Documenting Service-Oriented Architectures
with Ontobrowse Semantic Wiki

Hans-Jérg Happkhnd Stefan Seeddrf

'FZI Research Center for Information Technologies)dtahe
happel@fzi.de
2 University of Mannheim, Department of InformatiopsS&ms I
seedorf@uni-mannheim.de

Abstract: Documenting and maintaining an enterprise-wideviseforiented
architecture (SOA) causes a substantial managem#ott which should be
addressed by intelligent, scalable solutions. Aipaar challenge is that business
experts, developers and software architects tafferelt perspectives on a SOA,
which leads towards a scattering of architectunédrimation throughout various
formats and sources. Ontobrowse Semantic Wiki fipally addresses these
issues by providing an ontology-based integratioth @ocumentation platform for
architectural information. In this paper, we firdentify the main issues arising
from documentation and maintenance by introducimg ¢ase of an enterprise
SOA in an insurance company. Then we give a detailescription of the
Ontobrowse approach and its implementation. At kastexplain how ontologies,
artifact mappings and architectural rules are ectéd support the Enterprise SOA
case.

1 Introduction

The paradigm of service-oriented computing hasdiftee development of business
applications to a higher level of abstraction. éast of thinking in technical categories
like components or objects, software functionabtypundled in services that correspond
to business operations of the organization. Complexkflows can be realized by
aggregating functionality from simple services. Ancrete software infrastructure
implementing this paradigm is called a servicesugd architecture (SOA) [HS05].

In an organization pursuing a SOA, the standardkingrprocesses change for the
multiple stakeholders involved, i.e. service depels, business experts and software
architects. First, service developers have to thirdpecification terms rather than taking
an implementation view. Since services are black-bpecifications which hide the
details of the internal realization, metadata dbswy their properties is crucial. In an
enterprise-wide scenario, it has to be documentadhaservices are available, where the
services are being deployed, how they can be inak& who is responsible for them.
Second, business experts are interested in awail&bisiness functionality and
operational efficiency. Since service-orientati@ads to a rising level of alignment

between business processes and IT implementatisniniportant to monitor and guide
the development of the service landscape accotdinbanging business requirements.

Finally, software architects are interested in einguthat services are specified and
composed in way that key quality attributes suchpagformance, reusability and
modifiability are met. In order achieve this, atebtural patterns, rules and policies are
defined at the beginning of a SOA project. These ratked out in service design
decisions. However, as a SOA continuously evolitdsecomes increasingly difficult to
monitor if the current service definitions complitimwthe set of architectural rules.

It is thus desirable to integrate all the differaspects of SOA documentation and
maintenance into a single platform. Although thame a considerable number of
standards to describe service properties like fenter behavior and orchestration, it
nevertheless is a difficult task since all relevanformation is scattered throughout
various information spaces. In order to address isees, we have developed
Ontobrowse, a semantic wiki based on ontologieschwprovides an infrastructure to
extract knowledge from external sources [HS073elves as single point of information
covering both technical and business aspects @i/ S

The remainder of the paper is structured as follolvschapter 2, we present an
Enterprise SOA case and derive the requirementsupdocumentation tool. We also
address the shortcomings of existing approacheshépter 3, we introduce the basic
elements of our solution, namely ontologies and asdim wikis. In chapter 4, the
architecture and realization of Ontobrowse is dbedr Chapter 5 demonstrates the
setup with a SOA ontology, artifact mapping an #edtural rule to support the
requirements. Finally, we summarize our findingthia conclusion.

2 Documenting and Maintaining an Enterprise SOA

In this section, we introduce the case of an entBOA in an insurance company. It
characterizes the systems, actors and developmeifitcts in a concrete SOA

environment. Next, we highlight the shortcomings afrrent SOA documentation

practices and derive requirements for a suitaldesiopport.

2.1 Enterprise SOA Case

InsCorp Inc. is an insurance company which hadbsted itself as a top ten player for
life policies in its domestic market. The systemdisecape at InsCorp has continuously
grown over the last decade and become highly hggeenus. It consists of several
legacy systems as well as databases, enterpridieadigns, ERP and CRM systems.
One major challenge is aligning the IT landscapeh@nging business requirements. In
particular, cooperation with third-party vendorsigroduct diversification has led to a
high number of client systems with similar functidity. The current enterprise
architecture makes coping with change more and rdiffieult. In order to allow for
further growth, InsCorp has commissioned ITCorp imith a new project. The purpose
is to develop a new enterprise-wide SOA which mée¢sneeds of its agile business
environment.

The development and evolution of a new architecinvelves a number of different
stakeholders who collaborate throughout the SO&cyifle. The service architecture is
organized in several logical layers as depictefiguwre 1. To each layer, different tasks
and roles can be assigned. The system environeagtis maintained by several groups
in the IT department. In the above integration e layer, the functionalities of
individual systems are exposed as Web Servicesciiiese technology abstraction.
Maintainers of legacy systems and SOA architect®e @ cooperate in order keep these
layers in sync. Next is the enterprise serviceerlawhere basic services from the
integration services layer are aggregated to stiffjominess activities. Business experts,
process engineers and software architects haveotk seamlessly together to specify
enterprise services and business objects. In thkflew layer, process engineers realize
business processes that are composed from thepesgetayer. Finally, application
frontends in the client application layer executese business processes to perform a
business task. This final layer drives the evolutadnthe SOA, since the frontend
applications require different business procesedgdata formats.

Client applications - - - -

{/‘_ - _f
/{7 }7' gy 9 T

Enterprise services & AT

Integration services .\ .\ \
System environment ' é élﬂmﬂ

Servers

Service
Registry

Malnframes

Figure 1: Organization of services in architecturallayers

The stakeholders in the SOA lifecycle document thesws using different notations
and formats. In our case, business analysts ugegesreric tools such as Word and
Excel for a functional description of services. bmtrast, process engineers and service
developers primarily work with technical specifioats. Services are described in
WSDL, the business objects are defined in XML SchdPnacess engineers use a visual
editor which generates executable business pracesseBPEL. Finally, runtime
information is managed using a service registry.

Because various stakeholders contribute to thergage architecture, new challenges
concerning architecture documentation and main@namise. The artifacts of a SOA
are usually maintained in separate information epamaking it difficult for other
stakeholders to find relevant information for aktad hand. Moreover, there is no
representation for the mapping between functiomal gechnical service descriptions
which leads to a communication gap between busiegpsrts on the one side and
developers on the other. Due to the lack of angnated architecture view it becomes
more difficult to understand the consequencesabfamge request.

Although the original purpose of the SOA projectswta reduce complexity and foster
reuse, the large number of services and businesegses makes difficult to get an
overview of the architecture. Therefore, InsCorp &hdorp look for a documentation
tool which integrates the various architecturaMgeand which can be customized to
project-specific needs.

2.2 Requirements

The case described above motivates a lightweighirdentation solution which can be
adapted to integrate various types of architecturdbrmation from existing
environments, e.g. service specifications and theictional descriptions. Since there
are various kinds of tools and description formaébs build a service-oriented
architecture, we strive towards a non-invasive tamuthat integrates as seamlessly as
possible with the methods and tools that are ajréadse.

There are three functional requirements that shbeltllfilled by an integrated tool for
SOA documentation and maintenance (see Figure 2):

e Searching and browsing of SOA elements
» Checking the consistency of SOA elements
» Text documentation of SOA elements

Searching and Consistency

; ; Documentation
browsing checking

Managing information about SOA elements, e.g.
services, business objects and domain concepts

Figure 2: Overview of requirements

The searching and browsing features provide a bettrview of the SOA for

architects, developers and business experts. Byride® the semantic relations
between services, business objects and domain gEnéeis possible to gain a quick
overview, e.g. which services require or returneatain business object. Since this

enables an easy access to explore the list ofadkaikervices, which may also promote
the reuse of existing services.

Another requirement is consistency checking of S€ments. What is meant here is
not the syntactic consistency of the SOA, whiclthecked by the development-level
tools, but consistency on a semantic level. Suatstcaints are typically expressed as
architectural and design rules, e.g. “Services matycall other services more than one
layer apart” or “Services should not have more tianoperations”.

Finally, the approach should enhance service dootatien. Normally, there are two
kinds of service documentation. Technical descngianaintained by developers and
the business-oriented documentation which resiiegparate documents. This situation
makes it difficult to get the complete informatiabout a service, since documentation is
distributed across physical storage locations aadiatypes. The purpose is to create a
single point of information for every service andsimess object. These elements of a
SOA should be accessible by specifying a URL. Initaddto accessing information it
should also be possible to add text documentaii@cttl to a SOA element.

Besides the functional requirements, the systentdaspport the management of SOA
elements, such as services, business objects, daroacepts etc. Since the Enterprise
SOA case requires a flexible solution that is aalaletto the environment of a particular
project, it must be possible to import arbitrarghatectural descriptions that are not
maintained internally but externally using projspecific formats and tools. Further, we
need administrative features for governing thiscpss such as updating and deleting
information that has been acquired from externatess.

2.3 Related Work

In most documentation approaches an enterprisetectire is represented using a
number of different views (see [Kr95] for exampl®epending on the architectural
view, formal or informal notations are used to diéscit. For example, some views can
be described using an architecture descriptionuagg (ADL) [MTOO]. However, the
case in section 2.1 substantially differs from plepose of ADLs. Whereas ADLs focus
on the specification and verification of a singlew, we strive towards an integrated
approach with a first-class representation forgraéng all local views. Moreover, we
want to include both formal and informal descriptan this representation.

Universal modeling languages such as the Unifiediéflog Language (UML) are also
useful to describe a number of architectural viedtthough the UML can be extended
to cover various aspects, it does not include meshes for information integration and
automated reasoning. The UML is also not useful dat tiocumentation, which limits
its applicability as the only representation largpian the Enterprise SOA case.

Some works have proposed wikis for architecture softivare documentation. Aguiar
and David present a wiki-based approach to integragterogeneous software
specification resources into a single document [BP®vhile Bachmann and Merson
investigate the advantages of wikis compared teroéinchitecture documentation tools

[BMO5]. However the approaches lack a formal moedé@hformation is managed in an
unstructured way.

Moreover, formal ontologies have been proposed daorhitectural documentation
[WF99] and for building “software information syste”, describing the
interrelationships of domain models and source ¢@de03]. These works are usually
bound to a specific tool which cannot be tailoredndividual project needs or follow a
very strict philosophy of software architecture.

In order to fulfill the requirements identified ®ection 2.3, we have developed the
Ontobrowse approach which is described in the iotig part.

3 The Ontobrowse Approach

In this section, we introduce the basic conceptsunfsolution. First, ontologies are used
for the semantic description of a problem domaiecdhd, semantic wikis are an
extension of the wiki paradigm, which enables tactire wiki content.

3.1 Ontologies

An ontology in information systems (IS) provideg tstructure for a commonly agreed
understanding of a problem domain. According toidespread definition, “an ontology
is an explicit specification of a conceptualizatig@ro3]. Ontology specifications have
varying degrees of formalization; for example arsbavocabulary of terms can be
regarded as lightweight ontology. Usually, ontoémgiare specified in a knowledge
representation language using sets of concepationes and axioms.

Ontologies qualify for the Enterprise SOA scendrerause they serve as a unifying
framework for different viewpoints and aim at reshgcconceptual and terminological
confusion [UG96]. First, different stakeholders &éato gain an enterprise-wide
understanding of the problem domain. In our casendludes an abstract model
(conceptualization) of the concepts and relatiagether with their intended meaning,
e.g. the meaning of “service” and “business objeS&cond, ontologies allow for the
integration of heterogeneous information from wvasiosources [St01]. This way,
formalized knowledge can be more easily transferaed translated into different
perspectives. Third, ontologies can be expressedg uai knowledge representation
language which has a sound formal basis. This enatfierence services and automated
consistency checks, which is another requiremeuofsystem. Recently, standards for
ontology representation such as the Resource PéscriFramework (RDF) and the
Web Ontology Language (OWL) have emerged. RDF ismplsi graph-like format for
describing metadata about resoutc€WL? is defined on top of RDF(S) and provides a
standard ontology vocabulary for describing ontmedpased on description logics.

! hitp:/iwww.w3.0rg/RDF/
2 http://www.w3.org/TR/owl-features/

Due to these advantages ontologies have becomdetieeaging element in many

knowledge management approaches [Ma03, OL98]. Wighemerging vision of the

Semantic Web [BHLO1], ontologies have also attaiiecteasing attention in the

Software Engineering community. The potential aggians in Software Engineering

are manifold since ontologies can be used at dpuaat-time as well as run-time

[HS06]. Our approach can be classified as ontokrgbled (cf. [HS06]) because it uses
ontologies as its infrastructure for supportingelepment activities.

3.2 Semantic Wikis

Wikis are a lightweight approach to web-based aunteanagement, which allows
multiple users to create documents on a share@cutl] interest. Due to their low entry
barriers and collaborative features, they have ftneca popular documentation tool in
software processes (see [De05] for an overview)wéder, traditional wikis expose
weaknesses when it comes to structuring the coofemtwiki page. Although the set of
“pages” forms a top-level structure, the underlyrage content cannot be structured.

This has led to the idea of “semantic wikis”. If sowviki content was structured and
made machine-interpretable, a site like the Wikipambuld heavily benefit because its
pages contain a lot of useful and potentially maetprocessible knowledge [V606].
Several projects have thus proposed semantic éxtentd the wiki approach. They all
have in common that they allow structured knowledgebe described in a formal
language, instead of processing solely hypermealéed content. This is either be done
by appending metadata to wiki pages or by includingwledge inside the unstructured
text by using extensions to the wiki markup languathe latter approach is used by the
SemanticMediaWiki project [V606], which extends testing wiki markup to enrich
hyperlinks between wiki pages with semantic retatio

Semantic wikis interpret wiki pages as entities] &yperlinks between wiki pages as
relations among entities. Due to the additional a®in descriptions the implicit

structure is made explicit, and a machine-procéssibowledge model can be derived.
Clearly, semantic wikis are a prime candidate foowledge sharing in our case,
because they provide a user-friendly way for seagchand browsing structured
information. Another advantage is that they combiermal with formal descriptions,

thus closing the gap between the business-orieated technical perspective on an
architecture.

3.3 Building blocks

Revisiting our requirements in section 2.2, we rédgatologies and semantic wikis to
be perfectly suited for our approach. Our goabisnbdel the structure of existing data
(e.g. services defined in a WSDL file) and aligresh models to a top-level SOA
ontology. At the run-time of our system, facts framristing artifacts can thus be
automatically extracted and imported in our knowgkdbase. By modeling the
information of the SOA domain and related develophetifacts and processes in a
SOA ontology, we derive several benefits:

» First, ontologies provide for an integration offdient aspects and data sources
of our domain. By aligning the individual data soeito a top-level ontology,
the complete information can be searched and bibvisea unified way.
Semantic links between different concepts (e.grozgss defined in a WSDL
file and a user defined in an issue tracking systean be drawn.

e Furthermore, this integrated model of the SOA donwn be automatically
checked for consistency. This can involve basicstency checks, such as
cardinality constraints (e.g. “a process shouldy drdve one owner”) or more
complex checks which can be formulated using raleed approaches (cf.
section 5).

* Finally, by taking the knowledge base as a backliona Semantic Wiki, each
concept in the knowledge base can be documentededebnced explicitly.

In the following chapter, we will describe the dtebture and implementation of
Ontobrowse Semantic Wiki which combines these henef

4 Ontobrowse Semantic Wiki

Following the building blocks of our approach, weandescribe the general architecture
and prototypical implementation.

4.1 General Architecture

As depicted in Figure 3, the architecture of Onteme semantic wiki is separated into
an integration and artifact layer [HSO07]. The intggm layer has the following
components: a Web interface, a wiki manager, aalogy API to access the knowledge
base and a plugin manager.

The most important part is the knowledge base wiisciormed by one or more
ontologies and instance data. It is processed ubimgntology APl and an underlying
reasoner. While the ontologies define the knowledygacture, i.e. the boundaries in
which instances can be described; instance dataharéndividual objects and their
property descriptions conforming to the ontologgr Example, a SOA ontology may
specify the concepts “service” and “business objemether with their properties and
axioms. The instances are represented by actuategrand business objects developed
in a SOA project. Each concept, relation or indiwidis displayed by the wiki manager
as a “"wiki page”. It contains properties that maltatements about this page, e.g. a
business object which is semantically described bipmain concept. We also refer to a
wiki page as an “entity”, because it is containadthe knowledge base and can be
requested with a unique identifier (URI).

"~ Web-Browser
(User, Admin)

Integration Layer

| Ontobrowse Web Interface |

| Ontobrowse Wiki Manager |

s =

Ontologies Instance data logre
4

Architectural Knowledge Base

| Plugin N.la'da';er |
A

Artifact Layer Import data
Documents (from file ErD Component / Service
system, SVN, CVS) D descriptions

Figure 3: Ontobrowse architecture [HS07]

The wiki manager bundles the functions for fulfifinthe requirements, such as
processing page requests, editing textual documentand instance property values,
searching and deductive querying, and user autfaiain. Entity (page) descriptions are
returned by an ontology API, which wraps the unded reasoner and ontology
processing tools.

Typically, ontologies are constructed upfront usimgontology editor such as Protégé
and uploaded by an administrator using the wiki agen. Within the knowledge
structure defined by ontologies, it is possibladal instance data in two different ways:
First, a wiki user can use the interface to descploperties — may it be text-based or
metadata-based — about instances of concepts. Geexternal tools can plug into the
wiki application and map architectural descriptioesources to instances in the
knowledge base.

This leads us to the integration layer. To a gretdrgxthe instance data is embodied in
applications and artifacts that are managed outhieleviki, e.g. service specifications in
the Enterprise SOA case. This data has to be impdmbed external sources, such as
configuration management systems. The plug-in manaflews mapping external
artifacts to instance data and add this data tokttmwvledge base. This component
exposes standard interfaces that allow tools tiexet artifacts, map them according to
an ontology, and create or update instance ddteeiknowledge base.

% http://protege.stanford.edu

4.2 Design and Implementation

In this section, we will describe a concrete impbamation of the conceptual architecture
according to the layers of the architecture whignenintroduced in the previous section.

The artifact layer deals with the extraction of g&afrom existing data sources, such as
XML descriptions, documents or databases. As a fnanrle for this task, we use the
Open Source framework ApertdreAperture comes with a number of physical
connectors, such as for crawling file systems eruleb, which we complemented by
crawlers for SVN and CVS repositories, as well iasall connections to JDBC databases
and issues tracking systems such as JIRA.

In Aperture, the objects that are crawled from ¢hesurces are directed to so-called
Extractors. These extract metadata in RDF. Besidedtiit-in extractors for various
common document formats (e.g. Microsoft Office aidF), we added extractors for
WSDL, JIRA and Java source code.

The artifact layer is extensible in two ways: adufiil repositories of supported types
(such as an additional SVN repository to crawl) bareasily configured by XML files.
To include new data sources, Aperture provides autaodnfrastructure, which just
requires the implementation of two Java interfaces.

cd Model management

ModelManager

getSchemaReader() : SchemaReader KBase

getDataReader() : DataReader

MultiModelManager

+ setModellnfo() : void

getQueryReader() : QueryReader
getDataWriter() : DataWriter

getSchemaReader() : SchemaReader
getDataReader() : DataReader
getQueryReader() : QueryReader

+
+
+
+
+ getSchemaWwriter() : void
+
+
+

getAnnotationReader() : void > getDataWriter() : DataWriter
flush() : void getSchemaWriter() : void
close() : void getAnnotationReader() : void
flush() : void
. close() : void

addimports() : void
addImport() : void
setChanged(boolean) : void

isChanged() : boolean
KBaseKAON2Impl

KBaseJenalmpl

Modelinfo

+ bt o+ o+ o+

setPhysicalPath(String) : void
setURI(String) : void
setID(String) : void

getURI() : String
getPhysicalPath() : String
getID() : String

iswritable() : boolean
setWritable(boolean) : void

KBFactory

+ createKBase(String, int) : KBase
+ createVirtualKBase() : KBase

+ b+t o+ o+

Figure 4: Ontobrowse Model Manager

The metadata extracted by the Aperture crawlers iigtew in the Ontobrowse
knowledge base. In order to encapsulate the canoretadata store used, we developed
an abstraction API called "KOntoR API", which weosty describe in the following.

The API consists of two major parts: the model menzent package and the ontology
API. The model management mainly consists of the éifdenager and Modellnfo

“ http:// aperture.sourceforge.net/

classes (cf. Figure 4). Modellnfo encapsulateslea derialization of an ontology. It
serves as a parameter for ModelManager for deality only one ontology or
MultiModelManager, when dealing with a set of ontgies.

The ModelManager uses a KBFactory class to instentia KBase using either a

KAON2 reasoner or a Jena metadata stores a backend. However, the concrete
backend remains hidden for using classes. Aftetaimimtion, the content of the

ontologies can be accessed and modified using iffferett interfaces provided by

ModelManager.

There are interfaces for reading certain ontologiprination (e.g. SchemaReader,
DataReader), writing data (e.g. DataWriter) and rgjng (QueryReader). These
interfaces again have special implementations &mhebackend (e.g. for KAON2 or
Jena). The methods of the interfaces map to thmiatentities of the data API which
will be described in the following.

The Ontology API serves as a lightweight, partigiresentation of a graph structure.
The subsystem consists of the following classesKapee 5):

KBEntity: This is the abstract base class of an entityerktiowledge base. An entity is
characterized by a name (label) and a URI.

Concept: This is the representation of a concept (or “ClaasOWL terms) in a
knowledge base. It is a lightweight representatsimce it does not include information
about individuals, datatype or object properties.

RichConcept: This is a heavyweight representation of a conceptodposite to the
Concept class, it contains information about thatgpes and the properties.

Individual: This is a lightweight representation of an indivad (also called “instance”)
in a knowledge base.

Richlnvidual: This is a heavyweight representation of an indiaidut contains
datatype and object properties with values. Nott thalues of object properties are
again (lightweight) Individuals, which can be resul to Richindividuals.

ObjectProperty/RichObjectProperty: The ObjectProperty classes encapsulate
relations between concepts which exist in the kedgé base.

DatatypeProperty/RichDatatypeProperty: The DatatypeProperty classes represent
attributes of concepts, which are of base typek ascString, numbers or date values.

® http://kaon2.semanticweb.org
® http://jena.sourceforge.net/

cd Data APl /

KBEntity

getLabel() : String

getURI() : String
setLabel() : void Q\ DatatypeProperty

SetURI() : void

e /
+ getDataRange() : List<Sting>
+ setDataRange() : void

ZT Individual ObjectProperty Z}

o+ o+

RichDatatypeProperty

+ getDomainConcepts() : List<Concept>
RichConcept Zﬁ + setDomainConcepts) : void

getD: perties() : List<Datatyp p
getindividuals() : List<Individual> K
getObjectPropertiesFrom() : List<ObjectProperty> RichObjectProperty
getObj p 0() : List<Obj perty.
setDatatypeProperties() : void
setindividuals() : void
setObjectPropertiesFrom() : void
setObjectPropertiesTo() : void

getDomainConcepts() : List<Concept>
getRangeConcepts) : List<Concept>
setDomainConcepts() : void
setRangeConcepts() : void

P

T

Richindividual

getD: p s : Map<DatatypeProperty, Set<Object>>
getO P () : Map<Obj perty, Set<Individual>>
getObji i 0() : Map<Obj perty, Set<Individual>>
getTypes() : List<Concept>

setDatatypePropertyValues() : void

setObjectPropertyValuesFrom() : void
setObjectPropertyValuesTo() : void
setTypes() : void

[P

Figure 5: Ontobrowse Ontology API

Existing Java APIs for OWL knowledge bases (e.g. &@®tAPI, OWL-APP) are
mostly based on a) representing the whole ontogmgph in memory and b) supporting
the full set of axioms for the underlying knowledggresentation language.

In opposite to this, our design goals were:
» Provide a lightweight and stateless API for knowlethase access

» Focus on instance retrieval and manipulation, amit sophisticated schema
manipulation

» Provide an abstraction layer for ontology storegitees

Thus, our APl does not replace, but complementsAfPls of existing ontology stores.
We rely on the existing implementation e.g. fordiog ontologies and executing
reasoning tasks at the low level, and provide & hegel representation, which abstracts
from most complexities in ontology handling. Duette abstraction layer, a further
advantage of our API is that it abstracts from #pecifics a concrete knowledge
representation language. Our API is not necesdarilfed to Semantic Web languages,
since it could also have an implementation basetkational databases.

Currently, we have implementations of our API foe tlena Semantic Web framework,
as well as for the KAON2 OWL reasoner.

" http://protege.stanford.edu/plugins/owl/api/
8 http://owl.man.ac.uk/api.shtml

Besides the ontology API, Ontobrowse offers seniiterfaces for importing and
updating ontologies and for managing wiki pagews@lsas user accounts.

While the backend services can be accessed vitramybiclients, our standard user
interface is a web application implemented withal®erver Fac&sCurrently, this web
application includes dialogs to browse the knowteligse (list concepts, view concepts
and instances - see e.g. Figure 5), specify anduexeSPARQL queries and for user
management. We are currently extending the userfate to allow for editing property
values and to add relations to link different eesiin the knowledge base.

5 Setting Up Ontobrowse in a SOA Environment

In this part, we describe the necessary stepsediting up Ontobrowse in a concrete
SOA environment. Initially, all stakeholders ne@dagree upon a shared conceptual
structure, a so-called “SOA ontology”. This ontologhould capture a shared
understanding of both business experts and tedhpeaple. Typically, it includes
concepts like “service”, “interface”, “business e’ and “domain concept”. On the one
hand, “service” defines data types and propertiem fthe technical domain, such as
“version” and “haslinterface”. On the other handinitludes properties relevant for the
business view, such as “referToDomainConcept” teregfce a project glossary term.
The specification has to be carried out by ontoleggineers, creating an ontology file
with an editor such as Protégé. An ontology filepsoaded to Ontobrowse via the Web
interface and subsequently processed by the Ont@i&yg.

The stakeholders can also decide whether they rexiséing ontologies. Potentially
useful sources include the foundational ontolodgiegng developed within Semantic
Web Services [AkO5, ES05, OW04] and Web servicehitacture [W3C04]. Of course
it is possible to develop several modular ontolegievering various information needs,
e.g. project management and organizational streictur

Instance data corresponding to the SOA ontology eitdner be created either directly in
the wiki or imported from external sources by diin plug-ins. This ensures high
flexibility and enables to augment SOA element$vaidditional descriptions.

Plug-ins perform the actual mapping of instancesnfran external source into the
knowledge base, e.g. WSDL service descriptions migied in a file system to service
descriptions in the wiki. Here, we give an exanpdev the mapping works for WSDL
2.0 only. However, the process is analogous foerofbrmats, e.g. the Business Process
Execution Language for service composition.

First, a one-way mapping between WSDL service detions and the SOA ontology is
defined. In order to accommodate service propegieh as version and architectural
layer, we extended the WSDL format. The actual napps executed by a Java
program which conforms to the Ontobrowse plug-ieriface. It takes a WSDL file as

® http://java.sun.com/javaee/javaserverfaces/

input and performs a set of actions for addingainsés, properties and attributes to the
knowledge base with the Ontology API. A wiki admsinator configures the input
sources (CVS, file system) and update types (matinadr task, update event). Based
on this configuration the plugin manager comporisntesponsible for updating the
knowledge base automatically.

Once the initial structure and wiki content hasrbereated, it is possible to access the
knowledge base through the Web interface. Firgrausan quickly gain an overview by
starting with a concept page. For example, the pagthe concept “service” shows all
instances to that concept. A user can then navigai® service to read its detailed
description (cf. Figure 6). Second, there is a fekt search of all entities in the
knowledge base. Third, there is also the possibiiar looking for very specific
knowledge. A query interface enables users to defihained queries consisting of
sentences wittsubject, predicate and object (e.g. all services “x” defining interface
operations with the output “Customer”). Matchingiges are returned for the variables
defined by the query.

Ontobrowse Semantic VViki ste seareh] Architectural Rule for Invalid Service®:

Explore Su

executesService (A, B) A hasLayer (A, X) A

@ AccountManagerService
hasLayer (B,Y) A

@ mvalidsenice - adjacentLayer (X,Y) A - owl:sameAs(X,Y)
This service violates the rule: Senvice invocation is limited to same or adjacent layers. = InvalidService(A) /
JI_L
This page provides further documentation for Acco i
Edit | Service Service
Direct types (1) executesService B ‘
ire es
InvalidSenice L/
Datatype properties (1)
version 20 hasLayer hasLayer
Object properties (5)
hasFormat WSDL)
- adjacentLayer ?
> Y \
EnterpriseLayer

refersToDomainConcept SamplePrivateCustomer \SerwceLayer SeNlCELayer /

Figure 6: A service violating the architectural rule is an “invalid service”

Finally, the SOA ontology can be enhanced by ruleieh enable automatic consistency
checking of entities and generation of new knowéed§o far, we have included
experimental support for DL-safe SWHLrules in the KAON2 configuration. One
application scenario is the formal definition o€laitectural rules which are usually only
informally documented by software architects. Thenaeatic wiki makes it possible
make the violation of these rules explicit, thuspmarting their enterprise-wide
enforcement. For example, we stated the rule “sesvimay not call other services more
than one layer apart” (see section 2.2), which dscdbed in Figure 6. Any entity

10 hitp:/www.w3.0rg/Submission/SWRL/

violating that rule is as an “invalid service”. Bying ontology annotations for the
concept ‘“invalid service” the Web interface canptiy a warning to the user.

Alternatively, it is possible to filter for all iralid services using the query interface. To
this end, Ontobrowse not only improves the navigmtidocumentation, querying and
searching but also contributes to the quality oEaterprise SOA.

6 Conclusion

In this paper, we described an approach based mfogies and semantic wikis, which

tackles key issues in the documentation of an Enser8OA. The SOA case revealed
the distributed character of the SOA developmeatess which has been insufficiently
addressed so far. Because an Enterprise SOA notirardives multiple roles, but also

brings different organizational units and exterrs@rvice providers together, the
responsibilities (and with it architectural infortimm) are inherently distributed.

Although a SOA leads to a higher degree of stangaidn at first glance, it
nevertheless involves different views which ardasittechnical or business-oriented.
This results in a high number of heterogeneous |ljocaaintained SOA artifacts with
varying degrees of formalization. What is sougherafs therefore both a “common
language” shared by all stakeholders and a fiestsctepresentation for different types of
architectural information. As pointed out in thiaper, ontologies are first choice for
solving both the terminological and the informatiategration problem. Semantic wikis
on the other hand, provide a flexible way for ast®s this information, e.g. browsing
searching and semantic querying. Our solution eatalbored to project-specific needs
by defining one or more ontologies to set up thigairstructure of the wiki.

The principles of service-orientation have been gairgy a lot of momentum in both
academia and industry recently. There have beenrtisfar “services science” [SR06]
and ontological approaches for mediating betweevicgeproviders and requestors. We
believe that the contribution of ontologies and \iemlge-based techniques are not
limited to the integration of complex business agtlons during run-time but can also
help addressing the myriad of business, organizaltiand technical issues during the
entire SOA lifecycle. Especially the combination aitologies and wikis, have the
potential to drive the development and evolutiokrdwledge-based software systems.

References

[ADO5] Aguiar, A.; David, G.: WikiWiki weaving herogeneous software artifact. In: Proc. of
the 2005 international symposium on Wikis, San DjegA, 2005, pp. 67-74.

[AKO5] Akkiraju, R.; et al.: Web Service Semantie3¥SDL-S. W3C Member Submission,
2005.

[BMO5] Bachmann F.; Merson, P.: Experience Using Web-Based Tool Wiki for Architecture
Documentation. Technical Note CMU/SEI-2005-TN-08&ptember 2005.

[BHLO1] Berners-Lee, T.; Hendler J.; Lassila, OheTSemantic Web. Scientific American. May,
2001.

[De05]
[ES05]
[Gro3]

[HS06]

[HSO07]

[HS05]
[Kr95]
[Ma03]

[MTO0]

[0L98]
[OW04]
[SR06]
[St01]
[UG96]

[V606]

Decker, B. et.al.: Self-organized ReuseSoftware Engineering Knowledge supported
by Semantic Wikis. In: Proc. of Workshop on Senmantieb Enabled Software
Engineering, Nov. 2005.

ESSI WSMO: Web Service Modeling Ontology (M3). http://www.wsmo.org/, 2005.
Gruber T.R.: A translation approach to pbleaontology specifications. Knowl. Acquis.
5, 1993, pp. 199-220.

Happel, H.-J.; Seedorf, S.: Applicationddsftologies in Software Engineering. In: Proc.
of Workshop on Sematic Web Enabled Software Engingt(SWESE) on the ISWC
2006, Athens, Georgia, November 5-9, 2006.

Happel, H.-J.; Seedorf, S.: Ontobrowse: An8etic Wiki for Sharing Knowledge about
Software Architectures. In: Proc. of the 19th I8bnf. on Software Engineering and
Knowledge Engineering (SEKE), Boston, USA, July19-2007, pp. 506-512.

Huhns, M.H.; Singh, M.P.: Service-Orientedniputing: Key Concepts and Principles.
IEEE Internet Computing, vol. 9, no. 1, 2005, pp-8i.

Kruchten, P.: The 4+1 View Model of Architiece. In: IEEE Softw. 12 November, Nr.
6, 1995, pp. 42-50.

Maedche, A. et.al.: Ontologies for Enterprisnowledge Management. IEEE Intelligent
Systems ,18, 2003, pp. 26-33.

Medvidovic, N.; Taylor, R. N.: A Classificamn and Comparison Framework for
Software Architecture Description Languages. InEEETrans. Software Eng. 26(1):
2000, pp. 70-93.

O’Leary; D.E.: Using Al in Knowledge Managent: Knowledge Bases and Ontologies.
IEEE Intelligent Systems, 13, 1998, pp. 34-39.

OWL Services Coalition: OWL-S Semantic Mapkfor Web Services. 2004.

Spohrer, J.; Riecken, D.: Services scieGoenmunications of the ACM, 49, 7, 2006.
Staab, S. et.al.: Knowledge Processes anl@yies. |IEEE Intelligent Systems, 16,
2001, pp. 26-34.

Uschold, M.; Gruninger, M.: Ontologies: meiples, methods, and applications.
Knowledge Engineering Review, 11, 1996, pp. 93-155.

Volkel, M. etal.: Semantic Wikipedia. InProceedings of the 15th International
Conference on World Wide Web, WWW 2006, Edinbuigtotland, May 23-26, 2006.

[W3C04]W3C: Web Services Architecture. W3C Worki@oup Note, 11 February, 2004.

[We03]
[WF99]

Welty, C.A.: Software Engineering. In: Daption Logic Handbook, 2003, pp. 373-387.
Welty, C.A.; Ferrucci D.A.: A Formal Ontaly for Re-Use of Software Architecture
Documents. ASE, 1999, pp. 259-262.

