CEUR-WS.org/Vol-3217/paper23.pdf

Opportunities for Approachable Game Development via Program Synthesis

Max Kreminski, Michael Mateas

University of California, Santa Cruz
{mkremins, mmateas} @ucsc.edu

Abstract

Program synthesis techniques can be used to improve
the approachability of game development, but much
work remains to be done in bridging the gap between
program synthesis and game development support. We
propose three high-level categories of research that
might be undertaken in pursuit of this goal.

Introduction

Digital games are a powerful expressive medium. They
can be used to communicate ideas through procedural
rhetoric (Bogost 2010); to express deeply personal experi-
ences (Anthropy 2012); and to provoke contemplation of
complex phenomena (Rusch 2017).

In each of these cases, the ability of games to deal di-
rectly with systems is key to their expressive potential. Be-
cause games deal in systems, code plays a critical role in im-
plementing their behavior—and games are often developed
in general-purpose programming languages that take signif-
icant time and effort to learn, even in carefully constructed
educational environments. As a result, the difficulty of pro-
gramming represents a significant barrier to entry for many
would-be creators of digital games.

Some game creation tools, such as Game-O-Matic (Tre-
anor et al. 2012), Wevva (Powley et al. 2017), and Germi-
nate (Kreminski et al. 2020), allow users to create certain
kinds of games without having to deal with the minutiae
of coding in a general-purpose programming language. In
some cases, approachable tools have played a major role in
making digital games available as a medium of expression
to a more diverse set of creators (Harvey 2014). However,
these tools achieve their approachability by restricting their
users to tiny subsets of the space of all possible games. This
allows these tools to present a highly simplified interface for
defining game behavior, but massively limits the kinds of
gameplay that users can define.

Cook has recently argued (Cook 2020) that research in
automated game design (which is closely connected to the
development of approachable game creation tools) should
move away from narrow predefined game design spaces and

Copyright © 2021for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY
4.0).

instead attempt to produce computational systems that can
reason over the much wider range of game behaviors im-
plementable in general-purpose programming languages. At
the same time, recent work in program synthesis (Gulwani
et al. 2017) has shown that computers are capable of gen-
erating programs that meet user needs in a variety of con-
texts, from data science (Drosos et al. 2020) to graphic de-
sign (Hempel and Chugh 2016). Though they may make in-
ternal use of narrow domain-specific languages, many pro-
gram synthesizers eventually output code in general-purpose
programming languages like those typically used for game
development. Consequently, synthesizers can generate pro-
grams that demonstrate a wide range of possible behaviors.

This raises an intriguing question: can we use program
synthesis techniques to improve the approachability of game
development in general-purpose programming languages?
We believe the answer is yes, but that there is much work
to be done to bridge the gap between program synthesis and
game development support. In the remainder of this paper,
we briefly propose three high-level categories of research
that might be undertaken in pursuit of this goal.

Expressive Synthesis

Many existing program synthesizers aim to generate code
that is purely utilitarian: for instance, code that accurately
implements a user-intended transformation of spreadsheet
data (Gulwani 2011). But from a software engineering per-
spective, game code stands out as unusual, because the code
itself is often expressive in nature. Code that implements
game mechanics must trigger visual or auditory feedback,
to help the player understand what is happening in the game
world when they take certain actions. Code that implements
non-player character behavior typically aims to give charac-
ters a distinctive personality, which the player can discover
through interaction. And code that interacts with or ties to-
gether a game’s operational logics (Osborn, Wardrip-Fruin,
and Mateas 2017) can be interpreted as making arguments
through procedural rhetoric—for instance, assertions like
“NPCs sometimes give you items when interacted with”, the
details of whose implementation can play a substantial role
in shaping the player’s attitude toward NPC interactions, the
items they receive, and so on. Consequently, attempts to ap-
ply program synthesis to game development must be aware
of the expressive dimension of code.

The Gemini game generator (Summerville et al. 2018) im-
plements a limited form of expressive synthesis by allowing
users to specify their rhetorical intent for a game as an an-
swer set program, which constrains a generative space of
arcade games defined by the Cygnus game description lan-
guage. Generated Cygnus games are then translated directly
into executable JavaScript code. However, Gemini imple-
ments a relatively limited set of operational logics; can only
be used to create single-screen arcade games; uses only a
small set of simple, hardcoded control schemes and entity
behaviors; and takes relatively little advantage of potential
programmatic channels for player feedback (such as proce-
dural visual and audio feedback), resulting in games that are
often hard for players to interpret (Osborn et al. 2019). A
richer implementation of expressive synthesis could use the
full capabilities of a general-purpose programming language
to diverge from the specific, narrow space of games that the
Cygnus GDL defines.

Also worth mentioning here is the use of program synthe-
sis to generate boss enemy behaviors, as described by Butler,
Siu, and Zook (2017). In this case, the synthesized programs
are expressive in that they yield different player experiences
from one boss encounter to the next—but there is no way
to indicate different expressive intents to the synthesizer, as
a game designer might often want to do (e.g., to create one
boss that feels courageous and another that feels cowardly).
Nevertheless, concepts like the down—-only-number in-
troduced as a specialized numeric type in this system may
prove useful in the way that they capture relatively low-
level aspects of expressive intent: a more sophisticated pro-
gram synthesizer that generates boss behavior might use a
down-only—-number for boss health by default but also
leave open the possibility of creating bosses that can heal
themselves at certain points, indicating this to the rest of the
system via the constraints placed on the health variable in a
form of type-directed program synthesis.

Reflective Synthesis

One recurring issue in program synthesis is the difficulty that
users face in precisely articulating their intent. A number
of strategies for resolving ambiguous user intent have been
proposed in the program synthesis literature (Zhang et al.
2020), but the problem of intent ambiguity remains open.
In a game development context, the expressive dimension
of code exacerbates this difficulty. Because there may be
many viable ways to write a program (e.g., an NPC behav-
ior script or game mechanic implementation) that nominally
satisfy a set of user-provided constraints, but each of these
implementations may feel slightly different from a player
experience perspective, users may have to compare many
divergent implementations of their stated intent before they
can adequately determine which parts of the intent are cor-
rect, which are incorrect, and which are over- or underspec-
ified. Further, evaluating each of these complex behaviors
may take a nontrivial amount of time and effort on the part
of the user, especially if they have to compare them in the
context of real gameplay situations to get a thorough sense
of the similarities and differences between implementations.

As a result, game development applications of program
synthesis may benefit from the use of casual creator design
patterns (like the Chorus Line or Approximating Feed-
back) or reflective creator design patterns (like Interpretive
Refraction or Inferring Intent) to help users more rapidly
evaluate large numbers of potential intent realizations and
iterate on their intent in response (Compton and Mateas
2015; Kreminski and Mateas 2021). Germinate—a graph-
ical game creation tool built on the Gemini architecture—
implements some of these design patterns; in particular, it
presents users with a graphical logic programming interface
for specifying a design intent and allows them to rapidly add,
remove, or negate parts of their explicit design intent based
on features that are present in generated games. And Syn-
thesifter (Kreminski, Wardrip-Fruin, and Mateas 2020) aids
users in building up a set of concrete positive and negative
examples as they refine their synthesized program by proac-
tively suggesting new examples, which the user can easily
either accept or reject.

Additionally, it may be helpful for tools to facilitate re-
flection on how expressive intent relates to low-level parts
of synthesized programs by providing affordances for de-
sign journaling, perhaps based on the process described by
Khaled, Lessard, and Barr (2018). For instance, a tool could
prompt the user to leave plaintext notes for themselves on
what they liked and disliked about each synthesized pro-
gram or game, allowing them to build up a searchable record
of design successes and failures over time and preserve past
intents even as they refine their design sense. Users might
then make use of this information in conjunction with an
interpretable program synthesis interface like that presented
by Zhang et al. (2021) to guide the synthesizer’s search, in-
structing it to avoid parts of the search space that have fre-
quently yielded unwanted programs and focus its search on
areas that seem especially promising instead.

Educational Synthesis

One advantage of program synthesis is that synthesized pro-
grams need not remain black boxes to their users, even if the
user starts out with little knowledge of the target program-
ming language (Crichton 2019). In fact, a program synthe-
sizer could even be designed to model user understanding
of programming constructs (as is typical in tutoring-focused
applications of program synthesis, e.g. Head et al. 2017)
and gradually tutorialize the language by periodically intro-
ducing new constructs and idioms. Under such conditions,
the user’s reliance on the synthesizer might fade away over
time as they acquire greater confidence in reasoning about
the meaning of code. A synthesizer that enabled this experi-
ence could be viewed as a complementary cognitive artifact,
rather than a competitive one (Krakauer 2016): the new ca-
pabilities it builds in the user remain with the user even when
the artifact itself is removed.

In the context of game development, educational appli-
cations of synthesis might prove especially useful in help-
ing users discover new game engine API features. Addition-
ally, a programming tutor-like system for game development
could be integrated with game design knowledge to assist
users in linking code to design concepts and vice versa.

References

Anthropy, A. 2012. Rise of the Videogame Zinesters: How
Freaks, Normals, Amateurs, Artists, Dreamers, Drop-Outs,
Queers, Housewives, and People Like You Are Taking Back
an Art Form. Seven Stories Press.

Bogost, 1. 2010. Persuasive Games: The Expressive Power
of Videogames. MIT Press.

Butler, E.; Siu, K.; and Zook, A. 2017. Program synthesis
as a generative method. In Proceedings of the 12th Interna-
tional Conference on the Foundations of Digital Games.

Compton, K.; and Mateas, M. 2015. Casual creators. In In-
ternational Conference on Computational Creativity, 228—
235.

Cook, M. 2020. Software engineering for automated game
design. In 2020 IEEE Conference on Games (CoG), 487—
494. IEEE.

Crichton, W. 2019. Human-centric program synthesis. In
PLATEAU Workshop @ UIST.

Drosos, 1.; Barik, T.; Guo, P. J.; DeLine, R.; and Gulwani,
S. 2020. Wrex: A unified programming-by-example inter-
action for synthesizing readable code for data scientists. In
Proceedings of the 2020 CHI Conference on Human Factors
in Computing Systems.

Gulwani, S. 2011. Automating string processing in spread-
sheets using input-output examples. ACM Sigplan Notices
46(1): 317-330.

Gulwani, S.; Polozov, O.; Singh, R.; et al. 2017. Program
synthesis. Foundations and Trends® in Programming Lan-
guages 4(1-2): 1-119.

Harvey, A. 2014. Twine’s revolution: Democratization, de-
politicization, and the queering of game design. G|A|M|E —
Games as Art, Media, Entertainment 1(3).

Head, A.; Glassman, E.; Soares, G.; Suzuki, R.; Figueredo,
L.; D’ Antoni, L.; and Hartmann, B. 2017. Writing reusable
code feedback at scale with mixed-initiative program syn-
thesis. In Proceedings of the Fourth (2017) ACM Conference
on Learning @ Scale, 89-98.

Hempel, B.; and Chugh, R. 2016. Semi-automated SVG
programming via direct manipulation. In Proceedings of
the 29th Annual Symposium on User Interface Software and
Technology, 379-390.

Khaled, R.; Lessard, J.; and Barr, P. 2018. Documenting
trajectories in design space: a methodology for applied game
design research. In Proceedings of the 13th International
Conference on the Foundations of Digital Games.

Krakauer, D. 2016. Will Al harm us? Better
to ask how we’ll reckon with our hybrid nature.
https://nautil.us/blog/will-ai-harm-us-better-to-ask-how-
well-reckon-with-our-hybrid-nature. Accessed on 2021-
07-01.

Kreminski, M.; Dickinson, M.; Osborn, J.; Summerville,
A.; Mateas, M.; and Wardrip-Fruin, N. 2020. Germinate: a
mixed-initiative casual creator for rhetorical games. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment, volume 16, 102—108.

Kreminski, M.; and Mateas, M. 2021. Reflective creators.
In International Conference on Computational Creativity.

Kreminski, M.; Wardrip-Fruin, N.; and Mateas, M. 2020.
Toward example-driven program synthesis of story sifting
patterns. In Joint Proceedings of the AIIDE 2020 Workshops
(AIIDE-WS-2020).

Osborn, J. C.; Dickinson, M.; Anderson, B.; Summerville,
A.; Denner, J.; Torres, D.; Wardrip-Fruin, N.; and Mateas,
M. 2019. Is your game generator working? Evaluating Gem-
ini, an intentional generator. In Proceedings of the AAAI
Conference on Artificial Intelligence and Interactive Digital
Entertainment, volume 15, 59-65.

Osborn, J. C.; Wardrip-Fruin, N.; and Mateas, M. 2017. Re-
fining operational logics. In Proceedings of the 12th Inter-
national Conference on the Foundations of Digital Games.

Powley, E. J.; Nelson, M. J.; Gaudl, S. E.; Colton, S.; Ferrer,
B. P;; Saunders, R.; Ivey, P.; and Cook, M. 2017. Wevva:
Democratising game design. In Thirteenth Artificial Intelli-
gence and Interactive Digital Entertainment Conference.

Rusch, D. C. 2017. Making Deep Games: Designing Games
with Meaning and Purpose. CRC Press.

Summerville, A.; Martens, C.; Samuel, B.; Osborn, J.;
Wardrip-Fruin, N.; and Mateas, M. 2018. Gemini: Bidirec-
tional generation and analysis of games via ASP. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment, volume 14.

Treanor, M.; Blackford, B.; Mateas, M.; and Bogost, 1.
2012. Game-O-Matic: Generating videogames that repre-
sent ideas. In Proceedings of the Third Workshop on Proce-
dural Content Generation in Games.

Zhang, T.; Chen, Z.; Zhu, Y.; Vaithilingam, P.; Wang, X.; and
Glassman, E. L. 2021. Interpretable program synthesis. In
Proceedings of the 2021 CHI Conference on Human Factors
in Computing Systems.

Zhang, T.; Lowmanstone, L.; Wang, X.; and Glassman, E. L.
2020. Interactive program synthesis by augmented exam-
ples. In Proceedings of the 33rd Annual ACM Symposium
on User Interface Software and Technology, 627-648.

