝑋𝑋, taking ¬𝑋𝑋 to be proven if the attempt fails.  This is 

certainly an improvement over disallowing negation en-
tirely.  But it departs at unexpected times from classical 
logic, leading to erroneous results. 
 Some of these issues have to do with cases where the al-
gorithm recurses infinitely.  In these cases, it fails to give the 
right answer, but it at least also fails to give a wrong answer. 
 However, negation as failure also leads to a class of bugs 
in which one forgets that not provably true is different from 
provably false.  A more subtle set of issues come up when 
the implementation of negation interacts unpredictably with 
the incremental variable binding performed in classical 
logic programming.  For example, if we consider the single-
line Prolog program that asserts the truth of 𝑝𝑝(𝑎𝑎) without 
asserting anything else: 
 
 p(a). 
 
Then the results we get the following results for positive 
queries match their naïve glosses in first-order logic: 
 

Query Naïve FOL FOL  Prolog 
p(a) 𝑃𝑃(𝑎𝑎) T T 
p(b) 𝑃𝑃(𝑏𝑏) F F 
p(X) ∃𝑥𝑥.𝑃𝑃(𝑥𝑥) T T 

 
However, negation can diverge from FOL: 
 

Query Naïve FOL FOL Prlg 
not p(a) ¬𝑃𝑃(𝑎𝑎) F F 
not p(b) ¬𝑃𝑃(𝑏𝑏) T T 
X=b, not p(X) ∃𝑥𝑥. 𝑥𝑥 = 𝑏𝑏 ∧ ¬𝑃𝑃(𝑥𝑥) T T 
not p(X), X=b ∃𝒙𝒙. ¬𝑷𝑷(𝒙𝒙) ∧ 𝒙𝒙 = 𝒃𝒃 T F 
p(X), X=b ∃𝑥𝑥.𝑃𝑃(𝑥𝑥) ∧ 𝑥𝑥 = 𝑏𝑏 F F 
not not p(X), 
X=b 

∃𝒙𝒙. ¬¬𝑷𝑷(𝒙𝒙) ∧ 𝒙𝒙
= 𝒃𝒃 

F T 

 
Hence, in Prolog, conjunction is not commutative, nor is ne-
gation is its own inverse.  Worse, the only way to predict 
when Prolog code will diverge from the naïve logical inter-
pretation is to mentally simulate it.  Writing Prolog code 
thus requires not only comfort with logic, but an understand-
ing of the detailed behavior of Prolog interpreters. 
 These problems led to the search for a version of logic 
programming in which negation by failure was better be-
haved, eventually resulting in stable-model semantics, an-
swer-set programming and answer-set Prolog.  These sys-
tems involve transforming a logic program into a SAT prob-
lem under classical propositional logic, solving for its mod-
els, and filtering them to find the stable models.  They have 
the advantage that there is a natural definition of stable mod-
els, and hence their semantics, independent of the inference 
algorithm used to solve for them.  However, stable model 
semantics is subtle and difficult.  Like SLDNF, it’s close to 



classical FOL, but different enough for bugs to come up 
when the programmer fails to anticipate ASP’s divergence 
from their logical intuitions.  So even though it does not re-
quire an understanding of the solver algorithm, it’s still dif-
ficult to master. 

Stable model semantics 
The semantics of ASP are defined in terms of a particular 
kind of minimal Herbrand model called a stable model.  
Lifschitz (2008a) discusses 12 different definitions of stable 
models that all turn out to be equivalent.  However, most of 
them require enough background in other non-monotonic 
logics that they can’t be fully defined within the paper.   

The definition that is presented in its entirety in that paper, 
and the one that appears most often in the literature, uses the 
notion of the “reduct” of a general logic program.  The re-
duct ℛ(𝑃𝑃,𝑀𝑀) of a program 𝑃𝑃 with respect to a Herbrand 
model 𝑀𝑀, is the positive logic program one obtains by par-
tially evaluating all negations in 𝑃𝑃 with their valuations in 
𝑀𝑀.  That is, we replace ¬𝑃𝑃 with false if 𝑃𝑃 ∈ 𝑀𝑀, and true if 
𝑃𝑃 ∉ 𝑀𝑀.  For those cases where ¬𝑃𝑃 is true, this effectively 
removes ¬𝑃𝑃 from the rule.  In those cases where it’s false, 
it effectively removes the rule entirely since it contains a 
false premise.  The reduct has no negations, and so is a pos-
itive logic program, and so has a unique minimal Herbrand 
model. 

A model 𝑀𝑀 is a stable model of a program 𝑃𝑃 is if it’s a 
model of 𝑃𝑃 and also the minimal model of its reduct of P: 

 
stable𝑃𝑃(𝑃𝑃) = �𝑀𝑀 ⊨ 𝒯𝒯(𝑀𝑀) | 𝑀𝑀 ∈ minimal(𝒯𝒯�ℛ(𝑃𝑃,𝑀𝑀)�) � 

 
Note that since a positive logic program is its own reduct, 

the unique minimal model of a positive program is also its 
unique stable model.  Thus stable model semantics is “back-
ward compatible” with the Van Emden and Kowalski se-
mantics, but extends it to general logic programs with nega-
tion as failure. 

The good 
Stable model semantics gives ASP most of the attractive 
properties of Prolog, while avoiding the worst excesses of 
negation as failure.  Although limited to finite-domain prob-
lems where the system can enumerate the possible values of 
a variable in advance, it gives a very convenient language 
for expressing SAT-like problems.  It can be thought of as a 
general mechanism for eager reduction of NBSAT problems 
to SAT problems. 

 
6 A SAT solver by itself, will find models, but not necessarily stable ones.  
ASP solvers work reducing the program to a particular SAT problem, but 
then also test whether the generated model would require circular reasoning 
to prove (Lin & Zhao, 2002).  If so, it adds a so-called “loop formula” to 

 AnsProlog includes a number of syntactic extensions to 
general logic programs (Gebser et al., 2012) that are espe-
cially well suited to PCG applications.  In particular, choice 
rules and pseudo-Boolean constraints (e.g. cardinality con-
straints) come up frequently in PCG applications. 
 Since ASP reduces programs to SAT problems plus some 
post-processing,6 it can leverage the considerable algorith-
mic improvements and performance engineering that has 
gone into the development of SAT solvers in the last 30 
years.  This allows ASP solvers to be surprisingly fast and 
effective in many cases. 
 Because it looks for minimal models (stable ones, in par-
ticular), it’s expressive enough to represent transitive clo-
sure.  More generally, it can reason about reachability, 
which traditional SMT solvers cannot easily do.  You can 
think of stable models as representing the results of a kind 
of reasoning process in which atoms only appear in the 
model if there is some chain of reasoning that would derive 
that model from the rules, starting with the assumption of 
everything being false, and then incrementally adding new 
atoms as rules allow them to be inferred. 
 Moreover, the reasoning rules in ASP programs are not as 
“one-way” as they are in Prolog.  If you say 𝐴𝐴 ← 𝐵𝐵 and ¬𝐴𝐴, 
the system will know that 𝐵𝐵 must also be false.  ASP pro-
grams do constraint satisfaction, albeit a particular kind. 
 Finally, the non-monotonicity of ASP programs makes 
them natural for certain kinds of default reasoning problems.  
Since the system always defaults the value of an atom to 
false unless it has a rule to justify it, other kinds of default 
rules can be naturally encoded into ASP rules. 
 The availability of a high-level modeling language that is 
automatically expanded into a grounded form is also a very 
valuable aspect of ASP, although not unique to ASP, see for 
example, (Torlak & Bodik, 2013).  In what follows, I as-
sume the use of a high-level modeling language and critique 
merely the use of stable-model semantics. 

The bad 
Like Prolog, negation in ASP has strange, unanticipated 
properties.  In classical logic, the statements: 
 

𝑝𝑝 
¬¬𝑝𝑝 

false ← ¬𝑝𝑝 
 
Are all equivalent.  In ASP, the first states that 𝑝𝑝 must be 
true, and moreover, that that fact can be used to prove other 
atoms.  The second is not valid ASP code.  And the last of 
these effectively means only that 𝑝𝑝 must not be provably 

the problem and backtracks.  It can’t add all possible loop-formulae in ad-
vance because they can be large and there can be an exponential number of 
them.  In practice, this process works surprisingly well. 



false.  It’s effectively true, but you can’t use its truth to make 
further inferences; you simply filter out any otherwise stable 
models in which it’s false.  Both the first and last of these 
forms get used in practice. 
 Finally, the nonmonotonicity of ASP is a two-edged 
sword.  If you are trying to understand why it is that some-
thing isn’t a model of your formalization in a monotonic 
logic,7 then at least one statement in your formalization must 
contradict that model.  You can find that statement and use 
that to understand what’s wrong with your formalization.  
You can’t do that when reasoning about stable models, be-
cause the statements interact with one another in non-local 
ways.  Divide and conquer does not automatically work for 
debugging. 

The ugly 
This definition given above for stable models is concise, 
precise, and almost entirely useless for the practicing pro-
grammer.  For one thing, it’s difficult for a programmer to 
read that definition and envision what models will be stable 
for a given set of clauses. 
 Perhaps more importantly, it defines stable models only 
for programs written in the form of implications of conjunc-
tions.  Virtually no ASP programs written in the game AI 
world look like that.  Rather, they frequently use constructs 
such as choice rules and pseudo-Boolean constraints:8 

 
1 { 𝑎𝑎;  𝑏𝑏;  𝑐𝑐 } 1 ← 0 {𝑐𝑐 ;𝑑𝑑 ; 𝑒𝑒} 1 

 
that are macro-expanded by the system into sets of rules in 
the canonical form.  The expansion of the rule above is too 
complex to include here, but for a simpler example, the 
choice rule:9 
 

{ 𝑎𝑎;  𝑏𝑏;  𝑐𝑐 } 
 
expands into the rules: 
 

𝑎𝑎 ← ¬𝑎𝑎� 
𝑎𝑎� ← ¬𝑎𝑎 
𝑏𝑏 ← ¬𝑏𝑏� 
𝑏𝑏� ← ¬𝑏𝑏 
𝑐𝑐 ← ¬𝑐𝑐̅ 
𝑐𝑐̅ ← ¬𝑐𝑐  

 
It is the stable models of this program that form the seman-
tics of the original.  Note that these rules expand not only 
into multiple new rules, but also into new atoms of which 

 
7 For example, when one uses a higher-level modeling language such as 
Rosette (Torlak & Bodik, 2013) to generate a SAT or SMT problem. 
8 For those unfamiliar with ASP, this says that if no more than one of the 
propositions 𝑐𝑐, 𝑑𝑑, and 𝑒𝑒 are true, then exactly one of 𝑎𝑎, 𝑏𝑏, and 𝑐𝑐 should be 
true. 

the programmer is unaware.  Those atoms are absent from 
the source code, present in the stable models, but may also 
be absent from the output, making it difficult for novice pro-
grammers to understand the behavior of the system. 

Why do people find ASP so confusing? 
Stable-model semantics is a brilliant way of selectively in-
corporating minimization into model finding in SAT-like 
systems.  It makes it possible to capture entailment-like in-
ference processes within a satisfaction-based framework, 
and selectively loosen some of those requirements using 
choice rules. 
 That said, ASP terminology and tutorials mix satisfaction 
terminology (models, satisfiability, unsatisfiability) with en-
tailment/inference terminology (defaults, rules, proof).  
Since it looks kind of like FOL, it behaves kind of like FOL 
satisfiability, and also behaves kind of like FOL inference, 
it’s easy to slip into thinking of it as actually being one or 
the other.  But it’s actually neither; it’s something in be-
tween.  That leads to confusion and bugs. 

ASP for Procedural Content Generation 
SAT-based logic programming provides a convenient and 
highly expressive language for expressing finite-domain 
constraint satisfaction problems.  It allows the kind of first-
order declarative programming familiar from Prolog, with-
out some of its misfeatures.  ASP is one particular approach 
that uses stable model semantics, which permits the expres-
sion of concepts such as reachability and transitive closure 
at the cost of a steeper learning curve and a more complex 
debugging task. 
 There are a number of PCG problems for which ASP is 
not only appropriate, but for which it’s hard to imagine and 
alternative.  Problems that require sophisticated reasoning 
about reachability and provability, such as game generation 
(Summerville et al., 2018) or generation of levels that force 
particular solution methods (Polozov et al., 2015) simply 
cannot be solved by standard SAT techniques. 
 Nevertheless, there are many PCG applications, such as 
the one discussed at the beginning of this paper, where some 
kind of constraint formalism is valuable, but ASP’s minimi-
zation features are unnecessary.  In those cases, I would ar-
gue that ASP’s nonmonotonic semantics lead to unneces-
sary confusion, and a more conventional SAT or SMT 
solver10 would be more appropriate.  CatSAT (Horswill, 

9 This says that the truth values of 𝑎𝑎, 𝑏𝑏, and 𝑐𝑐 may be chosen freely, modulo 
any constraints put on them by other rules. 
10 Satisfaction Modulo Theories.  An SMT solver is essentially a SAT 
solver that coroutines with a domain-specific constraint solver for some 
specialized data type, such as integers, arrays, or bit vectors. 



2018a) is an example of such a system that has been de-
ployed in a commercial game (SomaSim, 2021). 

Alternatives and future work 
For many problems, what I wish I had was neither traditional 
SAT nor ASP, but rather something that provided the kinds 
of minimization supported by ASP in a more selective and 
controlled manner.  There are at least two possible strategies 
for doing this. 
 One would be to implement a satisfiability solver for one 
of the intermediate logics studied in finite model theory 
(Libkin, 2004).  FO(TC), a version of first-order logic in 
which specific predicates can be declared to be the transitive 
closure of other predicates, would be an obvious choice.  
This could potentially be implemented in the same style as 
traditional ASP solvers: the system could find a model, then 
test just the transitive closures for minimality, and add addi-
tional clauses at runtime to defeat the particular violations 
of minimality that came up in that particular model.  These 
would be the equivalents of the loop formulae generated by 
traditional ASP solvers.  I could easily imagine that failing 
miserably, that the system would need to generate too many 
such clauses to be practical.  But I would have predicted that 
to be true of loop formulae in ASP, and that works well. 
 Another possibility would be to use an SMT solver that 
incorporated a theory solver for connectivity reasoning in 
directed graphs (Bayless, 2017; Rossi et al., 2006, chapter 
17).  While connectivity of a graph isn’t expressible in first-
order logic,11 it can be tested in linear time and random con-
nected graphs can be constructed in near-linear time.  Bay-
less (2017) used SAT module monotonic theories12 with 
graph intervals to efficiently acyclicity constraints as well as 
pairwise reachability, shortest path, and maximum flow 
constraints.  These could certainly be used in principle to 
implement transitive closure. 

Conclusion 
Answer-set programming is a powerful and versatile tool for 
constraint-based procedural content generation.  However, 
its semantics are subtle and difficult to learn.  Moreover, it 
was developed for problems very different from PCG.  
While there are PCG problems for which ASP seems to be 
the only viable method, PCG tasks that don’t specifically 
need its minimization or non-monotonic reasoning 

 
11 This is ultimately because first-order logic has a “compactness” property 
that the logic of graphs does not.  However, it should be said that it is pos-
sible to formalize connectivity of a graph with any fixed, finite number of 
nodes using what amounts to an FOL encoding of the Floyd-Warshall al-
gorithm (Cormen et al., 1990).  However, this involves adding a cubic num-
ber of clauses to the SAT problem, which is not appealing. 

capabilities might be better served by more conventional 
satisfiability solvers with more predictable semantics. 
 Nevertheless, ASP clearly demonstrates the power of in-
corporating some form of minimization into a satisfiability 
solver.  This suggests future work on incorporating such 
minimization in a more targeted and predictable manner into 
conventional satisfiability solvers. 
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