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Abstract
Non-representational art–such as works by Wassily Kandin-
sky, Joan Mitchell, Willem de Kooning, etc.–showcases
diverse artistic expressions and challenges viewers with
its interpretive open-endedness and lack of a clear map-
ping to our everyday reality. Human cognition and per-
ception nonetheless aid us in making sense of, reasoning
about, and discussing the perceptual features prevalent in
such non-representational art. While there have been var-
ious Computational Creative systems capable of generat-
ing representational artwork, only a few existing Computa-
tional (Co)Creative systems for visual arts can produce non-
representational art. How would a co-creative AI that in-
corporates elements of the human visual perception theory
be able to collaborate with a human in co-creating a non-
representational art? This paper explores this challenge in de-
tail, describes potential machine learning and non-machine
learning approaches for designing an AI agent and intro-
duces a new web-based, multi-agent AI drawing application,
called Drawcto, capable of co-creating non-representational
artwork with human collaborators.

Playing video games can be a highly creative activity, re-
quiring individuals to engage in creative behaviors like con-
tent creation, collaborative building, problem solving, etc.
(Green and Kaufman 2015; Blanco-Herrera, Gentile, and 
Rokkum 2019). A model of creativity within AI agents may 
support new forms of creative gameplay and new applica-
tions of AI in game spaces. Inspired by this potential, we 
focus on exploring a specific c reative i nteraction modality 
that has its roots in popular sketch-based games like Pic-
tionary or web games like Skribbl.io (mel 2011). Previous 
research with these games has been limited to the training 
and develop of computationally creative agents (Bhunia et 
al. 2020; Sarvadevabhatla et al. 2018); our aim is to develop 
a co-creative system for co-creating non-objective visual art 
that seeks to invoke the properties of human-computer co-
creativity in ways applicable to the study, creation, and play 
of digital and analog games involving creative aspects.

Computational Creativity (CC) in the visual arts has 
gained attention since the early days of AARON (Cohen 
1995). Over the years, researchers have developed various
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algorithms and CC systems that are capable of (co)creating
artworks in a specific artistic style (Gatys, Ecker, and Bethge
2016), identify and suggest conceptually or visually simi-
lar objects (Karimi et al. 2020), produce strokes or pixels to
complete a sketch or an image semantically (Su et al. 2020;
Iizuka, Simo-Serra, and Ishikawa 2017), etc. While many of
these approaches have examined creating representational
artwork (e.g., realistic or impressionistic presentations of
real-world scenes and objects), little work has been done in
exploring how a more abstract, non-representational work
could be done by (or in collaboration with) AI–inspired by
human cognition and perception–that can discuss its inten-
tion behind specific features and composition of the artwork
with a human collaborator. In an attempt to address this, we
present Drawcto - a web-based, multi-agent AI drawing ap-
plication capable of co-creating and discussing specific fea-
tures of non-representational art with a human collaborator.

People often use abstract art and non-representational art
interchangeably to refer to the same painting style, yet there
are crucial differences between the two terms (Ashmore
1955). Abstract artwork distorts the view of a familiar sub-
ject (i.e., a thing, face, body, place, etc.). For example, Pi-
casso distorts a person’s face to show different views of the
same figure within a single painting. The resulting artwork
appears abstracted, but still, there are discernable features
and structures intact from the original subject. Figure 1a and
1b show examples of abstract art. Non-representational art,
on the other hand, doesn’t have a known object or a thing
that the artwork is trying to depict. For non-representational
art–also known as non-objective art–the artist only uses vi-
sual design elements like form, shape, color, line, etc., to
express themselves.

Non-representational art represents the spiritual, mystic,
non-materialistic, experiential, or creative painting/thought
process of the artist (Fingesten 1961), making it challeng-
ing to appreciate, contextualize, or understand. For exam-
ple, Kandinsky’s non-objective compositions represent his
emotional experience of listening to music, Mondrian’s
paintings–which only contain straight lines and primary
colors–represent “what is absolute, among the relativity of
time and space” (Wallis 1960), Pollock’s artworks repre-
sent the action-painting process, in other words it depicts



Figure 1: (From left to right)1a:Picasso’s painting (Picasso 1932), 1b:Klee’s painting (Klee 1922), 1c:Rangoli designs (Balaji
2018), 1d:Joan Mitchell’s composition (Bracket 1989)

the forces that lead to its creation. Figure 1c and Fig-
ure 1d show examples of non-representational art. Non-
representational art generally is not preconceived; instead,
it emerges from the artist’s in-the-moment interaction with
the medium, reflection-in-design process (Schön 1983).

Generating visually sensible content in such a dynamic
scenario is the main challenge for developing an AI agent
for co-creating non-representational art. We cannot simply
train the agent to use object detection or classification to
make sense of and generate new strokes as usually there are
no recognizable objects. At the same time, we can’t gener-
ate random strokes as they would not be visually sensible.
Therefore, developing an AI that can create various strokes
based on its perceptual ability to understand and reason with
the quality of strokes made by the human collaborator is the
challenge we address in this research.

We utilize the perceptual organization theory (or Gestalt
theory) for the agent(s) to make sense of and generate new
strokes while co-creating a non-representational artwork.
Gestalt theory describes a finite set of rules that guide and
aid the reasoning of our visual system. Some of the gestalt
grouping principles are proximity, balance, continuity, sim-
ilarity, etc. (Arnheim 1957). Previously, researchers have
used perceptual organization theory for various applications
like image segmentation, contour detection, shape parsing,
etc. In this paper, we present work that attempts to circum-
navigate the ”authoring bottleneck” commonly associated
with co-creative systems (Csinger, Booth, and Poole 1995)
by using perceptual theories (like Gestalt’s) to both boot-
strap various learning/non-learning approaches to collabo-
rative sketching as well as a basis for affording AI explain-
ability.

We have organized the paper as follows. We examine po-
tential learning and non-learning approaches for developing
an AI agent in Related Work. The System Design section
describes the current version of Drawcto and explains each
component in detail. In the Discussion section, we reflect on
the present drawbacks of the three drawing agents. Finally,
we share potential future avenues of research we have iden-
tified for Drawcto in Future Work.

Related Work
In recent years, research on developing image/sketch gen-
eration AI has gained a lot of interest. As a result, many

research projects and AI architectures have explored im-
age generation from various perspectives and for multi-
ple reasons like co-creating, sketch-based image retrieval,
image completion, design ideation, image stylizing, etc.
This literature review focuses on diverse learning and non-
learning approaches for stroke generation for abstract or
non-representational art.

Recurrent Neural Network (RNN)
The Sketch-RNN model (Ha and Eck 2017) is a sequence
to sequence variational autoencoder (VAE) that has inspired
and informed various co-creative drawing systems. Some
examples in recent years are Collabdraw (Fan, Dinculescu,
and Ha 2019), DuetDraw (Oh et al. 2018), Suggestive Draw-
ing (Alonso 2017), etc. Sketch-RNN model is trained on
QuickDraw dataset (Jongejan et al. 2016) and has learned
to express images as short sequential vector strokes. The
QuickDraw dataset is a collection of labeled sketches drawn
under 20 seconds for a selected object category. Facilitated
by quickdraw, the Sketch-RNN model can produce seman-
tically meaningful strokes. Like in Collabdraw, the user and
AI collaborate by taking turns to finish a semantically ac-
curate sketch. Also, in projects like DuetDraw and Sugges-
tive Drawing, the capability of the Sketch-RNN model is en-
hanced by combining it with other features like completing a
drawing, transforming an image, doing style transfer, recom-
mending empty-space, etc. RNNs are great for co-creating
with line drawing; however, the main challenge while us-
ing an RNN is that the training data needs to be sequential
vectors, i.e., we can’t directly use images to train. We have
developed two agents for Drawcto using this approach.

Generative Adversarial Network (GAN)
Similar to Sketch-RNN, another influential model is GAN
(Goodfellow et al. 2020). In GAN, two neural networks–
generator and discriminator–compete with each other to
make predictions. The role of the generator is to produce
output that highly resembles the actual data and, the role of
the discriminator is to identify the artificially created data.
Some of the research projects based on GAN are Sketch-
GAN (Liu et al. 2019), Doodler GAN (Ge et al. 2021), in-
teractive image to image translation using GAN (Isola et
al. 2018), etc. GAN is used in various ways; for exam-
ple, in Sketch-GAN, it generates strokes for missing parts



of the image, while in Doodler GAN, it is used to seman-
tically generate stroke to co-create a surreal creature or a
bird. In image-to-image translation (Iizuka, Simo-Serra, and
Ishikawa 2017), GAN is used for edge-detection, style gen-
eration, etc. Building over GAN, Elgammal et al. proposed
CAN (creative adversarial network) (Elgammal et al. 2017)
to generate artworks deviating from existing artistic styles
resulting in non-representational art with varying degrees of
complex textures and compositions. The generative capabil-
ities of GAN are very inspiring; since GAN works with pix-
els, we can use images to train the network and it can also
be very efficient for style transfer.

Transformers
A transformer is a sequence-to-sequence model that uses an
attention-mechanism to identify important context, helping
it provide better results than an RNN (Vaswani et al. 2017).
Based on the Transformer, researchers have developed an
open-source ML framework–called BERT (Bi-directional
Encoder Representation from Transformer)–which helps
computers ‘understand’ the meaning of a word/phrase in
the input text by using surrounding text to create context
(Devlin et al. 2019). BERT is a pre-trained model which
can be fine-tuned using a question and answer dataset;
researchers have utilized BERT in various text-to-sketch
projects. In CalligraphyGAN (Zhuo, Fan, and Wang 2020),
authors combine BERT and conditional GAN to create ab-
stract artworks representing a set of Chinese characters
given as input. In Sketch-BERT (Lin et al. 2020), the
model learns representations that capture the sketch gestalt.
The dual-language image encoder model–CLIP(Contrastive
Language-Image Pre-training) (Radford et al. 2021) which
uses vision-transformer (Dosovitskiy et al. 2021)–has in-
spired a whole range of drawing-related projects. For ex-
ample, in ClipDraw (Frans, Soros, and Witkowski 2021),
the agent produces a set of vector strokes in diverse artis-
tic styles satisfying a text input; Fernando et al. combine a
dual encoder (Fernando et al. 2021) similar to CLIP with a
neural L-system to produce abstract images corresponding
to the input text. The dependency on text makes using the
transformer a challenge in the context of co-creation; nev-
ertheless, transformer-based models are potent models for
image/sketch generation.

Reinforcement Learning
Many research projects deal with learning stroke generation
using reinforcement learning (RL). Researchers typically
train an agent by letting it interact with a simulated paint-
ing environment. The painting environment can be contin-
uous (e.g., SPIRAL (Ganin et al. 2018), Improved-SPIRAL
(Mellor et al. 2019), etc.) or differentiable (e.g., StrokeNET
(Zheng, Jiang, and Huang 2018), Neural Painter (Nakano
2019), etc.). As a result of learning in this simulated envi-
ronment, the RL agent learns to produce strokes and abstract
artworks. Another approach in training an RL agent is lim-
iting the number of strokes used to represent an object. For
example, in Pixelor (Bhunia et al. 2020), the agent is in-
volved in a Pictionary-like game with a human to learn opti-
mal stroke sequence to represent an object. Similarly, Huang

et al. use RL to train an agent to paint like humans with only
a small number of strokes (Huang, Zhou, and Heng 2019).
Interactive learning is another approach for training an RL
agent as utilized in Drawing Apprentice (Davis et al. 2015).
In Drawing Apprentice, the AI agent analyses the user’s
input strokes, recognize drawn objects, and responds with
complementary strokes. RL provides various potent meth-
ods for training an agent, which we hope to experiment with
in the future.

Non-Learning Approaches
There are many non-learning approaches to generate strokes
for abstract/non-representational art. For example, AARON
(McCorduck 1991) is an intricately authored rule-based AI
developed by artist Harold Cohen. Similarly, The Paint-
ing Fool (Colton 2012) system emulates a human painter
and can describe its artwork through textual description
following a set of rules. Drawing Apprentice also has a
rule-based AI component to respond to the user’s stroke
by tracing, replication, or transformation. Another approach
for stroke generation is by using a shape grammar (Stiny
2006). For example, in Broadened Drawspace (Gün 2017),
the user engages in a visual-making process with a shape-
grammar-based generative system. Stroke-based rendering
(SBR) methods also provide many algorithms for stroke
generation. SBR algorithms are search or trial-and-error al-
gorithms designed to optimize stroke placement by minimiz-
ing an energy function (Hertzmann 2003) or other optimiza-
tion goals like the number of strokes. Generative capabilities
of rule-based systems like AARON inspired us to create a
rule-based agent for Drawcto.

Summary
The above-related research highlights the following gaps in
existing systems for (co)creating abstract artistic images.

All the learning approaches are black-box approaches.
The AI agent can’t justify why a certain stroke in a specific
location and particular style (color, width, length, weight,
etc.) makes sense to the entire composition. Even with rule-
based or shape grammar approaches, the agent can’t convey
its perception of the composition as a whole. In other words,
existing agents can not reason about the visual design or jus-
tify their actions while creating the artwork.

Barring Drawing Apprentice, none of the CC systems are
capable of co-creating a non-representative art. But, a limita-
tion of Drawing Apprentice is that it does not have any per-
ceptual knowledge bootstraps, so Drawing Apprentice takes
a black box learning approach to train the agent which re-
sults in it not being able to discuss its intention with a hu-
man collaborator. Even with generative systems, only a few
research projects focus on creating non-representational art,
and almost none discuss the intent behind the composition.
It is also interesting to note that the existing systems are ei-
ther single-agent or multi-feature systems.

The shortcomings mentioned above informed us to de-
velop Drawcto- a multi-agent system for co-creating non-
representational artwork, which can explain its actions based
on the current state of the canvas. In the following section,



Figure 2: Drawcto system design

Figure 3: Drawcto user interface

we discuss the system design and various agents’ logic for
the current prototype of Drawcto.

Drawcto System Design
We developed Drawcto as an easily accessible web-based
application with the graphical interaction happening through
a P5.js canvas. The canvas (frontend) communicates to the
python server (backend) using HTTP Methods. The back-
end is responsible for the different AI agents’ logic. We de-
veloped the python server using the micro web framework
Flask. Currently, we are hosting the application on Heroku.
As shown in Figure 2, the user draws strokes and selects the
agent on the interface; in response, the AI responds with its
strokes and a textual description of its stroke intent. We have
developed the backend in a modular manner allowing us to
add or remove an agent based on its performance. In the fol-
lowing subsections, we describe the user interface and the
AI agents in detail.

Drawcto UI
We designed all of the UI features to foster a human-like
collaboration between an AI and a human. To anthropomor-

phize the AI, we named our AI avatar “Dr. Drawctopus” and
created a vector image of a cyborg octopus to represent the
AI. We chose an octopus to represent our AI with the idea
that each tentacle will correspond to a different agent, sym-
bolically conveying that it is part of the same system.

Prior research (Davis et al. 2016) shows that collaboration
can be improved by - having permanent screen-presence of
the AI character, and dynamically drawing the strokes gen-
erated by AI. Hence, we permanently show the AI avatar and
its name on the UI, and we animated a visual glyph repre-
senting the hand of Drawcto moving along the stroke.

Creating non-representational art requires time for
reflection-in-design, and turn-taking interaction can facili-
tate this process. But, turn-taking can be a dynamic process;
the most straightforward approach seen in the literature we
adopted for Drawcto is simple turn-alternation (Winston and
Magerko 2017). However, we needed a way to clearly signal
the beginning and end of a turn to the AI with the alternate
turn-taking. Therefore, to overcome this, on the interface, we
incorporated a pencil that the human collaborator can “pick
up” to signal the start of the turn and “place it down” to sig-
nal the completion of their turn.

We wanted to present the AI stroke intention to the hu-
man collaborator coherently without disturbing the creative
collaboration. Hence we decided to show the stroke logic in
a dialog box, seeming as if Drawcto is communicating. Fur-
ther, the AI dialogs were written in a way that reflects the
friendly persona of the AI.

Along with the UI features mentioned above, the human
collaborator can also toggle between the three agents via a
clickable arrow. Figure 3 highlights the different parts of the
user interface.

Rule-Based Agent
When the rule-based agent is selected, it reacts to the user’s
stroke(s) based on a set of hand-authored rules. We derived
these rules from perceptual grouping theory, such as bal-



Figure 4: (Top, from left to right) 4a:collaboration with rule-based agent, 4b:collaboration with artist agent, 4c:collaboration
with quick draw agent, 4d:collaboration with all agents; (Bottom, from left to right) 4e:stylization of art made with rule-based
agent, 4f:stylization of art made with artist agent, 4g:stylization of art made with quick draw agent, 4h:stylization of art made
with all agents

ance, symmetry, continuity, closure, etc. (Arnheim 1957).
Since non-representational art, in general, is not precon-
ceived, we designed the agent also to behave similarly and
not have an end goal across multiple turns. Instead, the agent
emulates a painter’s reflection-in-design process and reacts
only based on the current state of composition on the canvas,
primarily based on the collaborator’s latest move. Figure 4a
shows the result of interaction with the rule-based agent.

The agent makes sense of the strokes strictly based on
the observable, salient features on the canvas. We use the
OpenCV library to make sense of and extract features from
the strokes. The feature set includes - number of contours
(for whole canvas or current stroke), the center of mass,
white space, and four-way symmetry. We make use of this
feature set to traverse a decision tree to find an applicable
rule. Some examples of rules include - closing a stroke if
the user drew an open stroke; connecting strokes if the user
drew more than one separate stroke; enclosing a stroke if the
no. of contours is above a threshold; creating similar strokes
if the canvas has an empty area, etc.

To better understand how a rule-based agent works con-
sider the following scenario. Assume the human collabora-
tor draws an open shape like a ‘U’ shape or a polygon with
one side missing on the canvas and finishes their turn. Then,
a snapshot of the canvas is sent to the backend. With the help
of functions in the OpenCV library like findContour or is-
Closed, we develop a feature set that indicates that the shape
is open. Following this, the agent traverses a predefined de-
cision tree and comes up with two possible moves– to close
the open-shape or, to draw a similar but new distorted (scaled

up or down, sheared, etc.) open shape. The agent randomly
chooses between these moves, produces the relevant stroke
on the canvas, and presents a textual description of the rule
and why it was triggered to the human collaborator.

RNN Agents
We were curious if we could build a data-driven agent in
Drawcto that relied on latent information learned from ex-
isting artworks or sketch datasets instead of following pre-
defined rules. We developed two separate agents to explore
this “authorless” approach in Drawcto - the Quick Draw and
Artist agents. Both the agents are based on Google’s inter-
active SketchRNN (Ha and Eck 2017) model.

SketchRNN Quick Draw Agent This agent responds by
producing a new stroke in exact continuation to the human
collaborator’s last drawn stroke. The agent utilizes the ml5.js
library’s SketchRNN model (Nickles, Shiffman, and Mc-
Clendon 2018), and the main goal for the Quick Draw agent
was to explore the stroke generation information learned
from the Quick! Draw dataset (Jongejan et al. 2016). How-
ever, SketchRNN model requires a particular object cat-
egory to generate strokes, which is not feasible in non-
representational art as there are no objects. We developed
two strategies to overcome this- first, we limited the length
of the output stroke to have a maximum of 30 points; second,
we used the “everything” category in SketchRNN, allowing
it to utilize the entire Quick! Draw dataset for stroke gen-
eration. These strategies and alternate turn-taking interac-
tion resulted in the Quick Draw agent, based on SketchRNN
model that successfully showcased its stroke generation ca-



Figure 5: (From left to right) 5a:Kandinsky’s painting (Kandinsky 1928), 5b:Edge extraction from the painting, 5c:Kandinsky’s
painting (Kandinsky 1915), 5d:Edge extraction from the painting

pabilities. Figure 4c shows the result of interaction with the
Quick Draw agent.

SketchRNN Artist Agent This agent–to produce strokes–
utilizes the SketchRNN model trained on our custom dataset
of around 2000 images of non-representational artworks
from the web. The goal for the Artist agent was to see if
the model would automatically learn visual concepts such
as symmetry, shape-completion, balance, etc. However, get-
ting the correct training data was the biggest challenge. To
overcome this, we obtained famous non-representational art-
works and extracted edges from them and converted them
into simple sequential vector drawings. Figure 5 shows ex-
amples of the edge extraction we did to collect data. We can
see that these images are composed of distinct shapes - like
circles, rectangles, etc., have a sense of composition - like
positive & negative space, symmetries, etc., and textures are
depicted through different densities of the shorter lines. We
trained the Artist agent on this data, and Figure 4b shows the
interaction with the artist agent.

Discussion
In the related work section, we identified various learning
and non-learning approaches that we could take to tackle
the challenge of AI generating different semantically accu-
rate strokes while co-creating non-representational art. From
that, we chose one non-learning approach - a rule-based
Agent, and one learning approach - RNN Agent(s) to incor-
porate in the current prototype of Drawcto. In this section,
we reflect on the current limitations of the three co-creative
agents.

The rule-based agent currently echoes and acknowledges
the user’s strokes but rarely produces a novel stroke to the
composition. In other words, though the rule-based agent
can generate and justify new strokes, it lacks stroke variabil-
ity and can become predictable after using it a few times.

The RNN agents, on the other hand, especially the quick
draw agent, produce a whole variety of strokes due to the di-
versity and volume of the Quick! Draw data. The dialogues
for both the RNN agents give a clue about the training data
but fail to reason about a particular stroke. We will have to
develop a separate gestalt module to analyze the produced
stroke and provide suitable explanations. We notice that a lot
of the responses from the artist agent are two lines at right
angles. We believe this is because each training image had

a boundary. Hence the model learned it as an essential com-
ponent to any drawing. However, we noticed that the artist
agent could respond to the user’s stroke, complementing the
essence of their drawing style.

Future Work
Adding color, texture, line variation, etc., in a particular
artist’s style can enhance the co-creative experience. Figure
4e - Figure 4h shows our initial experiment with style trans-
fer; The images in Figure 4 show art in Kandinsky’s style.
In the future, we hope to develop an agent which will let the
user choose to add a stroke in a particular artist’s style.

Drawing is an embodied activity, and studies show that
maintaining embodied interaction can improve the co-
creative drawing experience (Jansen and Sklar 2021). There-
fore, we plan to incorporate a robotic arm, which Drawcto
can use to draw physical strokes on paper or canvas, creating
a system where people can draw and co-create physically.

Lastly, For building a learning agent capable of produc-
ing stokes based on gestalt theory, Reinforcement learning
approaches appear to be a very promising avenue, especially
with research like PQA (Qi et al. 2021).
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