
Documenting Service-Oriented Architectures
with Ontobrowse Semantic Wiki

Hans-Jörg Happel1 and Stefan Seedorf2

1 FZI Research Center for Information Technologies, Karlsruhe

happel@fzi.de
2 University of Mannheim, Department of Information Systems III

seedorf@uni-mannheim.de

Abstract: Documenting and maintaining an enterprise-wide service-oriented
architecture (SOA) causes a substantial management effort which should be
addressed by intelligent, scalable solutions. A particular challenge is that business
experts, developers and software architects take different perspectives on a SOA,
which leads towards a scattering of architectural information throughout various
formats and sources. Ontobrowse Semantic Wiki specifically addresses these
issues by providing an ontology-based integration and documentation platform for
architectural information. In this paper, we first identify the main issues arising
from documentation and maintenance by introducing the case of an enterprise
SOA in an insurance company. Then we give a detailed description of the
Ontobrowse approach and its implementation. At last, we explain how ontologies,
artifact mappings and architectural rules are created to support the Enterprise SOA
case.

1 Introduction

The paradigm of service-oriented computing has lifted the development of business
applications to a higher level of abstraction. Instead of thinking in technical categories
like components or objects, software functionality is bundled in services that correspond
to business operations of the organization. Complex workflows can be realized by
aggregating functionality from simple services. A concrete software infrastructure
implementing this paradigm is called a service-oriented architecture (SOA) [HS05].

In an organization pursuing a SOA, the standard working processes change for the
multiple stakeholders involved, i.e. service developers, business experts and software
architects. First, service developers have to think in specification terms rather than taking
an implementation view. Since services are black-box specifications which hide the
details of the internal realization, metadata describing their properties is crucial. In an
enterprise-wide scenario, it has to be documented which services are available, where the
services are being deployed, how they can be invoked and who is responsible for them.
Second, business experts are interested in available business functionality and
operational efficiency. Since service-orientation leads to a rising level of alignment

between business processes and IT implementation, it is important to monitor and guide
the development of the service landscape according to changing business requirements.

Finally, software architects are interested in ensuring that services are specified and
composed in way that key quality attributes such as performance, reusability and
modifiability are met. In order achieve this, architectural patterns, rules and policies are
defined at the beginning of a SOA project. These are rolled out in service design
decisions. However, as a SOA continuously evolves, it becomes increasingly difficult to
monitor if the current service definitions comply with the set of architectural rules.

It is thus desirable to integrate all the different aspects of SOA documentation and
maintenance into a single platform. Although there are a considerable number of
standards to describe service properties like interface, behavior and orchestration, it
nevertheless is a difficult task since all relevant information is scattered throughout
various information spaces. In order to address the issues, we have developed
Ontobrowse, a semantic wiki based on ontologies, which provides an infrastructure to
extract knowledge from external sources [HS07]. It serves as single point of information
covering both technical and business aspects of a SOA.

The remainder of the paper is structured as follows: In chapter 2, we present an
Enterprise SOA case and derive the requirements for our documentation tool. We also
address the shortcomings of existing approaches. In chapter 3, we introduce the basic
elements of our solution, namely ontologies and semantic wikis. In chapter 4, the
architecture and realization of Ontobrowse is described. Chapter 5 demonstrates the
setup with a SOA ontology, artifact mapping an architectural rule to support the
requirements. Finally, we summarize our findings in the conclusion.

2 Documenting and Maintaining an Enterprise SOA

In this section, we introduce the case of an enterprise SOA in an insurance company. It
characterizes the systems, actors and development artifacts in a concrete SOA
environment. Next, we highlight the shortcomings of current SOA documentation
practices and derive requirements for a suitable tool support.

2.1 Enterprise SOA Case

InsCorp Inc. is an insurance company which has established itself as a top ten player for
life policies in its domestic market. The system landscape at InsCorp has continuously
grown over the last decade and become highly heterogeneous. It consists of several
legacy systems as well as databases, enterprise applications, ERP and CRM systems.
One major challenge is aligning the IT landscape to changing business requirements. In
particular, cooperation with third-party vendors and product diversification has led to a
high number of client systems with similar functionality. The current enterprise
architecture makes coping with change more and more difficult. In order to allow for
further growth, InsCorp has commissioned ITCorp Inc. with a new project. The purpose
is to develop a new enterprise-wide SOA which meets the needs of its agile business
environment.

The development and evolution of a new architecture involves a number of different
stakeholders who collaborate throughout the SOA lifecycle. The service architecture is
organized in several logical layers as depicted in figure 1. To each layer, different tasks
and roles can be assigned. The system environment layer is maintained by several groups
in the IT department. In the above integration services layer, the functionalities of
individual systems are exposed as Web Services to achieve technology abstraction.
Maintainers of legacy systems and SOA architects have to cooperate in order keep these
layers in sync. Next is the enterprise services layer, where basic services from the
integration services layer are aggregated to support business activities. Business experts,
process engineers and software architects have to work seamlessly together to specify
enterprise services and business objects. In the workflow layer, process engineers realize
business processes that are composed from the enterprise layer. Finally, application
frontends in the client application layer execute these business processes to perform a
business task. This final layer drives the evolution of the SOA, since the frontend
applications require different business processes and data formats.

Client applications

Business processes

Enterprise services

Integration services

System environment

Service
Registry

Servers Mainframes

DataData

Figure 1: Organization of services in architectural layers

The stakeholders in the SOA lifecycle document their views using different notations
and formats. In our case, business analysts use very generic tools such as Word and
Excel for a functional description of services. In contrast, process engineers and service
developers primarily work with technical specifications. Services are described in
WSDL, the business objects are defined in XML Schema. Process engineers use a visual
editor which generates executable business processes in BPEL. Finally, runtime
information is managed using a service registry.

Because various stakeholders contribute to the enterprise architecture, new challenges
concerning architecture documentation and maintenance arise. The artifacts of a SOA
are usually maintained in separate information spaces, making it difficult for other
stakeholders to find relevant information for a task at hand. Moreover, there is no
representation for the mapping between functional and technical service descriptions
which leads to a communication gap between business experts on the one side and
developers on the other. Due to the lack of an integrated architecture view it becomes
more difficult to understand the consequences of a change request.

Although the original purpose of the SOA project was to reduce complexity and foster
reuse, the large number of services and business processes makes difficult to get an
overview of the architecture. Therefore, InsCorp and ITCorp look for a documentation
tool which integrates the various architectural views and which can be customized to
project-specific needs.

2.2 Requirements

The case described above motivates a lightweight documentation solution which can be
adapted to integrate various types of architectural information from existing
environments, e.g. service specifications and their functional descriptions. Since there
are various kinds of tools and description formats to build a service-oriented
architecture, we strive towards a non-invasive solution that integrates as seamlessly as
possible with the methods and tools that are already in use.

There are three functional requirements that should be fulfilled by an integrated tool for
SOA documentation and maintenance (see Figure 2):

• Searching and browsing of SOA elements
• Checking the consistency of SOA elements
• Text documentation of SOA elements

Figure 2: Overview of requirements

The searching and browsing features provide a better overview of the SOA for
architects, developers and business experts. By describing the semantic relations
between services, business objects and domain concepts, it is possible to gain a quick
overview, e.g. which services require or return a certain business object. Since this

Storing information about services,
business objects and domain concepts

Searching and
browsing

Consistency
checking

Documentation

Managing information about SOA elements, e.g.
services, business objects and domain concepts

Searching and
browsing

Consistency
checking

Documentation

enables an easy access to explore the list of available services, which may also promote
the reuse of existing services.

Another requirement is consistency checking of SOA elements. What is meant here is
not the syntactic consistency of the SOA, which is checked by the development-level
tools, but consistency on a semantic level. Such constraints are typically expressed as
architectural and design rules, e.g. “Services may not call other services more than one
layer apart” or “Services should not have more than five operations”.

Finally, the approach should enhance service documentation. Normally, there are two
kinds of service documentation. Technical descriptions, maintained by developers and
the business-oriented documentation which resides in separate documents. This situation
makes it difficult to get the complete information about a service, since documentation is
distributed across physical storage locations and media types. The purpose is to create a
single point of information for every service and business object. These elements of a
SOA should be accessible by specifying a URL. In addition to accessing information it
should also be possible to add text documentation directly to a SOA element.

Besides the functional requirements, the system has to support the management of SOA
elements, such as services, business objects, domain concepts etc. Since the Enterprise
SOA case requires a flexible solution that is adaptable to the environment of a particular
project, it must be possible to import arbitrary architectural descriptions that are not
maintained internally but externally using project-specific formats and tools. Further, we
need administrative features for governing this process such as updating and deleting
information that has been acquired from external sources.

2.3 Related Work

In most documentation approaches an enterprise architecture is represented using a
number of different views (see [Kr95] for example). Depending on the architectural
view, formal or informal notations are used to describe it. For example, some views can
be described using an architecture description language (ADL) [MT00]. However, the
case in section 2.1 substantially differs from the purpose of ADLs. Whereas ADLs focus
on the specification and verification of a single view, we strive towards an integrated
approach with a first-class representation for integrating all local views. Moreover, we
want to include both formal and informal descriptions in this representation.

Universal modeling languages such as the Unified Modeling Language (UML) are also
useful to describe a number of architectural views. Although the UML can be extended
to cover various aspects, it does not include mechanisms for information integration and
automated reasoning. The UML is also not useful for text documentation, which limits
its applicability as the only representation language in the Enterprise SOA case.

Some works have proposed wikis for architecture and software documentation. Aguiar
and David present a wiki-based approach to integrate heterogeneous software
specification resources into a single document [AD05], while Bachmann and Merson
investigate the advantages of wikis compared to other architecture documentation tools

[BM05]. However the approaches lack a formal model – information is managed in an
unstructured way.

Moreover, formal ontologies have been proposed for architectural documentation
[WF99] and for building “software information systems”, describing the
interrelationships of domain models and source code [We03]. These works are usually
bound to a specific tool which cannot be tailored to individual project needs or follow a
very strict philosophy of software architecture.

In order to fulfill the requirements identified in section 2.3, we have developed the
Ontobrowse approach which is described in the following part.

3 The Ontobrowse Approach

In this section, we introduce the basic concepts of our solution. First, ontologies are used
for the semantic description of a problem domain. Second, semantic wikis are an
extension of the wiki paradigm, which enables to structure wiki content.

3.1 Ontologies

An ontology in information systems (IS) provides the structure for a commonly agreed
understanding of a problem domain. According to a widespread definition, “an ontology
is an explicit specification of a conceptualization” [Gr93]. Ontology specifications have
varying degrees of formalization; for example a shared vocabulary of terms can be
regarded as lightweight ontology. Usually, ontologies are specified in a knowledge
representation language using sets of concepts, relations and axioms.

Ontologies qualify for the Enterprise SOA scenario because they serve as a unifying
framework for different viewpoints and aim at reducing conceptual and terminological
confusion [UG96]. First, different stakeholders have to gain an enterprise-wide
understanding of the problem domain. In our case, it includes an abstract model
(conceptualization) of the concepts and relations together with their intended meaning,
e.g. the meaning of “service” and “business object”. Second, ontologies allow for the
integration of heterogeneous information from various sources [St01]. This way,
formalized knowledge can be more easily transferred and translated into different
perspectives. Third, ontologies can be expressed using a knowledge representation
language which has a sound formal basis. This enables inference services and automated
consistency checks, which is another requirement of our system. Recently, standards for
ontology representation such as the Resource Description Framework (RDF) and the
Web Ontology Language (OWL) have emerged. RDF is a simple graph-like format for
describing metadata about resources1. OWL2 is defined on top of RDF(S) and provides a
standard ontology vocabulary for describing ontologies based on description logics.

1 http://www.w3.org/RDF/
2 http://www.w3.org/TR/owl-features/

Due to these advantages ontologies have become the leveraging element in many
knowledge management approaches [Ma03, OL98]. With the emerging vision of the
Semantic Web [BHL01], ontologies have also attained increasing attention in the
Software Engineering community. The potential applications in Software Engineering
are manifold since ontologies can be used at development-time as well as run-time
[HS06]. Our approach can be classified as ontology-enabled (cf. [HS06]) because it uses
ontologies as its infrastructure for supporting development activities.

3.2 Semantic Wikis

Wikis are a lightweight approach to web-based content management, which allows
multiple users to create documents on a shared subject of interest. Due to their low entry
barriers and collaborative features, they have become a popular documentation tool in
software processes (see [De05] for an overview). However, traditional wikis expose
weaknesses when it comes to structuring the content of a wiki page. Although the set of
“pages” forms a top-level structure, the underlying page content cannot be structured.

This has led to the idea of “semantic wikis”. If some wiki content was structured and
made machine-interpretable, a site like the Wikipedia could heavily benefit because its
pages contain a lot of useful and potentially machine-processible knowledge [Vö06].
Several projects have thus proposed semantic extensions to the wiki approach. They all
have in common that they allow structured knowledge to be described in a formal
language, instead of processing solely hypermedia-based content. This is either be done
by appending metadata to wiki pages or by including knowledge inside the unstructured
text by using extensions to the wiki markup language. The latter approach is used by the
SemanticMediaWiki project [Vö06], which extends the existing wiki markup to enrich
hyperlinks between wiki pages with semantic relations.

Semantic wikis interpret wiki pages as entities, and hyperlinks between wiki pages as
relations among entities. Due to the additional semantic descriptions the implicit
structure is made explicit, and a machine-processible knowledge model can be derived.
Clearly, semantic wikis are a prime candidate for knowledge sharing in our case,
because they provide a user-friendly way for searching and browsing structured
information. Another advantage is that they combine informal with formal descriptions,
thus closing the gap between the business-oriented and technical perspective on an
architecture.

3.3 Building blocks

Revisiting our requirements in section 2.2, we regard ontologies and semantic wikis to
be perfectly suited for our approach. Our goal is to model the structure of existing data
(e.g. services defined in a WSDL file) and align these models to a top-level SOA
ontology. At the run-time of our system, facts from existing artifacts can thus be
automatically extracted and imported in our knowledge base. By modeling the
information of the SOA domain and related development artifacts and processes in a
SOA ontology, we derive several benefits:

• First, ontologies provide for an integration of different aspects and data sources
of our domain. By aligning the individual data source to a top-level ontology,
the complete information can be searched and browsed in a unified way.
Semantic links between different concepts (e.g. a process defined in a WSDL
file and a user defined in an issue tracking system) can be drawn.

• Furthermore, this integrated model of the SOA domain can be automatically
checked for consistency. This can involve basic consistency checks, such as
cardinality constraints (e.g. “a process should only have one owner”) or more
complex checks which can be formulated using rule-based approaches (cf.
section 5).

• Finally, by taking the knowledge base as a backbone for a Semantic Wiki, each
concept in the knowledge base can be documented and referenced explicitly.

In the following chapter, we will describe the architecture and implementation of
Ontobrowse Semantic Wiki which combines these benefits.

4 Ontobrowse Semantic Wiki

Following the building blocks of our approach, we now describe the general architecture
and prototypical implementation.

4.1 General Architecture

As depicted in Figure 3, the architecture of Ontobrowse semantic wiki is separated into
an integration and artifact layer [HS07]. The integration layer has the following
components: a Web interface, a wiki manager, an ontology API to access the knowledge
base and a plugin manager.

The most important part is the knowledge base which is formed by one or more
ontologies and instance data. It is processed using the ontology API and an underlying
reasoner. While the ontologies define the knowledge structure, i.e. the boundaries in
which instances can be described; instance data are the individual objects and their
property descriptions conforming to the ontology. For example, a SOA ontology may
specify the concepts “service” and “business object” together with their properties and
axioms. The instances are represented by actual services and business objects developed
in a SOA project. Each concept, relation or individual is displayed by the wiki manager
as a “wiki page”. It contains properties that make statements about this page, e.g. a
business object which is semantically described by a domain concept. We also refer to a
wiki page as an “entity”, because it is contained in the knowledge base and can be
requested with a unique identifier (URI).

Plugin Manager

Ontobrowse Web Interface

Ontobrowse Wiki Manager

A
rc

hi
te

ct
ur

al
K

no
w

le
dg

e
B

as
e

Ontology API & Reasoner

Documents (from file
system, SVN, CVS)

Component / Service
descriptions

Artifact Layer

Integration Layer

Import data

Ontologies Instance data

Web-Browser
(User, Admin)

Storage

Figure 3: Ontobrowse architecture [HS07]

The wiki manager bundles the functions for fulfilling the requirements, such as
processing page requests, editing textual documentation and instance property values,
searching and deductive querying, and user authentication. Entity (page) descriptions are
returned by an ontology API, which wraps the underlying reasoner and ontology
processing tools.

Typically, ontologies are constructed upfront using an ontology editor such as Protégé3
and uploaded by an administrator using the wiki manager. Within the knowledge
structure defined by ontologies, it is possible to add instance data in two different ways:
First, a wiki user can use the interface to describe properties – may it be text-based or
metadata-based – about instances of concepts. Second, external tools can plug into the
wiki application and map architectural description resources to instances in the
knowledge base.

This leads us to the integration layer. To a great extent, the instance data is embodied in
applications and artifacts that are managed outside the wiki, e.g. service specifications in
the Enterprise SOA case. This data has to be imported from external sources, such as
configuration management systems. The plug-in manager allows mapping external
artifacts to instance data and add this data to the knowledge base. This component
exposes standard interfaces that allow tools to retrieve artifacts, map them according to
an ontology, and create or update instance data in the knowledge base.

3 http://protege.stanford.edu

4.2 Design and Implementation

In this section, we will describe a concrete implementation of the conceptual architecture
according to the layers of the architecture which were introduced in the previous section.

The artifact layer deals with the extraction of facts from existing data sources, such as
XML descriptions, documents or databases. As a framework for this task, we use the
Open Source framework Aperture4. Aperture comes with a number of physical
connectors, such as for crawling file systems or the web, which we complemented by
crawlers for SVN and CVS repositories, as well as direct connections to JDBC databases
and issues tracking systems such as JIRA.

In Aperture, the objects that are crawled from those sources are directed to so-called
Extractors. These extract metadata in RDF. Besides the built-in extractors for various
common document formats (e.g. Microsoft Office and PDF), we added extractors for
WSDL, JIRA and Java source code.

The artifact layer is extensible in two ways: additional repositories of supported types
(such as an additional SVN repository to crawl) can be easily configured by XML files.
To include new data sources, Aperture provides a modular infrastructure, which just
requires the implementation of two Java interfaces.

cd Model management

ModelInfo

+ setPhysicalPath(String) : void
+ setURI(String) : void
+ setID(String) : void
+ getURI() : String
+ getPhysicalPath() : String
+ getID() : String
+ isWritable() : boolean
+ setWritable(boolean) : void

ModelManager

+ getSchemaReader() : SchemaReader
+ getDataReader() : DataReader
+ getQueryReader() : QueryReader
+ getDataWriter() : DataWriter
+ getSchemaWriter() : void
+ getAnnotationReader() : void
+ flush() : void
+ close() : void

MultiModelManager

+ setModelInfo() : void

KBase

+ getSchemaReader() : SchemaReader
+ getDataReader() : DataReader
+ getQueryReader() : QueryReader
+ getDataWriter() : DataWriter
+ getSchemaWriter() : void
+ getAnnotationReader() : void
+ flush() : void
+ close() : void
+ addImports() : void
+ addImport() : void
+ setChanged(boolean) : void
+ isChanged() : boolean

KBFactory

+ createKBase(String, int) : KBase
+ createVirtualKBase() : KBase

KBaseKAON2ImplKBaseJenaImpl

Figure 4: Ontobrowse Model Manager

The metadata extracted by the Aperture crawlers is written in the Ontobrowse
knowledge base. In order to encapsulate the concrete metadata store used, we developed
an abstraction API called "KOntoR API", which we shortly describe in the following.

The API consists of two major parts: the model management package and the ontology
API. The model management mainly consists of the ModelManager and ModelInfo

4 http:// aperture.sourceforge.net/

classes (cf. Figure 4). ModelInfo encapsulates a file serialization of an ontology. It
serves as a parameter for ModelManager for dealing with only one ontology or
MultiModelManager, when dealing with a set of ontologies.

The ModelManager uses a KBFactory class to instantiate a KBase using either a
KAON2 reasoner5 or a Jena metadata store6 as a backend. However, the concrete
backend remains hidden for using classes. After instantiation, the content of the
ontologies can be accessed and modified using the different interfaces provided by
ModelManager.

There are interfaces for reading certain ontology information (e.g. SchemaReader,
DataReader), writing data (e.g. DataWriter) and querying (QueryReader). These
interfaces again have special implementations for each backend (e.g. for KAON2 or
Jena). The methods of the interfaces map to the atomic entities of the data API which
will be described in the following.

The Ontology API serves as a lightweight, partial representation of a graph structure.
The subsystem consists of the following classes (see Figure 5):

KBEntity: This is the abstract base class of an entity in the knowledge base. An entity is
characterized by a name (label) and a URI.

Concept: This is the representation of a concept (or “class” in OWL terms) in a
knowledge base. It is a lightweight representation, since it does not include information
about individuals, datatype or object properties.

RichConcept: This is a heavyweight representation of a concept. In opposite to the
Concept class, it contains information about the datatypes and the properties.

Individual: This is a lightweight representation of an individual (also called “instance”)
in a knowledge base.

RichInvidual: This is a heavyweight representation of an individual. It contains
datatype and object properties with values. Note that values of object properties are
again (lightweight) Individuals, which can be resolved to RichIndividuals.

ObjectProperty/RichObjectProperty: The ObjectProperty classes encapsulate
relations between concepts which exist in the knowledge base.

DatatypeProperty/RichDatatypeProperty: The DatatypeProperty classes represent
attributes of concepts, which are of base types such as String, numbers or date values.

5 http://kaon2.semanticweb.org
6 http://jena.sourceforge.net/

cd Data API

KBEntity

+ getLabel() : String
+ getURI() : String
+ setLabel() : void
+ setURI() : void

Indiv idual

Concept

RichConcept

+ getDatatypeProperties() : List<DatatypeProperty>
+ getIndividuals() : List<Individual>
+ getObjectPropertiesFrom() : List<ObjectProperty>
+ getObjectPropertiesTo() : List<ObjectProperty>
+ setDatatypeProperties() : void
+ setIndividuals() : void
+ setObjectPropertiesFrom() : void
+ setObjectPropertiesTo() : void

RichIndiv idual

+ getDatatypePropertyValues() : Map<DatatypeProperty, Set<Object>>
+ getObjectPropertyValuesFrom() : Map<ObjectProperty, Set<Individual>>
+ getObjectPropertyValuesTo() : Map<ObjectProperty, Set<Individual>>
+ getTypes() : List<Concept>
+ setDatatypePropertyValues() : void
+ setObjectPropertyValuesFrom() : void
+ setObjectPropertyValuesTo() : void
+ setTypes() : void

DatatypeProperty

+ getDataRange() : List<String>
+ setDataRange() : void

ObjectProperty

RichDatatypeProperty

+ getDomainConcepts() : List<Concept>
+ setDomainConcepts() : void

RichObjectProperty

+ getDomainConcepts() : List<Concept>
+ getRangeConcepts() : List<Concept>
+ setDomainConcepts() : void
+ setRangeConcepts() : void

Figure 5: Ontobrowse Ontology API

Existing Java APIs for OWL knowledge bases (e.g. Protégé API7, OWL-API8) are
mostly based on a) representing the whole ontology graph in memory and b) supporting
the full set of axioms for the underlying knowledge representation language.

In opposite to this, our design goals were:

• Provide a lightweight and stateless API for knowledge base access

• Focus on instance retrieval and manipulation, and omit sophisticated schema
manipulation

• Provide an abstraction layer for ontology stores/engines

Thus, our API does not replace, but complements the APIs of existing ontology stores.
We rely on the existing implementation e.g. for loading ontologies and executing
reasoning tasks at the low level, and provide a high level representation, which abstracts
from most complexities in ontology handling. Due to the abstraction layer, a further
advantage of our API is that it abstracts from the specifics a concrete knowledge
representation language. Our API is not necessarily limited to Semantic Web languages,
since it could also have an implementation based on relational databases.

Currently, we have implementations of our API for the Jena Semantic Web framework,
as well as for the KAON2 OWL reasoner.

7 http://protege.stanford.edu/plugins/owl/api/
8 http://owl.man.ac.uk/api.shtml

Besides the ontology API, Ontobrowse offers service interfaces for importing and
updating ontologies and for managing wiki pages as well as user accounts.

While the backend services can be accessed via arbitrary clients, our standard user
interface is a web application implemented with Java Server Faces9. Currently, this web
application includes dialogs to browse the knowledge base (list concepts, view concepts
and instances - see e.g. Figure 5), specify and execute SPARQL queries and for user
management. We are currently extending the user interface to allow for editing property
values and to add relations to link different entities in the knowledge base.

5 Setting Up Ontobrowse in a SOA Environment

In this part, we describe the necessary steps for setting up Ontobrowse in a concrete
SOA environment. Initially, all stakeholders need to agree upon a shared conceptual
structure, a so-called “SOA ontology”. This ontology should capture a shared
understanding of both business experts and technical people. Typically, it includes
concepts like “service”, “interface”, “business object” and “domain concept”. On the one
hand, “service” defines data types and properties from the technical domain, such as
“version” and “hasInterface”. On the other hand, it includes properties relevant for the
business view, such as “referToDomainConcept” to reference a project glossary term.
The specification has to be carried out by ontology engineers, creating an ontology file
with an editor such as Protégé. An ontology file is uploaded to Ontobrowse via the Web
interface and subsequently processed by the Ontology API.

The stakeholders can also decide whether they reuse existing ontologies. Potentially
useful sources include the foundational ontologies being developed within Semantic
Web Services [Ak05, ES05, OW04] and Web services architecture [W3C04]. Of course
it is possible to develop several modular ontologies covering various information needs,
e.g. project management and organizational structure.

Instance data corresponding to the SOA ontology may either be created either directly in
the wiki or imported from external sources by defining plug-ins. This ensures high
flexibility and enables to augment SOA elements with additional descriptions.

Plug-ins perform the actual mapping of instances from an external source into the
knowledge base, e.g. WSDL service descriptions maintained in a file system to service
descriptions in the wiki. Here, we give an example how the mapping works for WSDL
2.0 only. However, the process is analogous for other formats, e.g. the Business Process
Execution Language for service composition.

First, a one-way mapping between WSDL service descriptions and the SOA ontology is
defined. In order to accommodate service properties such as version and architectural
layer, we extended the WSDL format. The actual mapping is executed by a Java
program which conforms to the Ontobrowse plug-in interface. It takes a WSDL file as

9 http://java.sun.com/javaee/javaserverfaces/

input and performs a set of actions for adding instances, properties and attributes to the
knowledge base with the Ontology API. A wiki administrator configures the input
sources (CVS, file system) and update types (manual, timer task, update event). Based
on this configuration the plugin manager component is responsible for updating the
knowledge base automatically.

Once the initial structure and wiki content has been created, it is possible to access the
knowledge base through the Web interface. First, users can quickly gain an overview by
starting with a concept page. For example, the page for the concept “service” shows all
instances to that concept. A user can then navigate to a service to read its detailed
description (cf. Figure 6). Second, there is a full text search of all entities in the
knowledge base. Third, there is also the possibility for looking for very specific
knowledge. A query interface enables users to define chained queries consisting of
sentences with subject, predicate and object (e.g. all services “x” defining interface
operations with the output “Customer”). Matching entities are returned for the variables
defined by the query.

A B
executesService

X Y
Ÿ adjacentLayer ?

Service Service

ServiceLayer

hasLayer hasLayer

ServiceLayer

Architectural Rule for „Invalid Service“:

executesService (A, B) ⁄ hasLayer (A, X) ⁄

hasLayer (B,Y) ⁄

Ÿ adjacentLayer (X,Y) ⁄ Ÿ owl:sameAs(X,Y)

⇒ InvalidService(A)

Figure 6: A service violating the architectural rule is an “invalid service”

Finally, the SOA ontology can be enhanced by rules which enable automatic consistency
checking of entities and generation of new knowledge. So far, we have included
experimental support for DL-safe SWRL10 rules in the KAON2 configuration. One
application scenario is the formal definition of architectural rules which are usually only
informally documented by software architects. The semantic wiki makes it possible
make the violation of these rules explicit, thus supporting their enterprise-wide
enforcement. For example, we stated the rule “services may not call other services more
than one layer apart” (see section 2.2), which is described in Figure 6. Any entity

10 http://www.w3.org/Submission/SWRL/

violating that rule is as an “invalid service”. By using ontology annotations for the
concept “invalid service” the Web interface can display a warning to the user.
Alternatively, it is possible to filter for all invalid services using the query interface. To
this end, Ontobrowse not only improves the navigation, documentation, querying and
searching but also contributes to the quality of an Enterprise SOA.

6 Conclusion

In this paper, we described an approach based on ontologies and semantic wikis, which
tackles key issues in the documentation of an Enterprise SOA. The SOA case revealed
the distributed character of the SOA development process which has been insufficiently
addressed so far. Because an Enterprise SOA not only involves multiple roles, but also
brings different organizational units and external service providers together, the
responsibilities (and with it architectural information) are inherently distributed.

Although a SOA leads to a higher degree of standardization at first glance, it
nevertheless involves different views which are either technical or business-oriented.
This results in a high number of heterogeneous, locally maintained SOA artifacts with
varying degrees of formalization. What is sought after is therefore both a “common
language” shared by all stakeholders and a first-class representation for different types of
architectural information. As pointed out in this paper, ontologies are first choice for
solving both the terminological and the information integration problem. Semantic wikis
on the other hand, provide a flexible way for accessing this information, e.g. browsing
searching and semantic querying. Our solution can be tailored to project-specific needs
by defining one or more ontologies to set up the initial structure of the wiki.

The principles of service-orientation have been generating a lot of momentum in both
academia and industry recently. There have been demands for “services science” [SR06]
and ontological approaches for mediating between service providers and requestors. We
believe that the contribution of ontologies and knowledge-based techniques are not
limited to the integration of complex business applications during run-time but can also
help addressing the myriad of business, organizational and technical issues during the
entire SOA lifecycle. Especially the combination of ontologies and wikis, have the
potential to drive the development and evolution of knowledge-based software systems.

References

[AD05] Aguiar, A.; David, G.: WikiWiki weaving heterogeneous software artifact. In: Proc. of
the 2005 international symposium on Wikis, San Diego, CA, 2005, pp. 67-74.

[Ak05] Akkiraju, R.; et al.: Web Service Semantics - WSDL-S. W3C Member Submission,
2005.

[BM05] Bachmann F.; Merson, P.: Experience Using the Web-Based Tool Wiki for Architecture
Documentation. Technical Note CMU/SEI-2005-TN-041. September 2005.

[BHL01] Berners-Lee, T.; Hendler J.; Lassila, O.: The Semantic Web. Scientific American. May,
2001.

[De05] Decker, B. et.al.: Self-organized Reuse of Software Engineering Knowledge supported
by Semantic Wikis. In: Proc. of Workshop on Semantic Web Enabled Software
Engineering, Nov. 2005.

[ES05] ESSI WSMO: Web Service Modeling Ontology (WSMO). http://www.wsmo.org/, 2005.
[Gr93] Gruber T.R.: A translation approach to portable ontology specifications. Knowl. Acquis.

5, 1993, pp. 199-220.
[HS06] Happel, H.-J.; Seedorf, S.: Applications of Ontologies in Software Engineering. In: Proc.

of Workshop on Sematic Web Enabled Software Engineering" (SWESE) on the ISWC
2006, Athens, Georgia, November 5-9, 2006.

[HS07] Happel, H.-J.; Seedorf, S.: Ontobrowse: A Semantic Wiki for Sharing Knowledge about
Software Architectures. In: Proc. of the 19th Int. Conf. on Software Engineering and
Knowledge Engineering (SEKE), Boston, USA, July 9-11, 2007, pp. 506-512.

[HS05] Huhns, M.H.; Singh, M.P.: Service-Oriented Computing: Key Concepts and Principles.
IEEE Internet Computing, vol. 9, no. 1, 2005, pp. 75-81.

[Kr95] Kruchten, P.: The 4+1 View Model of Architecture. In: IEEE Softw. 12 November, Nr.
6, 1995, pp. 42-50.

[Ma03] Maedche, A. et.al.: Ontologies for Enterprise Knowledge Management. IEEE Intelligent
Systems ,18, 2003, pp. 26-33.

[MT00] Medvidovic, N.; Taylor, R. N.: A Classification and Comparison Framework for
Software Architecture Description Languages. In: IEEE Trans. Software Eng. 26(1):
2000, pp. 70-93.

[OL98] O’Leary; D.E.: Using AI in Knowledge Management: Knowledge Bases and Ontologies.
IEEE Intelligent Systems, 13, 1998, pp. 34-39.

[OW04] OWL Services Coalition: OWL-S Semantic Markup for Web Services. 2004.
[SR06] Spohrer, J.; Riecken, D.: Services science. Communications of the ACM, 49, 7, 2006.
[St01] Staab, S. et.al.: Knowledge Processes and Ontologies. IEEE Intelligent Systems, 16,

2001, pp. 26-34.
[UG96] Uschold, M.; Gruninger, M.: Ontologies: principles, methods, and applications.

Knowledge Engineering Review, 11, 1996, pp. 93-155.
[Vö06] Völkel, M. et.al.: Semantic Wikipedia. In: Proceedings of the 15th International

Conference on World Wide Web, WWW 2006, Edinburgh, Scotland, May 23-26, 2006.
[W3C04] W3C: Web Services Architecture. W3C Working Group Note, 11 February, 2004.
[We03] Welty, C.A.: Software Engineering. In: Description Logic Handbook, 2003, pp. 373-387.
[WF99] Welty, C.A.; Ferrucci D.A.: A Formal Ontology for Re-Use of Software Architecture

Documents. ASE, 1999, pp. 259-262.

