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1. Extended Abstract

The importance of defeasible (or nonmonotonic) reasoning has long been recognized in AI,

and proposed ways of formally modeling and computationally simulating such non-deductive

reasoning via logics and automated reasoning go back to early, seminal work in the field. But

from that time to now, logic-based AI has not produced a logic, with associated automation, that

handles defeasible reasoning suffused with arbitrarily iterated intensional operators like believes,
knows, etc. We present a novel logic-based approach for solving defeasible reasoning problems

that demand intensional operators and reasoning. We exploit two central problems. The first

is the “Nixon Diamond,” (ND) [1] a simple but illuminating specimen in defeasible-reasoning

research in AI. We show how the contradiction inherent in ND can be resolved by constructing

two arguments — corresponding to the two branches of the Diamond — one of which “defeats”

the other. The solution is found by enabling reasoning about the agent’s beliefs regarding

the context of the Diamond’s assertions. Such reasoning about beliefs inherently requires an

intensional logic. Our second problem is a variant of a much-studied and deeper one from

cognitive science: Byrne’s “Suppression Task” (ST) [2]. We present a challenging new version

of ST that is explicitly and unavoidably intensional — and then show that our new AI approach

can meet this challenge. We thus claim that our approach is “AI adequate” — but hold that it is

not cognitively adequate until empirical experiments in cognitive science, run with relevant

classes of subjects, align with what our AI approach yields. The rest of this extended abstract

will present a high-level overview of both the mechanisms we use to solve the two problems —

namely, cognitive likelihood calculi — and the solutions themselves.

1.1. Cognitive Likelihood Calculi

While a full discussion of the technical specifications of cognitive calculi, let alone cognitive

likelihood calculi, is impossible due to space constraints, we summarize their key attributes. A
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cognitive calculus is a multi-operator quantified intensional logic with modal operators that

capture cognitive attitudes of human cognition (e.g. K for “knows”, B for “believes”). For

the purposes of this paper, a cognitive calculus consists essentially of two components: (1)

multi-sorted first-order logic with intensional/modal operators for modeling cognitive attitudes

and (2) inference schemata that — in the tradition of proof-theoretic semantics [3] — fully

express the semantics of the modal operators.

A cognitive likelihood calculus additionally includes an uncertainty sub-system in order

to ascribe likelihoods to formulae. That is, such a calculus must contain syntactic forms

and inference schemata which dictate the ways in which likelihoods can be associated with

formulae and how they can be used and propagated in proofs. Note that since formulae can in

this approach have a relative “strength” 𝜎 of certainty, cognitive likelihood calculi necessarily

cannot be purely deductive, but are instead inductive.

Syntax

𝜑 ::= {¬𝜑 | 𝜑 ∧ 𝜓 | 𝜑 ∨ 𝜓 | 𝜑→ 𝜓 | ∀𝑥 : 𝜑(𝑥) | ∃𝑥 : 𝜑(𝑥) |K(𝑎, 𝜑) |B𝜎(𝑎, 𝜑)

where 𝜎 ∈ [−6,−5, . . . , 5, 6]

Inference Schemata

K(𝑎, 𝜑)

𝜑
[𝐼K]

B𝜎1(𝑎, 𝜑1), . . . ,B
𝜎𝑚(𝑎, 𝜑𝑚), {𝜑1, . . . , 𝜑𝑚} ⊢ 𝜑, {𝜑1, . . . , 𝜑𝑚} ̸⊢ ⊥

B𝑚𝑖𝑛(𝜎1,...,𝜎𝑚)(𝑎, 𝜑)
[𝐼B]

The syntax of the calculus used herein subsumes first-order logic; it additionally contains

modal operators for knowledge K and uncertain belief B𝜎
. The first schema, [𝐼K], says that if

an agent 𝑎 knows a formula 𝜑, then 𝜑 must hold. The second schema, [𝐼B], says that if an agent

𝑎 holds an arbitrary number of beliefs about formulae 𝜑1 to 𝜑𝑚 with corresponding strengths

𝜎1 to 𝜎𝑚, then 𝑎 can infer a belief in anything provable from those beliefs, with two restrictions:

First, the beliefs cannot prove a contradiction. The second restriction is that the strength of the

inferred belief must be at the level of the weakest belief used to infer it.
1

Finally, in this calculus, beliefs can take on 13 possible likelihood values. The following are the

descriptors of the non-negative
2

likelihood values: certain (6), evident (5), overwhelmingly

likely (4), very likely (3), likely (2), more likely than not (1), and counterbalanced (0).

1.2. The Nixon Diamond

The “Nixon Diamond” (ND) is a famous specimen in the AI literature on nonmonotonic/de-

feasible logic; see Figure 1. ND contains two arguments which seem to directly contradict.

First, Nixon was a Quaker, and Quakers are pacifists. Second, Nixon was a Republican, and

Republicans are not pacifists. Hence, Nixon is a pacifist and a non-pacifist!

To us, the important question to ask when considering how to solve the diamond is this: What

would human reasoners familiar with the concepts involved (e.g. pacifism) and background

knowledge (e.g. about Quakerism’s core tenets) actually conclude about Nixon? We shall return

1

This schema is essentially a formalization of The Weakest Link Principle.

2

The negative values are simply the negation of the corresponding positive value.
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Figure 1: The Nixon Diamond

𝛼1 𝛼2

B4
𝑐(∀𝑥 𝑄𝑥→ 𝑃𝑥) B3

𝑐(∀𝑥 𝑅𝑥→ ¬𝑃𝑥)
B4

𝑐(𝑄𝑛→ 𝑃𝑛) [∀E] B3
𝑐(𝑅𝑛→ ¬𝑃𝑛) [∀E]

B1
𝑐𝑄𝑛 B5

𝑐𝑅𝑛

∴ B1
𝑐𝑃𝑛 [MP] ∴ B3

𝑐¬𝑃𝑛 [MP]

Table 1: Competing Arguments 𝛼1 and 𝛼2

to this question below; the important point at the moment is that this is a driving question

behind the new family of intensional defeasible logics herein introduced.

Our analysis posits a single cognizer, 𝑐. Invoking the symbolization introduced in Figure 1,

set Γ := {∀𝑥(𝑄𝑥 → 𝑃𝑥),∀𝑥(𝑅𝑥 → ¬𝑃𝑥), 𝑄𝑛,𝑅𝑛},. Clearly, Γ ⊢ 𝑃𝑛 ∧ ¬𝑃𝑛.

Now, our cognizer’s beliefs about the members of Γ are simply determined by (1) inferring

new beliefs via the inference schemata of our cognitive likelihood calculus
3

and (2) adjudicating

clashes in favor of higher likelihood. Therefore, our cognizer derives the pair of arguments

shown in Table 1.

The point here isn’t the particular upshot obtained via the likelihood values employed in

Table 1, which is that our cognizer ought to believe that Nixon is not a pacifist. It’s true that

this table is intended to be a “real-world” instantiation, based as it is on background reasoning

about the concepts involved.
4

But the point is that, from our AI perspective (uninformed by

empirical experiments), what is to be ultimately believed by a first-rate cognizer is based on

bringing to bear the key attributes of a cognitive likelihood calculus, in conjunction with relevant

information. In particular, with respect to fine-grained arguments, what’s really going on in the

minds of first-rate human reasoners is presumably that, in turn, there are other background

fine-grained arguments in play in support of such propositions as that Republicans are non-

pacifists. Thus, ultimately, what emerges as the rational belief for a cognizer at a particular time

will depend upon the processing of many interrelated arguments, and their internal structure.

Of course, again, we say this as AI researchers in the hope of cognitive adequacy.

1.3. The Intensional Suppression Task

We turn now to the promised variant of the original ST that is more demanding from a logicist-AI

perspective, but, at least to us, not much more demanding from a human-reasoning perspective.

We cannot review the original Suppression Task here due to space constraints; the interested

reader is referred to [2].

In our intrinsically intensional version of the suppression task
5
, the three premises are these:

(p1𝑖𝑛𝑡) If Mary has an essay to finish, then Mary will study late in the library.

3

Note that, as our cognitive calculus subsumes first-order logic, the inference schemata contain those of first-order

logic as well, i.e. the standard introduction & elimination schemata.

4

Nixon, after his father converted from Methodism to his mother’s Quakerism, had two parents who were Quakers,

but at most that makes it more likely than not or likely that he was a Quaker. Nixon formally registered as a

Republican, making it evident that he is in fact one. Furthermore, Quakerism is doctrinally distinguished by

pacifism; in contrast, relatively few Republicans identify as pacifists.

5

Herein we only present an intensional adaptation of one of Byrne’s 12 experiments. In the full paper we adapted

three of them, but our calculus is fully capable of modeling all 12.



(p2𝑖𝑛𝑡) Mary’s mother knows that Mary’s father knows that Mary has an essay to finish.

(p3𝑖𝑛𝑡) If the library stays open, then Mary will study late in the library.

We next have the following three options:

(o1𝑖𝑛𝑡) Mary will study late in the library.

(o2𝑖𝑛𝑡) Mary will not study late in the library.

(o3𝑖𝑛𝑡) Mary may or may not study late in the library.

Now imagine posing this question to a rational human-level agent: Which of these three

options logically follow from the three premises? The correct answer is (o1𝑖𝑛𝑡), only. However,

Byrne’s original experiment found that the addition of (p3𝑖𝑛𝑡) led most human cognizers to

suppress the valid inference. It can be expected that most people, as in in Byrne’s original

experiment, would fail to correctly select (o1𝑖𝑛𝑡) for generally the same reasons they failed to

select (o1) in the original ST.
6

Assume we have a fully rational agent 𝑎 who is capable of reasoning via our cognitive

likelihood calculus. Proving the formal equivalent of (o1𝑖𝑛𝑡) is fairly straightforward, given the

established inference schemata:
7

B6(a,K(𝑚,K(𝑓,ToFinish(𝑚𝑎𝑟𝑦, 𝑒𝑠𝑠𝑎𝑦)))) [Given]

B6(a,K(𝑓,ToFinish(𝑚𝑎𝑟𝑦, 𝑒𝑠𝑠𝑎𝑦))) [[𝐼B], using [𝐼K]]

B6(a,ToFinish(𝑚𝑎𝑟𝑦, 𝑒𝑠𝑠𝑎𝑦))) [[𝐼B], using [𝐼K]]

B6(a,ToFinish(𝑚𝑎𝑟𝑦, 𝑒𝑠𝑠𝑎𝑦) → StudyLate(𝑚𝑎𝑟𝑦)) [Given]

B6(a, StudyLate(𝑚𝑎𝑟𝑦)) [[𝐼B], using modus ponens]

1.4. Automated Solutions

Finally, we briefly note that we have an automated reasoner able to automatically generate and

adjudicate the arguments presented herein. That automated reasoner, called ShadowAdjudicator,

is under active development and is open-source.
8
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We note that while we intuitively hypothesize that the changes we made to the experiment would not impact the

results, our position is that establishing cognitive adequacy would require a new experiment in order to confirm our

hypothesis. However, conducting such an experiment is in the expertise of cognitive scientists, not AI researchers.

Of course, whatever the result empirically, our logico-mathematics can model and simulate it.
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Our cognitive likelihood calculus can also model the invalid reasoning undertaken by humans who suppress the

valid inference; due to space constraints, it is left to the full paper.
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https://github.com/RAIRLab/ShadowAdjudicator

https://github.com/RAIRLab/ShadowAdjudicator
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