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Abstract
Graph neural networks (GNN) present a dominant framework for representation learning on graphs for the past several
years. The main strength of GNNs lies in the fact that they can simultaneously learn from both node related attributes and
relations between nodes, represented by edges. In tasks leading to large graphs, GNN often requires significant computational
resources to achieve its superior performance. In order to reduce the computational cost, methods allowing for a flexible
balance between complexity and performance could be useful. In this work, we propose a simple scalable task-aware graph
preprocessing procedure allowing us to obtain a reduced graph such as GNN achieves a given desired performance on
the downstream task. In addition, the proposed preprocessing allows for fitting the reduced graph and GNN into a given
memory/computational resources. The proposed preprocessing is evaluated and compared with several reference scenarios
on conventional GNN benchmark datasets.

1. Introduction
Graph neural networks (GNNs) have proven to achieve
superior performance on a number of graph datasets and
are adopted in industrial applications across many fields.
Superior GNN performance is, however, often paid for
by a numerically intensive training procedure with a
significant memory footprint. In addition, fine tuning
parameters of a complex GNN can prove challenging as
well. The issue is emphasised whenever the problem
modeled by the graph is evolving in time and retraining
is required to keep the model accurate.
In many industrial applications, high computational

cost caused by training complexmodels might be an issue.
Moreover, some real-world problems lead to high amount
of data that does not fit the memory of a single machine.
In order to apply GNNs to such big data, either some
data reduction or their processing in a distributive way
is required.
Traditional simple structure-agnostic baselines like

the Naive Bayes classifier usually scale very well at a
reasonable cost, making them useful in scenarios where
such a simple model performs well enough.
In this paper, we address the problem of complexity-

performance trade-off and propose a method operating
on an arbitrary performance level between a simple base
model and the fine-tuned GNN. The method consists in
a systematic reduction of the graph for GNN, implying
complexity reduction at the expense of performance.
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As a side product, the graph reduction procedure pro-
duces a hierarchical clustering of nodes in the graph that
is optimised for a given task. We explore these clusters
and demonstrate how to use them to better understand
the coarsening procedure.

1.1. Related work
Graph neural networks arose independently in several
works. The authors derived graph convolutional network
(GCN) as a spectral generalisation of image convolution
in [1]. Node2vec as a node embedding that is trained to
minimise the distance of similar nodes within a graph is
proposed in [2]. A ”bridge” between Bayesian message
passing and GNNs is presented in [3], where the authors
derive a GNN from probabilistic assumptions.
Several high-level concepts of GNN complexity re-

duction appear in literature. To mention some of them:
Graph batching proposed in [4] introduces graph sam-
pling (batching) to enable stochastic gradient descent.
Next, feature propagation through the network layers is
avoided in [5]. Instead, the product of the feature matrix
and powers of the adjacency matrix are concatenated
and passed to the multi-layer perceptron without any
negative impact on performance. Another approach is to
identify and remove redundant operations as proposed in
[6]. One can also consider decomposing the graph as in
[7] in order to enable distributive training of GNNs, since
each cluster represents an independent graph component
– this idea was adopted in [8]. Connection of batching
with distributive processing is considered in [9]. In con-
trast with these approaches, the proposed complexity
reduction is achieved by graph coarsening.

A systematic way of graph coarsening associated with
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node2vec is considered in the HARP framework [10].
The idea is to reduce the graph step-by-step by means of
edge and star collapsing, training a node2vec model on
the coarsened graph and then to step-by-step refine the
embedding to the original graph. The motivation behind
HARP is to provide an embedding incorporating both
local and global graph properties. Using HARP on study-
ing the complexity-performance trade-off is proposed
in [11], where the graph coarsening is optimised with
respect to graph properties. The prolonging procedure
is then driven by the downstream task. In contrast to
this work, our coarsening is driven in a different way,
nonetheless respecting the downstream task.
Graph clustering / partitioning [7] can be used for

distributive processing as described above. Another use-
case could be organising the data (typically in an unsu-
pervised way) in order to better understand its structure.
On top of traditional clustering, hierarchical clustering
enables a tree-structured organisation of the clusters, in
contrast to conventional flat clusters. In [12], the authors
proposed hierarchical clustering of words in a corpus that
is based on a bi-gram language model and the hierarchy
is driven bymutual information between clusters. In [13],
the authors propose a hierarchical clustering of nodes in
a graph that is driven by a pair sampling ratio derived
from weights of the adjacency matrix. To the best of our
knowledge, there is no available hierarchical clustering
of nodes in a graph that is aware of the downstream task
as we propose in this work.

1.2. Goals and Contribution
The work reported in this paper presents the following
contributions:

1. We motivate and formalise the problem of a com-
plexity performance trade-off and propose a gen-
eral way of systematically solving and evaluating
this problem. The core of this concept is GNN
graph size reduction based on edge contraction.

2. We adopt the edge-contraction-based coarsen-
ing procedure to a particular task by means of a
proper order of the edges for contraction. This
order of edges is given by a similarity measure
of predictive posterior distributions of adjacent
nodes, where a simple reference model on the
given task is used to obtain the posterior distri-
butions for all nodes.

3. We experimentally compare various similarity
measures of probability distributions driving the
coarsening procedure with respect to the target
complexity performance trade-off. In particular,
we show that the computational graph size can
be almost halved with only a small impact on the
performance.

4. As a side product, we observed that the graph
coarsening based on edge contraction naturally
produces a hierarchical clustering. This cluster-
ing combines information about predictions from
the base model with the graph structure, hence
the clustering is driven by the downstream task.

1.3. Structure of the Paper
The paper is organised as follows: A formal description
of the complexity-performance trade-off and a general
framework for solving this problem is presented in Sec-
tion 2. A coarsening procedure based on edge contraction
as a particular instance of the proposed framework is pre-
sented in Section 3. Section 4 then discusses a critical part
of the edge contraction procedure, which is the order in
which the edges are contracted. Hierarchical clustering
view of the considered graph coarsening procedure is the
topic of Section 5. Experiments are presented in Section
6 and the work is concluded in Section 7, where we also
outline future research directions.

2. Graph Complexity Reduction
We consider a collection of nodes V, edges E ⊆ V×V, real
valued node feature vectorsX and node categorical labels
Y constituting an undirected graph 𝐺 = (V,E,X,Y). We
denote 𝑒 = (𝜈𝐴, 𝜈𝐵) the edge connecting nodes 𝜈𝐴 and 𝜈𝐵.
The neighborhood of the node 𝜈 is denoted N(𝜈) and the
tuple (⋆, 𝜈) stands for a set of all edges incident on 𝜈, that
is (⋆, 𝜈) = {( ̃𝜈 , 𝜈)} ̃𝜈∈N(𝜈).
The downstream task is transductive node classifica-

tion, where labels are available for nodes in the training
set. A model 𝑀 is assumed to provide a prediction ̂𝑦 for
each node. The performance of the model 𝑃(Y, Ŷ) is then
given by a statistic evaluated on the test nodes (e.g. clas-
sification accuracy), where the pair (Y, Ŷ) denotes true
and predicted node labels. We also consider a complexity
of the model 𝑀 applied on graph 𝐺 given by 𝐶(𝐺,𝑀).

2.1. Problem Formulation
Given a (GNN) model 𝑀 and a graph 𝐺, the goal of this
paper is to find a graph 𝐺⋆ = (V⋆,E⋆,X⋆,Y⋆) jointly with
a refinement mapping 𝐿 ∶ Ŷ⋆ → Ŷ in order to either

1. maximize performance 𝑃(Y, 𝐿(Ŷ⋆)) subject to com-
plexity restriction 𝐶(𝐺⋆, 𝑀) ≤ 𝐶𝑚 for a given
complexity constrain 𝐶𝑚 or

2. minimize complexity 𝐶(𝐺⋆, 𝑀) subject given min-
imal required performance 𝑃(Y, 𝐿(Ŷ⋆)) ≥ 𝑃𝑚.



2.2. Graph Algorithm Complexity
There are two main aspects of GNN complexity. First,
the underlying graph 𝐺 needs to be stored in memory.
Second, the training procedure typically runs through
the graph and needs to access it in order to drive the
learning process. The authors report both memory and
computational complexity of various training techniques
of GCN in [4] – Table 1. In principle, both complexi-
ties or even any function of them can be covered by the
complexity term 𝐶(𝐺,𝑀).

2.3. The Performance Complexity
Trade-Off

Given a size-decreasing sequence of graphs

𝑆 = [𝐺1, … , 𝐺𝑖, … , 𝐺𝑁], (1)

where 𝐺𝑖 = (V𝑖,E𝑖,X𝑖,Y𝑖) and |V𝑖| > |V𝑗| ⟺ 𝑖 < 𝑗, we
expect a model (GNN) performance to be proportional
to the graph size. The main focus of this paper is on
the construction of such size-decreasing graph sequence
that would enable the fulfillment of our ultimate opti-
misation problem described in Section 2.1. Evaluating
the performance of the model 𝑀 on each graph in the
sequence, one can plot dependency of performance on
the complexity (graph size). Denoting 𝑃𝑖 performance
of model 𝑀 achieved using 𝐺𝑖 with refinement into the
original graph 𝐺, our goal can be achieved according to
illustration1 in Figure 1:

• Given maximum available complexity 𝐶𝑚, we se-
lect such a graph that the complexity given by
the number of nodes in the graph is smaller than
𝐶𝑚 that is |V𝑖| ≤ 𝐶𝑚 and achieve performance 𝑃3
– blue arrows.

• Given minimal required performance complexity
𝑃𝑚, we select such a graph that |P𝑖| ≥ 𝑃𝑚 with
complexity 𝐶2 = |V2| – green arrows.

2.4. Finding Working Point Using
Performance Complexity Trade-Off
in Practice

In practice, it could be very expensive to calculate the
performance for all graphs in the sequence 𝑆 according to
Figure 1, hence no resources would be saved as claimed in
ourmainmotivation. In order to overcome this limitation,
we can consider one or more of the following options:

1The illustration captures an intuition that the performance would
grow with the graph complexity. As it is shown in Section 6, this is
not always strictly true given a particular model. Nevertheless, if we
focus on practical usage (Section 2.4) the non-decreasing property
is not required in real application.

𝐶

𝑃
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𝐶𝑚

𝑃3

𝑃𝑚

𝐶2

Figure 1: Achieving the target operating point by means of
complexity performance trade-off. In case of minimal required
performance (green arrows), we find the graph 𝐺2, where the
model achieves at least performance 𝑃𝑚. In case of maximal
available resources (blue arrows), we select the model achiev-
ing performance 𝑃3.

• In order to find the proper working point, we do
not need to have the complete curve as in Figure
1. One possible strategy could be to start with a
small graph, where the complexity would be low,
and to continue until the desired performance is
achieved.

• Another option that can be applied in some cases
could be to rely on a generalization of the pro-
vided information that is a transfer of the proper
graph size among tasks, time, models, etc.

• Finally, if we provide some restrictions according
to Section 3.4, we can use an upper-bound (or its
estimation) as described in Section 4.1 instead of
true GNN performance.

3. Graph Size Reduction Strategy
Based on Edge Collapsing

This section describes a way of obtaining the graph se-
quence from Equation (1), which is then used for the tar-
get complexity-performance trade-off evaluation. This
approach is based on the edge contraction procedure that
is described within this Section. The order of edges for
contraction driving the size-decreasing graph sequence
from Equation (1) is described in Section 4 in greater
detail. Finally, a hierarchical clustering induced by the
edge contracting procedure can be found in Section 5.

We can write the sequence 𝑆 from Equation (1) as

𝑆 = [(V1,E1,X1,Y1), … , (V𝑁,E𝑁,X𝑁,Y𝑁)], (2)



where 𝐺1 = (V1,E1,X1,Y1) stands for the original graph.
The considered graph-size-reduction process is driven
step by step. We first describe a single graph coarsening
step, that is, how to get from 𝐺𝑖 to 𝐺𝑖+1, in Equation (1)
and then define an overall graph reduction procedure.

3.1. Single Edge Contraction Step
Given an edge to contract, its incident nodes are merged
(removed) and a new node is established – see Figure 2
for an illustration. More precisely, given a graph 𝐺𝑖 =
(V𝑖,E𝑖,X𝑖,Y𝑖) and an edge 𝑒 = (𝜈𝑋, 𝜈𝑌), 𝑒 ∈ E𝑖, 𝜈𝑋 ∈ V𝑖, 𝜈𝑌 ∈
V𝑖 to remove, the new nodes and edges describing 𝐺𝑖+1
are given by

V𝑖+1 = V𝑖 ⧵ {𝜈𝑋, 𝜈𝑌} ∪ {𝜈𝑋𝑌}, (3)

where 𝜈𝑋𝑌 is a new (merged) node and

E𝑖+1 = E𝑖 ⧵ ([𝜈𝑋, 𝜈𝑌], ⋆) ∪ {(𝜈𝑋𝑌, 𝜈)}𝜈∈N𝑖(𝜈𝑋,𝜈𝑌), (4)

where
([𝜈𝑋, 𝜈𝑌], ⋆) = (𝜈𝑋, ⋆) ∪ (𝜈𝑌, ⋆)

N𝑖(𝜈𝑋, 𝜈𝑌) = N𝑖(𝜈𝑋) ∪N𝑖(𝜈𝑌) ⧵ {𝜈𝑋, 𝜈𝑌},

where the neighborhood is taken according to 𝐺𝑖.
In the context of our setup, that is, in the situation

where we want to apply a GNN on the new graph 𝐺𝑖+1
and evaluate its performance on the original one (𝐺1),
the following issues arise and must be resolved:

1. Based on the nodes 𝜈𝑋 and 𝜈𝑌, we need to aggre-
gate training labels (if available) to the new node
𝜈𝑋𝑌 and decide if this label should be used for
training on the coarsened graph, that is to define
Y𝑖+1 based on Y𝑖. This problem is discussed in
Section 3.3.

2. Apart from labels, node features must be aggre-
gated as well (transforming X𝑖 into X𝑖+1) – see
Section 3.2 for details2.

3. Finally, once we have a prediction for the node
𝜈𝑋𝑌, we need to establish predictions for all the
nodes from V1 that were merged into 𝜈𝑋𝑌. We
introduced the refinement mapping 𝐿 for this pur-
pose in Section 2.1. More details and a simple
refinement mapping is presented Section 3.4.

Within this paper, we only show a very simple possible
solution to address each of the mentioned issue. A deeper
investigation of each of them is not within the scope of
this paper and is reserved for future work.

2Handling the edge features also needs to be considered if they are
available. Since this is not the case in our assumptions, we leave
this problem for future work.
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Figure 2: Coarsening given by contracting the edge (𝜈𝑋, 𝜈𝑌),
where the nodes 𝜈𝑋 and 𝜈𝑌 are replaced by a new node 𝜈𝑋𝑌 and
the edges connecting 𝜈𝑋 and 𝜈𝑌 are rewired to 𝜈𝑋𝑌. As discussed
in Section 5, this atomic merge can also be seen as one step
in a hierarchical clustering, where clusters 𝜈𝑋 and 𝜈𝑌 become
child of the cluster 𝜈𝑋𝑌.

3.2. Feature Aggregation
The GNN model assumes all feature vectors to have the
same dimension for each node, hence some aggregation
is required when merging two nodes. In particular, we
have two nodes 𝜈𝑋, 𝜈𝑌 with feature vectors 𝑥𝑋 and 𝑥𝑌 of
length 𝐹 that must be aggregated by some aggregation 𝑎
into one vector 𝑥𝑋𝑌 = 𝑎(𝑥𝑋, 𝑥𝑌) of length 𝐹 corresponding
to the newly merged node 𝜈𝑋𝑌.

Although a number of solutions can be considered, we
assume a simple weighted mean aggregation within this
work, that is

𝑥𝑋𝑌 = 𝑎(𝑥𝑋, 𝑥𝑌) =
𝑤𝑋𝑥𝑋 + 𝑤𝑌𝑥𝑌
𝑤𝑋 + 𝑤𝑌

, (5)

where the weight 𝑤𝐴 is given by the number of nodes
from the original graph 𝐺1 that were merged to 𝜈𝐴 in the
preceding steps.

3.3. Label Aggregation
Similarly as in the case of features, we also need to ag-
gregate labels associated with the nodes 𝜈𝑋, 𝜈𝑌 that are
supposed to be merged. We (ad-hoc) consider a similar
approach as in Equation (5), where we convert the labels
to a prior distribution 𝑝𝑦 on labels and we obtain

𝑝𝑦𝑋𝑌 =
𝜔𝑋𝑝𝑦𝑋 + 𝜔𝑌𝑝𝑦𝑌

𝜔𝑋 + 𝜔𝑌
, (6)
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Figure 3: Graph sequence determined by a given sequence of edges to contract, where the numbers on edges stand for the
edge order for contraction. We use colors to denote labels and to indicate the problem of label aggregation – their aggregation
is clear until the final node in the last step.

where 𝜔𝐴 denotes3 the number of training labels merged
into 𝜈𝐴.
In multi-class classification, the prior distribution 𝑝𝑦

is in the form of a probability vector with a single non-
zero (unit) element placed on the position of true label,
if available. Since the weight 𝜔𝐴 is non-zero only for at
least one training sample, only probability vectors related
to the training samples are reflected in Equation 6.

3.4. Label Refinement
Label refinement is related to the node embedding pro-
longing in [10], where we need to transform a predic-
tion about a cluster into predictions about its constituent
nodes. Within this work, we assume a trivial copy-paste
method, where all merged nodes share the same predic-
tion.
More precisely, running a (GNN) model on 𝐺𝑖, we re-

ceive a prediction for each node from V𝑖 that needs to be
prolonged to the nodes from V1 for the target accuracy
evaluation. A relation of nodes in V𝑖 and V1 is hierarchi-
cal so that each node 𝜈 ∈ V𝑖 can be seen as a hierarchical
composition of nodes V̄ ⊆ V1 such that the node 𝜈 arose
by merging nodes from ̄V according to Equation (3) in
preceding steps. The considered simple prolonging map-
ping 𝐿 then takes the prediction related to 𝜈 and applies
it for all nodes from ̄V.

3.5. Graph Coarsening Sequence
We have already described a single edge contraction step
from 𝐺𝑖 to 𝐺𝑖+1, which assumed a given edge to remove.
Given an ordered list of edges to remove, we can step-by-
step obtain the sequence from Equation (1) in order to
evaluate performance-complexity trade-off for a given
graph and model. An example of the graph decompo-
sition is illustrated in Figure 3, while the final missing
piece of this procedure, that is ordering the edges to be
contracted, is described in Section 4.

3Recall that 𝜔𝐴 denotes the number of training labels merged into
𝜈𝐴, while 𝑤𝐴 from Equation (5) stands for the number of all nodes
merged into 𝜈𝐴.

4. Ordered Sequence of Edges for
Removal

This Section focuses on the last missing piece of the
complexity-performance trade-off evaluation, which is
obtaining a sequence of edges driving the edge contrac-
tion procedure. First, a simple performance upper-bound
of the graph that was reduced according to Section 3 is
presented. The suggested edge sorting algorithm aims to
provide an ordering of edges such that the upper bound
would be maximised at each step when the edge contrac-
tion algorithm is applied in this order.

4.1. Label Refinement Induced
Performance Upper Bound

Considering all nodes in the testing set, in Figure 3 we can
see that the nodes of the same color (label) are merged
together in the first three steps. In that case, 100% accu-
racy can theoretically be achieved if the merged nodes
are predicted correctly. However, the final edge contrac-
tion merges together nodes with different colors (labels)
and the performance from this step forward cannot be
greater than 60%, which is achieved if the node 𝜈𝐴𝐵𝐶𝐷𝐸 is
predicted to be a blue one. If it is predicted as a green one,
only 40% accuracy is achieved. In this case, 60% presents
a performance upper-bound since no model can achieve
better performance in the final single node graph. Note
that the upper bound is 100% for the first three steps.

More formally, according to Section 3.4, we assume all
the merged nodes4 ̄V ⊆ V1 to share the prediction of the
corresponding node 𝜈 ∈ V𝑖. Obviously, if true test labels
differ within V̄, some prediction errors are unavoidable.
Given the node 𝜈 ∈ V𝑖, we calculate a histogram of the
test labels from V̄. Denoting 𝑦0 the most common testing
label within ̄V, a minimal number of errors on testing
nodes from V̄ is given by the number of test labels that
differs to 𝑦0. Denoting this number of errors as 𝑈 (𝜈) for
each node 𝜈 ∈ V𝑖, the performance upper-bound can be

4Recall V̄ as a set of nodes from the original graph that are merged
into node 𝜈 for a given 𝜈 ∈ V𝑖.



written as: 1
|𝑇 |

∑
𝜈∈V𝑖

𝑈 (𝜈) (7)

where |𝑇 | denotes the number of nodes from 𝑉1 in test
set.
We also note that considering this upper-bound as

performance in the performance-complexity trade-off
(Section 2.1), we achieve a non-increasing sequence of
performances for the sequence 𝑆 in Equation (1).

4.2. Edge Ordering Maximizing the
Performance Upper Bound

We can achieve the upper-bound in Equation (7) equal
to 1 while merging the nodes with the same label. Once
we start to merge nodes with varying labels, the upper-
bound starts to decrease. This would be a trivial oper-
ation if all labels would be available. Nevertheless, if
only training labels are available, we need to somehow
estimate labels for nodes for which the ground truth is
not available.
Instead of comparing true labels, we propose to com-

pare a predictive posterior distribution related to the
downstream task, where the prediction is provided by an
auxiliary (base) model. We propose then to calculate a
similarity measure upon pair of posterior distributions
for all edges (corresponding node pairs) and to sort the
edges according to the similarity to establish the order
of edges to be contracted.

4.3. Base Model
The base model serves to evaluate a posterior probability
for each node in graph determining the pairwise node
similarity for sorting the edges. Since the model is as-
sumed to process the entire graph, it is expected to be a
simple one.

4.4. Similarity Measures
Within this paper, we experimentally evaluate several
similarity measures of the probability density functions.
In particular, we consider cross-entropy and the KL di-
vergence as similarity measures of posterior probability
distributions. The asymmetry of these measures does not
have any effect, since we assume an undirected graph,
that is the similarity is calculated for both directions and
the smaller value is used.

𝜈𝐴𝐵𝐶𝐷𝐸

𝜈𝐴𝐵 𝜈𝐶𝐷𝐸

𝜈𝐴 𝜈𝐵 𝜈𝐸 𝜈𝐶𝐷

𝜈𝐶 𝜈𝐷

Figure 4: Hierarchical clustering tree corresponding to edge
contraction in Figure 3

.

5. Hierarchical Clustering of
Nodes Induced by Edge
Contraction

As demonstrated in Figure 2, the edge-contraction-based
coarsening leads to a hierarchical clustering represented
by a tree, where the nodes in the original graph 𝜈 ∈ V1
form leaves of the tree and each edge contraction defines
a relation between a parent and its children according
to Equation (3). As an example, a tree for the procedure
from Figure 3 is shown in Figure 4.
Although this clustering is only a side-effect of the

edge contraction procedure, it brings5 a useful insight
into the quality of the edge ordering. The label refine-
ment 3.4 basically operates within each hierarchical clus-
ter, since the (GNN) model is assumed to make a pre-
diction about this cluster that needs to be refined into a
prediction for the nodes in the original graph 𝐺.

5.1. Multi-Step Edge Contraction
The edge contraction described in Section 3.1 can be
easily extended by considering multiple edges to be con-
tracted simultaneously. In that case, a sub-graph defined
by a collection of edges to contract is considered. Each
component of this graph then forms a new merged node.

The motivation for this multiple-step consideration is
to decrease the depth of the hierarchical tree on one hand
or reduce the number of graphs in Sequence (1) on the
other. The depth of the tree referring to the hierarchical
cluster can be as high as the number of nodes in the
graph. The multi-edge contraction procedure and its
relationship with the edge contraction step described
in Section 3.1 is illustrated in Figure 5 in a particular
example.

5We discuss other potential applications in Section 7.
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Figure 5: Illustration of a multi-edge coarsening provided
in one step and its relation to the edge one-by-one edge
coarsening, where we use hierarchical clustering as described
in Section 5. A graph of five nodes given by edges E =
[(𝜈𝐷, 𝜈𝐸), (𝜈𝐶, 𝜈𝐷), (𝜈𝐵, 𝜈𝐶), (𝜈𝐴, 𝜈𝐵)] is coarsened in four steps
(left). If these steps are provided simultaneously, a flat tree is
obtained (right).

6. Experiments
This section provides experimental validation of the pro-
posed complexity-performance trade-off on traditional
real-world graph datasets.

6.1. Experiments Objectives
Since our claims are not as straightforward as stating
that one method overcomes another one, we first claim,
what we try to achieve within the experiments.

First of all, we would like to find a sweet spot of the
complexity-performance trade-off for a given task en-
abling us to outperform the baseline with reduced com-
plexity. We found this point in all cases shown in Figure
6a.
The next objective is to compare the performance

upper-bound from Section 4.1 with true performance
– Figure 6a. Since the performance upper-bound can be
calculated simply compared to the true performance, it
can be considered as an approximation of the true per-
formance in the complexity-performance trade-off. This
would save significant computational resources needed
for true performance evaluation for all graphs in the se-
quence 𝑆, but making conclusions on upper-bound should
be validated.

We further investigate impact of various steps driving
the edge order for removal described in Section 4 on the
complexity performance trade-off and we also attempt
to validate using a posterior distribution for edge sorting
(4.2) instead of the prior (labels) used in the upper-bound
(Figure 6b). Finally, we demonstrate the node clustering
as a vital visualization of a particular graph coarsening.

6.2. Experiment Setup
We consider a logistic regression model as the base model
in all experiments. Based on the posterior distribution
obtained from the logistic regression, we calculate the
ordering of edges for removal using the KL-divergence
and cross-entropy similarity measures on predictive node
distribution. We also consider random ordering as a
reference.
We first calculate the graph sequence according to

Section 3.5. This sequence inherently provides the per-
formance upper-bound (Section 4.1). A GCN [1] is then
trained on each graph in the sequence, where the labels
and features are aggregated according to Sections 3.2 and
3.3 and performance (accuracy) is obtained on the test set
refined to the original graph (Section 3.4). We consider
the cross entropy loss function within training, where the
cross entropy is calculated against the prior distribution
calculated in Equation (6). The node is assumed to be a
training one if it contains at least one aggregated label
from 𝐺1.

We consider complexity given by the number of nodes
in the graph within our experiments. This simplified
complexity measure takes only graph into account, it
is not suitable for comparison of multiple models, since
their complexity is not taken into account.
We evaluated the performance-complexity trade-off

for Cora, PubMed [14] and DBLP [15] datasets, where
we sub-sampled training labels – see results in Figure
6a. In order to validate the use of the posterior instead
of prior distribution, we used a distribution given by the
base model if the label was not available and if it was, a
distribution given by 𝑟𝑝𝑦 + (1 − 𝑟)𝑝 ̂𝑦, where 𝑝𝑦 denotes
the prior distribution of data determined by the training
labels, 𝑝 ̂𝑦 the posterior distribution (base model output)
and 𝑟 is a coefficient enabling mixing between the two
distributions. The results are shown in Figure 6b.
The complexity performance trade-off curves in Fig-

ures 6a and 6b are equipped by 90% symmetric confidence
intervals, where the interval is given by the correspond-
ing quantiles of Beta distribution constructed as the con-
jugated prior to binomial distribution given by 𝑥 errors
out of 𝑁𝑡 testing examples (note that 𝑥/𝑁𝑡 stands for
accuracy).

6.3. Performance Upper-Bound versus
GNN Performance

The comparison of the upper-bound and true perfor-
mance can be found in Figures 6a and 6b. The upper-
bound does not suffer from the fluctuations as the true
performance. In case when the base model is strong
enough, the working point selection according to the
upper-bound could bring reasonable results.
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(a) Performance comparison of various distributions used for sorting the edges for contracting. The dependencies are plotted
for different number of training labels.
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(b) Performance comparison of various distribution used for sorting the edges for contracting.

Figure 6: Evaluation of performance-complexity trade-off.

6.4. Impact of Edges Ordering on
Performance Complexity Trade-Off

Impact of the chosen distribution similarity measure on
performance is shown in Figure 6a. Surprisingly, even the
random baseline gives good results in some cases. While
no metric is the best choice in case of Pubmed and DBLP
datasets, KL divergence seems to be a superior choice in
case of Cora dataset. In case of 2% training labels, the
base model is so weak that qualitative difference between
the edge sorting strategies disappears for all datasets.
Interestingly, the provided observations made on true
performance can be also deduced from the upper-bounds.

As can be seen in Figure 6b, adding prior information
makes the results consistently worse. This is probably

caused by the fact that neighbouring nodes with the same
label in the training set are merged first and the lack in
training data then causes the observed performance drop.
In contrast with evaluating the similarity measures, the
upper-bound provides an inverse observation.

6.5. Hierarchical Clustering
The hierarchical clustering described in Section 5 presents
a neat way of manually validating the graph coarsening
procedure. We evaluated the base model on the Karate
Club dataset and used the proposed coarsening proce-
dure according to Section 5.1. Two edges were contracted
in each step. The resulting tree is shown in Figure 7.
Observing the tree, we can recognise splits (or coars-
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Figure 7: The hierarchical tree corresponding to the edge
contracting procedure driven by the base model on the Karate
Club dataset. The true labels of the leaf nodes are color-coded
and training labels are denoted by a double circle. The number
in the circle denotes the step in the edge contraction order – in
each step, two edges are simultaneously contracted according
to Section 5.1.

ening steps) resulting from merging nodes with the same
label, which is the desired behavior, because the graph
size is reduced without any performance loss in such a
case. However, merging differently labelled nodes un-
avoidably leads to a performance loss, because our label
refinement procedure guarantees the same prediction for
each node within the cluster (see Section 4.1).

In case of Karate Club dataset tree (Figure 7), the first

four steps of the procedure merge only nodes with a
matching label. However, from the fifth step onward, at
least two errors occur and affect the total accuracy (one
error in case of test accuracy).

7. Conclusion and Discussion
We formalized the performance-complexity trade-off and
described a framework for smoothly adjusting either
desired model complexity for a given performance re-
quirements or performance for available computational
resources. The framework consists of a methodical step-
by-step graph coarsening by way of edge contraction,
where we addressed practical aspects of feature and label
aggregation within node merging and also prediction
refinement to the original nodes from the merged node.
We have also shown that this edge coarsening naturally
produces a hierarchical clustering of the nodes in the
graph.
The ordering of edges for the contracting procedure

is then studied in greater detail, where we suggest to
employ a base model to produce a predictive posterior
distribution for each node and then sort the edges accord-
ing to the distance of probability distributions of adjacent
nodes.
We applied the proposed framework to widely used

publicly available graph datasets. In particular, we ex-
plored the coarsening procedure on the Karate Club
dataset by means of a hierarchical tree. Finally we com-
pared KL-divergence and cross-entropy similarity mea-
sures for driving the edge ordering.
Although our primary focus was the complexity per-

formance trade-off, we believe that we explored several
research directions for future works.
The considered label refinement is extremely simple,

however, we can alternatively consider an arbitrarymodel
within each cluster. This will incur some additional cost,
but a distributive processing may be utilized since the
clusters do not overlap. Moreover, the information from
this ”local” model can be combined with the global one,
which could lead to superior performance since both lo-
cal and global graph contexts would be considered. In
addition, we would still avoid running the GNN on the
entire graph.

If we focus on the hierarchical clustering, we can relax
our assumption of applying a simple model on the entire
graph to produce a predictive posterior distribution. In-
stead, we could consider as strong model as possible to
achieve the best possible clustering for a given use case.

Within this work, we used the hierarchical clustering
as a complementary/inspection tool for the graph coars-
ening. Nevertheless, it would be interesting to compare
its suitability for other purposes – e.g. distributive pro-
cessing as an alternative to [7]. In addition, the clustering



is built on a supervised setup. An unsupervised approach
based on e.g. the cosine distance of the node2vec embed-
ding could be an interesting alternative to [13].
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