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Abstract
In today’s technological world of privacy-conscious users, the tracking of individuals via different
positioning systems and services can be considered obtrusive. Furthermore, linking and integrating
data from these positioning systems is not always possible or requires the major effort of creating new
interfaces between systems. In this paper, we propose an architecture for the realisation of a decentralised
positioning system based on the W3C’s Solid platform specification. Using this specification, sensor data
as well as an individual’s location information is stored in secure decentralised data stores called Pods, that
are hosted by user-selected Pod providers. We demonstrate that these Pods do not only offer transparent
and interoperable data stores for persisting sensor data as well as processed location information, but also
aid in linking multiple positioning systems for high- and low-level sensor fusion. For indoor positioning,
this interoperability provides a way to offer users a single location-based service while also providing
additional semantic context for other positioning systems to improve their data output. Developers of
indoor positioning systems can store all data in a format that is readable, understandable and accessible
by any other system that their users might be using, enabling collaboration between researchers and
companies implementing these indoor positioning systems.
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1. Introduction

With current positioning systems that are used both indoors and outdoors, data is usually
stored in a database that is under control of a specific application. Neither users nor external
developers always have access to the raw data unless a dedicated interface enables its extraction.
Even with the ability to extract the data of a positioning system, the interoperability between
multiple positioning systems and applications remains a difficult task due to different data
formats, the lack of documentation or missing information on how the data has been processed.
In an indoor positioning system (IPS), the additional information might include the system
setup with the used sensors and their features.

In several user studies on location privacy conducted before 2010 [1, 2], it was concluded that
the majority of people do not put a lot of value in their location privacy due to their ignorance
of the possible implications. In recent years, users are becoming more conscious about their
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privacy on the Web and on smartphone applications [3]. For indoor positioning systems that
are often implemented and deployed for individual buildings, this could cause users to distrust
the use of a system or application that is able to track their location. Our proposed architecture
provides users transparency about their location data as well as any system that can access
that data, and allows them to define individual access rights for each system or application. By
defining the use of a common vocabulary for the location and sensor data, we are able to create
an architecture that can be implemented to seamlessly integrate with other positioning systems
or applications without the need for additional interfaces, increasing a user’s trust that no other
systems can have unauthorised access to their location.
In 2016, the W3C Solid Community Group led by Tim Berners-Lee introduced Solid (Social

Linked Data) [4], a platform for decentralised social applications based on linked data. Solid
stores a user’s data and information in secure data vaults called Pods that are independent from
the applications that create, edit or process the data. Users can choose the Pod provider and
control the access rights of applications for certain subsets of their data vault. Stored data
can range from binary media files to structured linked data that is described by documented
vocabularies and specifications. We propose the use of Solid for creating a positioning system
that stores all its data, ranging from sensor data to high-level computed positions as linked data
in a user-owned Pod store. We show how this storage makes IPS-generated data interoperable
between other positioning systems, how privacy can be preserved and how consumers of
location data can benefit from Solid.

Finally, we showcase the implementation of our proposed Solid-based architecture via some
non-trivial example positioning systems. In this demonstration we highlight how different
systems can access a user’s location data after they have given their consent, how this data is
semantically described using existing standards and recommendations and how the semantics
helps in processing the data in a meaningful way.

2. Related Work

Decentralising a positioning system is not a new concept, but has mostly relied on proprietary
decentralised parts with the focus of decentralising the processing rather than the decentralisa-
tion of data to preserve user privacy. Talat et al. [5] proposed a decentralised approach to store
privacy-preserving trajectory data using decentralised blockchains. Their motivation was that
current enterprise systems are built on the notion of trust by being in control of the data and
the inability to provide users data access.

Existing localisation systems that preserve the privacy of tracked users apply location privacy
preservation mechanisms (LPPMs) such as obfuscation, anonymisation or cryptography [6].
These techniques often focus on the anonymisation of a location-based service (LBS) while we
aim to create a data exchange of all information relevant for high- and low-level sensor fusion
between multiple systems.

LBS interoperability has been conceptualised in various research [7, 8, 9] with a main focus
on the LBS as a centralised middleware that handles the reasoning, privacy and querying of
data. The reasoning over data is an important aspect, as it enables the LBS to use all the context
that is available to provide a better single location output. To enable this reasoning, the spaces



and deployments of the positioning systems that provide data to these services is one of the key
areas that aforementioned research focuses on.
A prototype for a decentralised LBS using the Geolocation API has been realised by the

Solid community [10]. Thereby, the Geolocation API outputs the position at multiple levels of
granularity, such that a user can decide which accuracy can be shared with which applications.
While the prototype offers historical location data, different levels of granularity and a vocabulary
based on other specifications, it lacks additional semantics that would allow its use with multiple
positioning systems. Further, the stored data cannot be expanded with domain-specific data.
With our approach, we demonstrate how the decentralised Solid platform can act as an

interoperability layer for a location-based service, as well as a layer for low-level sensor data
and information regarding building infrastructure. Instead of modifying the data with LPPMs,
we aim for privacy by transparency with different types of access for different granularities
of data, similar to the prototype by Stratsianis [10]. Different than the work of Talat et al. [5],
Solid allows users to stay in control of their data that can be accessed by applications.

3. Solid-based Architecture

Our architecture for creating a decentralised positioning system is built on top of the Solid
project by Tim Berners-Lee [4]. Solid offers decentralised data vaults called Pods, storing a user’s
data. Users can choose the provider storing their Pod and thereby decide which organisation to
trust storing their data. Applications and websites that want to store or fetch a user’s data can
ask the user to authenticate themselves to their Pod provider, giving those applications access
to parts of the vault where they can create or read data.

Positioning System

User 2 Pod

User 1 Pod

Session Storage
User


Authentication

Figure 1: Basic architecture of linking a positioning system with Solid

In Figure 1 we show the basic architecture of a positioning system making use of Solid. Users
authenticate through a user interface (i.e. either a website or a smartphone application). The
authentication process in this system provides a session key that can be used to access the
user’s private Pod. Each user will have their own application-specific unique session key stored
in the session database, enabling access to their Pod. These keys are the only data that has to
be stored locally by the system. In Section 3.2 we provide practical examples on how an indoor
positioning system would perform this authentication in a real-life scenario.

Once the positioning system has access to a user’s private Pod, the Pod will be used to store
all relevant tracking data. This might range from processed data such as a user’s geographical
position to raw sensor data that should be persisted. While the positioning system can still store



some, if not all, data on privately owned servers, the philosophy of Solid is that this would be
governed by laws such as the European Digital Markets Act (DMA) [11]. Similar to the governing
of the usage of data vaults, applications with read access to a Pod can theoretically clone the
data locally. However, laws like the European General Data Protection Regulation (GDPR) [12]
aim to protect users from such practises.
The user has control and transparency on the data that is being created or updated by a

positioning system, as well as the ability to revoke access to this data at any time. Compared to
the three-layer model of an LBS [13], our approach moves the responsibility of the reasoning
middleware layer to the application that reads the data, but with additional semantic rules and
knowledge on how this reasoning can be performed. This offers a lot of flexibility, making the
decentralised vault not simply an LBS, but also a service for raw unprocessed data.

3.1. Interoperability

Location data should be interoperable between different systems, meaning that data created by
an indoor positioning system in one building should be compatible with another positioning
system or application. This allows our positioning data to be processed by different positioning
systems to enable the handover of tracking [14], or allow multiple indoor positioning systems to
be linked in one non-proprietary smartphone application. Interoperability on this scale further
enables the decoupling of positioning systems from the user interfaces and applications that
generate and use the data.

Navigation App
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System (A)
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Figure 2: Two positioning systems linked to the same user pods

Figure 2 shows an architecture where a user authenticates to two individual positioning
systems that work independently from each other. Both systems can access the same data vaults.
In addition, we have a navigation application that uses the data stored in the decentralised Pods
as a location-based service. Alternatively, a single application could be responsible for obtaining
sensor data on a smartphone that is then being processed by a positioning system.

Solid allows the storage of regular documents such as media files as well as semantic linked
data [15]. Semantic data is machine readable and understandable structured data based on
vocabularies and rules that semantically describe the meaning and relations of data. The data is
represented in triples consisting of a subject, a predicate and an object. Each subject, predicate
or object can be identified by a Unique Resource Identifier (URI) that might be used to define



other predicates describing the URI. Further, concepts can be defined in multiple documents on
the Web, creating a semantic web of data.
We will formalise a collection of vocabularies that cover the general setup of a positioning

system and its algorithms, the output data with different granularities and a vocabulary that
provides additional context on the accuracy of each output position in Section 3.3.

3.2. Authentication and Access Control

In order that an application can make use of Solid, the user needs to authenticate the application
to the Pod provider. For an indoor positioning system, we provide two different ways how this
authentication would be done by a user. In the first scenario, the user uses their smartphone to
authenticate the positioning application to the Solid provider. This can be through a smartphone
application or online website that handles the positioning. The access credentials might be
stored locally on the smartphone or in the browser cache if no server authentication is required.

If the positioning system obtains sensor data on a mobile device but processes the data on a
server, this server requires access as well. In such a scenario, user authentication is still achieved
through a web user interface. After a successful authentication, the access credentials are stored
on the server that can execute actions on behalf of the user.

Both types of authentication require an informed user consent [16] where the user is aware
what application will access their Solid Pod, what location data they require access to and
optionally what they are going to do with the location data. For positioning systems that do
not use an Internet-connected device, such as positioning systems that track the position using
other hardware (e.g. multi-camera multi-person tracking or RFID-based tracking), the system
should still authenticate the user. We envision this type of authentication at the time when the
hardware is handed to the person or when the user provides consent for being tracked.

Authentication can be revoked or downgraded at any time, preventing a positioning system
or application from accessing and updating a user’s position. Each user is uniquely identified
through aWebID URI (e.g. http://ipin2022.solidweb.org/profile/card#me) and every WebID
directs to the user’s Pod that is classified via different paths depending on the type of data. Every
WebID directs to a public profile providing a basic overview of the user’s profile information.
Other paths such as /properties/position.ttl are custom datasets added by applications.

Access control within Solid is handled on a dataset level. Each container (i.e. path in the URI)
and file can have specific access control policies (ACP) for each authenticated application, user
groups or everybody. There are five different roles of access a user or application can have to a
dataset as shown in Table 1. The three main ACP modes include write access with the ability to
create, update and delete information, read access of all data in a dataset and append access
that can only create new information. Owners and editors are similar despite of the fact that
owners can also manage the access control settings to a dataset.
An application using Solid as a location-based service only requires the visitor role. A

smartphone application generating sensor data only needs to create new data and can therefore
use the submitter role. A positioning system should have the role of a poster in order that it is
able to create new sensor readings and computed location results, but cannot change or modify
information generated by other positioning systems. Further, a trusted system that should have
the ability to remove or modify incorrect sensor data from other systems requires an editor role.



Table 1
Access Control Policies (ACP) roles and modes

write read append control
owner 3 3 3 3
editor 3 3 3 7
poster 7 3 3 7
submitter 7 7 3 7
visitor 7 3 7 7

3.3. Vocabulary

Our collection of vocabularies and concepts was defined based on the common needs of a
positioning system, the available techniques and algorithms and the data they produce [17, 18].
This vocabulary is applied in a dataset within a Solid Pod as shown later in Section 3.2. With the
vocabulary we should support the following concepts that are required for creating interoperable
indoor- and outdoor positioning systems:

• System description: The positioning systems that are used should be semantically
described with their properties, deployments, algorithms and technologies.

• Output properties: Each tracked entity should have a set of specific properties such as
a position, orientation, velocity or any other data that a positioning system can provide.

• Accuracy: The accuracy of a position or any type of sensor should be specifiable for each
output that is provided. While some sensors provide all results with the same assumed
accuracy, other processed properties such as a position can have a varying accuracy for
each individual observation.

• Granularity of properties: The more accurate the location data, the more sensitive the
information. Not every system requires access to a high accuracy. Our solution should
support different levels of granularity for each property belonging to an entity. This
enables a user to limit access to a dataset with a high accuracy.

• Historical data: We want to keep track of computed positions. A positioning system
could use the historical data to predict future movement and trajectories [19].

• Raw sensor data: While our main focus is to store location data, it should be possible
to store raw sensor data belonging to a person (e.g. raw accelerometer data) in a similar
way as a property of a tracked entity.

• Spatial reference system: In order to support the interoperability of spatial sensor data
in different environments, a spatial reference system should be provided to determine
how the position from different systems relate to each other without requiring them to
output the data in the same reference system.

The Open Geospatial Consortium (OGC) together with the W3C created the Sensor, Observa-
tion, Sample and Actuator ontology (SOSA) [20]. This ontology is extended with the Semantic
Sensor Network Ontology (SSN) [21] that together can describe systems, their sensors, the
properties of entities and individual observations for the properties, capabilities of a system
and their precision and accuracy [22].
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<> a sosa:ObservableProperty ;


  rdfs:label "My Position"@en .


:1648831900 a sosa:Observation ;


  sosa:observedProperty <> ;


position.ttl

:1648831850 a sosa:Observation ;


  sosa:observedProperty <> ;


  sosa:resultTime "..." ;


  sosa:hasResult: [ ... ] .


...

Figure 3: Overview of a fictional user’s data stored in a Solid Pod

As a joint specification by the Spatial Data on the Web Working Group (SDWWG) and
theW3C, this vocabulary is chosen as the main ontology for describing a positioning system and
its inner workings. For observational values, we make use of the Quantities, Units, Dimensions
and Data Types ontologies [23] that support and describe most units. Spatial data is represented
with GeoSPARQL [24] that conforms with known ISO standards. While we focus on expressing
data commonly provided by a positioning system, SOSA offers the ability to describe individual
sensors and other raw sensor data that could be of use for other systems.

With the Semantic Web, other domain-specific vocabularies can be linked to the core concepts
introduced in this section. This supports the description of deployments using domain-specific
vocabularies such as IndoorGML [25] or a more elaborate description of sensors using M3 [26].
To ensure that each application with data access follows the same conventions, shape validation
that verifies that the data follows the specifications could be used in the applications [27].

The concept of observable properties from the SOSA ontology is used to define the properties
of a user that can be observed, such as their position, orientation or velocity. Figure 3 shows
an overview of the data in a Pod. We use the profile card to store references to the properties
that are available for our user using the ssn:hasProperty predicate (see Section 4.1 for an
example). Information about each property and the observations is located in a container called
properties/ . A new dataset file is created for each property, containing its semantic description.
Individual observations of these properties are included in the dataset file. These observations
contain the timestamp when the observation was created, the result and optionally additional
semantics about the used algorithms and techniques (i.e. the sosa:Procedure predicate).

1 @prefix : <http://.../properties/position.ttl#> .
2

3 <> a sosa:ObservableProperty ;
4 rdfs:label "Geographical Position"@en ;
5 ssn:hasProperty :accuracy .
6

7 :accuracy a ssn-system:Accuracy ;
8 schema:maxValue "5.0"^^xsd:float ;
9 schema:unitCode qudt-unit:M .

Listing 1: Example position property (position.ttl)

In Listing 1 we show the creation of a position property using the combination of the SOSA,
SSN, SSN-Systems1, Schema.org and QUDT ontologies (prefixes redacted from the listing). The
position property has a property on its own that specifies its expected maximum accuracy.
1https://www.w3.org/TR/vocab-ssn/#System-capabilities

https://www.w3.org/TR/vocab-ssn/#System-capabilities


1 @prefix profile: <http://.../profile/card#> .
2 @prefix example: <http://purl.org/ipin2022-solid#> .
3

4 :1646891100 a sosa:Observation;
5 sosa:hasFeatureOfInterest profile:me;
6 sosa:usedProcedure example:qrscanner_checkin ;
7 sosa:hasResult
8 [ a geosparql:Geometry;
9 geosparql:asWKT """
10 <http://www.opengis.net/def/crs/OGC/1.3/CRS84>
11 POINT Z(5.893628199 46.641890130 15)
12 """^^geosparql:wktLiteral ;
13 geosparql:coordinateDimension 3 ;
14 geosparql:hasSpatialAccuracy
15 [ a qudt:QuantityValue ;
16 qudt:numericValue 598 ;
17 qudt:unit qudt-unit:CentiM ] ];
18 sosa:observedProperty <> ;
19 sosa:resultTime "2022-03-10T06:45:00.000Z"^^xsd:dateTime .

Listing 2: Example position observation (position.ttl)

A single observation of this property is shown in Listing 2 with the algorithm that generated
the observation on line 6, timestamp on line 19 and the result itself written as a geometry
with a well-known text (WKT) representation [28, 29] for the position on lines 9 to 12. This
WKT position contains the longitude, latitude and coordinate reference system to express the
position. The accuracy of the position as provided by the system that created the observation
is described on lines 14 to 17 with a one-dimensional value (distance) in a specified unit. The
spatial accuracy can be changed to a 2D area or 3D volume if the system is able to provide this.

3.4. Decentralised Data

The infrastructure and setup of a positioning system can be important to perform decision-
level position fusion from different systems. Instead of duplicating this data in each user Pod,
we envision that each positioning system contains a dataset describing its layout and setup.
Optionally, parts of this data can also be private with access-on-demand, in a similar way as a
user’s location and sensor data would be private.
In Listing 3 we show a basic example of an indoor positioning system. The system defines

the deployment, the location of the deployment and procedures providing semantics on the
techniques the positioning system uses. This basic example does not go in depth into the
semantics of a procedure and the deployment, but can be expanded with domain-specific
ontologies as mentioned in Section 3.3.

3.5. Privacy and Transparency

The privacy aspects of a positioning system cover both the user’s privacy when using an indoor
positioning system, as well as the privacy of a company or building owner implementing such a
system. As a user, one does not want to be tracked by unauthorised applications or positioning
systems whereas a company or building owner does not want too many details about the
building infrastructure to be revealed.



1 @prefix : <http://purl.org/ipin2022-solid#> .
2

3 :system_indoor a ssn:System ;
4 rdfs:label "My Indoor Positioning System"@en ;
5 ssn:hasDeployment :office ;
6 ssn:implements :qrscanner_checkin, :qrscanner_checkout .
7

8 :office a ssn:Deployment, geosparql:SpatialObject ;
9 vcard:hasAddress [ ... ] ;
10 geosparql:hasGeometry [ geosparql:asWKT """
11 POLYGON Z ((4.39220 50.82040 9, 4.39227 50.82043 9,
12 4.39224 50.82046 9, 4.39217 50.82043 9))
13 """^^geosparql:wktLiteral ] .
14

15 :qrscanner_checkin a sosa:Procedure ;
16 rdfs:label "QR-scanner Check-in"@en ;
17 rdfs:comment "..."@en ;
18 ssn:hasInput [ ... ] ;
19 ssn:hasOutput [ ... ] .

Listing 3: Example indoor positioning system definition

Other than LPPMs [6] that modify or encrypt the data to ensure privacy, the privacy in our
architecture mainly focuses on the transparency and control of granularity in which applications
can access a user’s location. In our vocabulary we define properties for an entity that we are
tracking. We consider the positioning system that has read and write access to a particular
property as a trusted entity for managing that property. To control the level of granularity,
multiple properties can exist for the same type of measurement (e.g. position or orientation),
each with their own accuracy, update frequency or limited information. By supporting these
different levels of granularity, the user can control which application(s) have access to what
accuracy of their position, similar to the proof-of-concept LBS of Stratsianis [10].

3.6. Decentralised Processing

Since a Pod is a decentralised storage of individual observations by a positioning system or
even a sensor, it can be used as a broker for the decentralised processing of observation data.
One part of the positioning system adds the observations to the Pod. Another part of the
positioning system reads these observations to continue processing them. Solid supports live
notifications [4] where an open connection is made to a Pod dataset to listen for changes. This
allows a positioning system to check for new observations appended to a property.

3.7. Fusion

With multiple positioning systems having access to create observations of a position, there is a
need to control how the position is updated. In our vocabulary presented earlier in Section 3.3,
we mentioned the use of the SOSA ontology to create individual observations for each result.
Multiple positioning systems can create multiple results or observation on the same property
(e.g. position) with additional semantics that indicate how and who made the observation. Using
this information, querying the data allows for specifying this additional semantics. To ensure
that a positioning system can only write new observations but not delete any, our access control
settings can be configured to ensure that only new observations can be appended.



Reasoning on the context is an existing aspect in much of the related work that offers
interoperability of location-based services [7, 8, 9]. In the aforementioned related work, the
service is a centralised server that reasons on the semantic data it is given and provides the
application with a processed position that makes use of this reasoned data using the algorithms
and techniques determined by the LBS. With our approach, we want to offer more control over
the reasoning on the provided high-level location data.

In our linked data approach, fusion relies on semantic reasoning [30] and the ability to perform
complex queries on the data. A semantic reasoner provides additional information depending
on rules, axioms and constraints defined in the vocabulary. This enables queries to use a larger
set of inferred information to perform queries on. A basic example is an axiom specifying that
a particular predicate (e.g. ssn:hasProperty) has an inverse (e.g. ssn:isPropertyOf). With this
rule, data that only uses the ssn:isPropertyOf predicate can still be queried with its inverse.
Such a query is executed using the SPARQL query language and can be performed either locally
on the complete dataset obtained from Solid, or on the server side (selective read operation)
based on a Solid server implementation.

4. Implementation

To demonstrate how Solid can benefit the indoor positioning community, we created a non-trivial
implementation using a basic IPS, one outdoor positioning system and a consumer application
that shows a user’s recent data along with additional information. Using this implementation,
we want to demonstrate how a user’s personal position, orientation and velocity is stored, how
applications gain access to this data and how our solution might benefit tracked users.

APPEND
.../position.ttl

READ

.../position.ttl

APPEND
.../position.ttl

APPEND
.../velocity.ttl

APPEND
.../orientation.ttl
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Geolocation API (a) User Pod (c)

QR-scanner IPS (b) Consumer Application (d)

Figure 4: Demonstrator with two positioning systems (a, b) and one consumer application (d) connected
to the same user pod (c)

Figure 4 shows the technical setup of our demonstrator. For the scope of this demonstration,
the used indoor positioning system is a QR code check-in system that will update the position of a
user depending on the check-in and check-out scanning (see Figure 4b). The outdoor positioning
system uses the Geolocation API [31] to update the position, orientation and velocity as depicted
in Figure 4a.



While in this demonstration we focus on positioning data, the SOSA ontology enables the
modelling of properties and observations of any sensor data that belongs to the tracked entity.
Properties such as relative positions, raw signal strengths from beacons or raw IMU sensor
data can be modelled similar as shown in Listing 2 with a different value for sosa:hasResult .
Finally, in Section 4.3 we demonstrate how another positioning system or application can use
the semantic context of the two positioning systems to predict a more reliable output.

4.1. Properties

In our demonstration we manage three properties of the entity that we are tracking; the
position, orientation and velocity. Our Geolocation API provides all three properties, while the
QR scanning only updates the position property. For the scope of this demonstration, the speed
and orientation is expressed as a one-dimensional value in the sosa:hasResult of the example
observation in Listing 2.

Properties can be discovered by reading or querying the profile card of a Solid Pod2. Listing 4
shows an example profile card describing a person and sosa:FeatureOfInterest which are
accessible URIs to the datasets containing the observations of these properties.

1 :me a schema:Person, sosa:FeatureOfInterest, foaf:Person ;
2 vcard:bday "1995-03-10"^^xsd:date ;
3 vcard:fn "Maxim Van de Wynckel" ;
4 vcard:hasAddress [ ... ] ;
5 vcard:organization-name "Vrije Universiteit Brussel" ;
6 ssn:hasProperty </properties/orientation.ttl>,
7 </properties/position.ttl>, </properties/velocity.ttl> ;

Listing 4: Example profile card with properties

All position observations from every positioning system are stored in the same dataset
(*.ttl file3). These timestamped observations include information on the system that observed
them and the procedures used by that system. In the case of the IPS, it also includes a reference
to the room where a check-in occurred.

4.2. Applications

Figure 4a shows the Geolocation API application that only appends new observations to the
user pod. As shown in Section 3.2, this type of system only requires the submitter role. The
QR scanner application determines a check-in or check-out depending on the current position
(i.e. if the last position is inside a room, scanning the QR code means the user leaves it) and
therefore requires read permissions. The minimum required role for this system is a poster. For
the application that visualises the data, we only require the visitor role with read permission.
Figure 5 shows the authentication and visualisation of the data in the Pod. A user starts by

selecting their Pod issuer after which they are redirected to the provider’s login page to request
access. After access has been granted, the application can query the last positions, velocities
and orientations. Additional information that is referenced within the observations, such as

2http://ipin2022.solidweb.org/profile/card
3http://ipin2022.solidweb.org/properties/position.ttl

http://ipin2022.solidweb.org/profile/card
http://ipin2022.solidweb.org/properties/position.ttl


Figure 5: Login authentication example and consumer app

the room, will be fetched from the public triple dataset semantically explaining the shapes and
locations of the rooms4. Users of a Solid-based application only need to remember a single
login, which benefits the use of an IPS that does not require an additional account.

We provide an open source version of all applications along with more supplemental material
on GitHub [32]. In this supplemental material, we deliver instructions on how to set up
the applications and view the data. Our applications were developed using the OpenHPS
framework [33] as a new module named @openhps/solid5.

4.3. Querying

As SPARQL is not officially required by the Solid specification due to its computational com-
plexity on the server, not every provider supports it. In our example implementation, we use
the Comunica [34] SPARQL engine that supports local queries on fetched datasets as well as
server-side querying on supported Solid providers. The engine supports link traversal-based
query execution [35] where the set of documents will continuously expand by following the
URIs within the dataset that one performs the query on. This allows us to perform queries
without previous knowledge of the datasets.

Listing 5 shows the SPARQL query used by the consumer application to obtain the last
20 positions, the time when they were observed and the accuracy in metres. With this example
we want to highlight the advantage of additional semantic context and linked data provided by
the used vocabularies. Our query is executed on the dataset of the profile where the properties
are referenced. The property URIs mentioned in the profile card link to other datasets that
contain the observations that we aim to query. These datasets linked within the profile will
be automatically fetched by using link traversal. A GeoSPARQL 1.1 query function is used for
converting the well-known text literal to a GeoJSON format (line 9) in order to immediately use
the output in our application. We also use additional semantics from the QUDT ontology to
convert the accuracy to a base unit regardless on the unit used in the data (lines 12 to 16).

4https://purl.org/ipin2022-solid
5https://github.com/OpenHPS/openhps-solid

https://purl.org/ipin2022-solid
https://github.com/OpenHPS/openhps-solid


1 SELECT ?posGeoJSON ?datetime ?accuracy {
2 ?profile a sosa:FeatureOfInterest ;
3 ssn:hasProperty ?property .
4 ?observation sosa:hasResult ?result ;
5 sosa:observedProperty ?property ;
6 sosa:resultTime ?datetime .
7 ?result geosparql:hasSpatialAccuracy ?spatialAccuracy ;
8 geosparql:asWKT ?posWKT .
9 BIND(geof:asGeoJSON(?posWKT) AS ?posGeoJSON)
10 ?spatialAccuracy qudt:numericValue ?value ;
11 qudt:unit ?unit .
12 OPTIONAL { ?unit qudt:conversionMultiplier ?multiplier }
13 OPTIONAL { ?unit qudt:conversionOffset ?offset }
14 BIND(COALESCE(?multiplier, 1) as ?multiplier) # Default 1
15 BIND(COALESCE(?offset, 0) as ?offset) # Default 0
16 BIND(((?value * ?multiplier) + ?offset) AS ?accuracy)
17 } ORDER BY DESC(?datetime) LIMIT 20

Listing 5: SPARQL query on the profile card dataset

As shown in Figure 4, the consumer application listens for update notifications on the prop-
erties. These are used to obtain live updates of the position. In a positioning system this could
be used as push-based source for sensor and location data. With our example implementation
in Figure 5, we visually showcase these position changes as a pop-up notification.

5. Conclusions and Future Work

We presented a new Solid-based architecture enabling the creation of a decentralised positioning
system where user-owned location and sensor data is stored in a user’s data vaults. This
decentralised storage allows the users to remain in control of their data, while allowing different
positioning systems and applications to access and use the data given their consent.
We realised a basic implementation of the proposed architecture where two positioning

systems and one location consumer application store and read data from the same decentralised
vault. The source code and additional supplemental material is publicly available on GitHub [32].

While Solid is still under development, it highlights the need and advantages to decouple a
user’s data from applications that produce and consume the data. With location and sensor data
being such a sensitive property of a person, it highly benefits to be stored in the decentralised
vaults provided by Solid. We showcased that this change in storage is not only ensuring trans-
parency, but the interoperability of data can help in linking multiple indoor positioning systems
and improve the reasoning performed on the data. By using linked data in Solid, we might also
leverage the data vaults as communication brokers for transmitting sensor observations from
one part of a positioning system to another part by using live update notifications [4].

Future work should expand the vocabulary of SOSA and SSN to further semantically indicate
what algorithms and techniques are being used, the different relevant types of observable
properties that can be provided by a positioning system and a more universal way to identify
the quality of a property. With such a vocabulary, more practical examples can be created for
demonstrating high- and low-level sensor fusion. Companies might also store the information
about their buildings in decentralised Pods using additional vocabularies such as IndoorGML [25],
in order to make this information publicly available.
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