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Abstract: Traceability and rationale management are highly important—especially in
distributed collaborative software development projects due to a lack of mutual aware-
ness and informal coordination among the participating stakeholders. Therefore this
papers presents a tool for extracting, visualizing, and analyzing the relationships be-
tween requirements and other artifacts, activities as well as users within a distributed
software project using a collaborative development environment. Underlying require-
ments and the conceptual design of this tool are based on several real-world use cases
demonstrating the respective value contribution of the tool’s functionality.

1 Introduction

Traceability as well as rationale management are of significant importance within geo-
graphically distributed software projects (cp. [HGK07a] and [dSHR07]). Traceability, in
particular, denotes to always be able to reconstruct which artifacts (for instance require-
ments, design documents or source code) are related to each other and how (cp. [GF94]).
Traceability management (TM) therefore involves activities like the identification, analy-
sis, and editing of these relationships [KS98]. Rationale management (RM), on the other
hand, addresses the documentation and usage of rationale behind decisions within the soft-
ware development process (cp. [DP01]). In combination with the concept of value based
software engineering (VBSE), assuming that not all software artifacts generate the same
(customer) value (see for instance [EBHG05]), enhancements can be achieved through the
application of combined traceability and rationale management (TRM) throughout the
entire software development process. Therefore, especially within spatially and tempo-
rally distributed projects, an increase of development efficiency and effectiveness can be
achieved by upholding (bi-directional) traceability as a quality feature—as it is defined,
for instance, within the CMMI standard. Especially regarding software change manage-
ment and the associated impact analysis an intuitive representation of the data by means
of graphical visualization can be helpful and effective.

The goal of this paper is thus to document the design and implementation of a trace visual-
ization tool called “TraVis”, which extracts data related to different artifacts, activities, and
users from a collaborative software development platform in order to visualize and ana-
lyze the relationships between these entities. An initial version of the tool (cp. [HGK07a])
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particularly emphasizes requirements and the resulting artifacts and the additional rep-
resentation of rationale information. The second version of TraVis documented here is
complemented by enhanced trace analysis functionality and predefined views specifically
designed to improve the tool’s performance in certain TRM use cases. Furthermore, for
the value-based calculation of the size of the artifacts, an advanced analysis method based
on the PageRank algorithm is implemented (cf. [PBMW98]). Additionally, maintainabil-
ity and usability of TraVis are further enhanced, for instance through additional filter and
search functionality. These enhancements eventually aim at increasing the output quality
and process efficiency of particular TRM tasks in distributed collaborative software devel-
opment. To clarify this, different tasks in form of use cases will be presented and referred
to in this paper.

Section 2 will at first introduce the design methodology that was chosen for the implemen-
tation of the tool. Then specific requirements for the novel solution in form of use cases
will be presented. In section 3, basic technologies used for implementing TraVis as well
their concrete application within the software design are addressed. According to the use
case defined in section 2, application examples are given in section 4 to provide a practi-
cal view and evaluation in terms of feasibility of the proposed solution. The last section
provides a summary of findings and gives an outlook on future work.

2 Conceptional Design

This section introduces the design methodology applied for the implementation of the
solution as well as in section 2.2 specific requirements in form of use cases.

2.1 Solution Design and Implementation Methodology

To eventually implement the use cases in form of a comprehensive solution, an object-
oriented analysis and design methodology is chosen(cf. e.g. [Kru04]), since trace relation
models represent complex interrelated real-world objects such stakeholders and artifacts
with different attributes such as descriptions, version numbers, and change rationale. The
concurrent requirements management process is mainly driven by use cases which in turn
relate to the common TRM process activities. This object-oriented approach aims at an
architecture consisting of independent application components. Thus this work abides by
the following main SE best practices (cf. also [Kru04]):

• iterative development (in combination with different evaluation steps),

• use case-driven requirements management (utilizing a collaboration platform), and

• component-based architecture (separating trace information model, collaboration
platform, and actual visualization tool)



3

Iterative Development and Evaluation. To this end, this research applies a design sci-
ence approach including multiple iterative evaluation cycles (cp. [HMPR04]). In doing
so, the initial concept is first evaluated descriptively with respect to existing approaches
and architectural fit, whereas the first prototype is applied in different real-world and uni-
versity settings and access for beta testers and other stakeholders is granted.1 Finally, an
improved version of the solution is evaluated in controlled experimental settings in order
to determine its usefulness and practicability in complex large-scale settings.2

Use Case-Driven Requirements Management. An iterative and evolutionary approach
usually leads to many post-specification change requests and thus constantly changing
requirements. To be able to manage the solution’s continuous evolution and collaboration
with different stakeholders such as beta testers and evaluation subjects, the main project is
hosted on a commercial collaboration platform but open to anyone interested.

Component-Based Architecture. According to object-oriented design principles and
patterns [Coa92], the overall solution is supposed to be component-based, i.e. consisting of
units of independent deployment, possibly third-party composition, and with no externally
observable states. As has been indicated before, the overall TRM approach consists of
three main solution “components”: trace information model, methodological guidelines,
visualization and analysis component as well as a corresponding infrastructure. Within
this approach, model and guidelines also have to be implemented by the tool infrastruc-
ture. Therefore, the solution architecture can be subdivided into three independent system
components, namely (1) data model and persistence layer, (2) collaboration platform, and
(3) specialized tools for traceability capturing, representation, and analysis (for general
principles of object-oriented and component-based software design see [Som07]). Due to
the fact that current design methodologies often lack focus on particular Web application
issues in combination with support for componentization, more specialized methodologies
for requirements analysis and high-level design applications are also taken into consider-
ation for engineering the overall solution (these are among others [GM01], [LS04], and
[BME+07]).

2.2 Traceability and Rationale Management Use Cases

In the following, requirements for the novel solution are presented in the form of distinct
use cases—including a procedural description with respect to TRM process steps, actors,
requirements rationale and origin as well as implementation priority (cp. also [Kru04]
and [Wie05]). Rationale and origin of these use cases are mostly based on the analyses of
literature review data (see [HRH07]) and empirical requirements engineering methods (cf.
[dSHR07]), whereas requirements in real-world software projects are most often elicited
by means of interviews and meetings (cf. [Som07]). These requirements can be allocated

1Beta testers were asked informally to test and comment on the different releases.
2Evaluation results will be published after finishing and analyzing all evaluation cycles
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to the following more specific use cases most often mentioned in TRM literature and prac-
tice (cp. also [SZ04]). These represent different TRM-related tasks which are explicated
in the following subsections.

2.2.1 Change Management and Impact Analysis

Change management tasks turn out to be the prevailing use case for traceability information—
e.g. for change propagation, generating notifications, and facilitating impact analyses in
particular. Especially in the latter case, traceability information is critical in case of late
changes for determining (1) directly and (2) indirectly affected artifacts and thus be able
to (3) estimate the resulting overall costs of changes proposed in order to decide whether
the change can be conducted or not [KS98]. Most often, change impact analysis pertains
to changing requirements after an initial specification has been defined—e.g. in the form
of change requests posted by different stakeholders (see [Som07], pp. 165). These in-
clude the integration of new requirements as well as deleting and changing existing ones
([Poh07], pp. 552). The positive effects of sophisticated traceability information on impact
analysis quality and efficiency has also been substantiated empirically (cp. for instance
[LS96] and [LS98]). Automatically generated notifications as well as visual representa-
tions of dependencies can substantially support impact analyses [EH91].

2.2.2 Project Status Reporting

Change management also includes requirements implementation status tracking and re-
porting, i.e. capturing and analyzing the requirements’ implementation status in post-
specification project phases (cp. [Sch02]). In order to be able to determine and analyze
the exact status of one particular requirement’s implementation, continuous horizontal
traceability from the SRS via architectural models, source code, and test cases must be
established (cf. also [Poh07], p. 504). This also requires information about contribution
structures and underlying rationale pertaining to post-specification artifacts and enables
ensuring that all current project activities are based on actual customer demands and thus
create customer value. Again, adequate quantitative data and according visual represen-
tations can be seen as possible approach to supporting this task. Moreover, visualizations
not only facilitate inter-developer communication and project management but also foster
customer understanding and thus eventually system acceptance.

2.2.3 Project Documentation Support

The project documentation subsumes information necessary for both impact analysis and
status reporting tasks. Fundamentally, a project’s documentation corresponds to the overall
traceability network containing both pre and post-specification information with respect
to artifact relations, rationale, and contribution structures (cf. [KS98]). Project documen-
tation tasks therefore pertain to the entire TRM process from capturing via storage and
representation to analysis and maintenance. As has been argued before, disposing of rel-
evant traceability information is vital to numerous other TRM-related tasks and can in
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turn facilitate distributed collaboration on the whole. As regards capturing traceability
network information, a collaborative approach based on one central repository is sug-
gested both in literature and practice (cf. findings in [dSHR07]). Moreover, a common
metamodel, including artifact entities, traces, and semantics as well as methodological
guidelines and policies in the form of a traceability manual help coordinating this activity.
Automatically generated suggestions for candidate links, on the other hand, can provide
additional decision support. Based on the central storage of traceability information, all
project stakeholders can be provided with adequate representations of relevant extracts
retrieved by means of filtering and search techniques. Due to the complexity of large-
scale distributed software projects visualizations facilitate stakeholder communication as
compared to standard list and table representations. Integration with modern collaboration
tools known from Web 2.0 contexts such as blogs, wikis, and general collaborative tagging
capabilities can be seen as possible approach to support this task even more sophistically.
With respect to analysis and maintenance support, filters and search mechanisms need
to be complemented by more advanced visualization and analysis methods such as adja-
cency graphs for more systematic impact (cf. section 2.2.1) and social network analyses
(SNA). For comprehensive SNA analyses, authorship information pertaining to both pre
and post specification artifacts is required. This in turn can facilitate team awareness and
communication as well as personnel turnover use cases (see section 2.2.5).3

2.2.4 Project Monitoring and Inspection

Within the scope of project monitoring activities, which are mostly conducted by project
managers and other high-level stakeholders, the overall development process in terms of
who has done what and when (process data) needs to be traceable at any given time. On
this basis, project managers have to be able to assess and report individual and team perfor-
mance, balance the overall work load, and maintain reasonable division of labor comple-
mentary to implementation status reports (see above) and despite the fact that developers
and other contributers are possibly distributed. To be able to do so, traceability informa-
tion is utilized to understand relations and particularly dependencies between artifacts and
the stakeholders involved. Combining and visualizing information on artifact relation and
contribution structures in turn allows for deriving social networks or sociograms4 from
socio-technical relations of artifacts and responsible stakeholders which provide a good
basis for project and team structure analysis [dSRC+04]. Moreover, process data on tasks
performed, resources consumed, and other quality measures can be utilized for general
project planning and control.

2.2.5 Post-Specification Software Engineering Support

Requirements management tasks furthermore comprise validation, verification, testing,
and establishing standards compliance (cf. [SZ04]). Contribution structures, for instance,

3SNA capabilities are in the center of further development activities as part of future work, see also section 5.
4Sociograms are graph-based representation of social relations that a person has. In software projects, these

can be derived from shared artifacts and communication structures.
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can be utilized to identify and involve relevant stakeholders into validation activities. As
regards verification, refinement, dependency, and satisfiability relations allow for deter-
mining all requirements specified have been allocated to ensuing implementation tasks and
artifacts such as models and code. Similarly, traceability relations can be used to “check
the existence of appropriate test cases for verifying different requirements” ([SZ04], p.
418) and to retrieve those.

Traceability information and management capabilities can also support other general SE
tasks such as finding the right stakeholders for communication and coordination purposes,
artifact understanding and software reuse as well as software maintenance and thus sup-
port SE decisions due to better overview, visualizations, and analysis methods, e.g. for
finding relevant information and/or contact persons more quickly. Group or team aware-
ness is crucial in distributed settings due to the volatility of communication networks and
partially sparse interactions among related stakeholders [HMFG00]. Appropriate visu-
alization of relations between users and/or artifacts (cp. also [dS05]) can thus lead to
more purposeful collaboration. Another general problem in software projects is personnel
turnover management (cf. [Mob82]).

Artifact understanding, informed software reuse and maintenance can also be accounted to
general SE tasks that can benefit from traceability information. Improved traceability sup-
ports different stakeholders in understanding artifacts and their respective contexts even
when not having contributed to their creation ([SZ04], p. 420). To be able to do so, trace-
ability relations between source code and manual pages, for instance, sometimes need to
be reconstructed automatically [MM01]. For full artifact comprehension, rationale cap-
turing, representation, and analysis capabilities are critical as well [RJ01]. Furthermore
requirements dependencies can support software reuse in that similar requirements are
identified when the stated requirements are compared with existing requirements for indi-
cating possibly reusable components. In general, similarities between artifacts on different
levels of horizontal abstraction along the software development lifecycle can be utilized
to manage application frameworks and software product lines (see e.g. [SZ04]). More-
over, traceability information facilitates identifying cause and estimating the impact of
bugs within the scope of software maintenance and re-engineering of legacy systems (see
[Poh07], p. 504).

3 Implementation

The following section briefly introduces the technologies used for the implementation of
the TraVis solution and subsequently, relevant implementation details .
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3.1 Implementation Technologies

To be able to connect to the collaboration platform over the Internet and thus provide a
Web-based user interface, the Java WebStart5 (JWS) technology by Sun Microsystems is
chosen. For extracting the traceability information from the collaboration platform, the
Hessian6 binary web service protocol is utilized. Moreover, the underlying CodeBeamer
platform has been analyzed and compared to other commercially available collaboration
platforms (cf. [RGBH07]). Besides its most advanced association mechanisms, link se-
mantics, and wiki engine integration, the platform is chosen for the prototypical TraVis
implementation due to its fast and flexible Hessian Web service API which has also been
extended collaboratively with the vendor in the course of this research.

The CodeBeamer platform provides an integrated wiki engine for (a) annotating and com-
menting on tracker items and other artifacts, e.g. to add rationale information, and (b) for
creating self-contained wiki documents. Traceability information captured via wiki pages
and comments can be in turn represented as interlinked wiki content in CodeBeamer’s
Web frontend and analyzed via the Web service API (see also [HGK07b]). The for the
WebStart application’s user interface layer, TraVis uses Java Universal Network/Graph7

(JUNG) framework. The JUNG architecture is designed to support a variety of represen-
tations of entities and their relations, such as directed and undirected graphs, multi-modal
graphs, graphs with parallel edges, and hypergraphs.

3.2 Solution Implementation Details

On basis of the different Web-based technologies just described, the most important details
pertaining to the implementation of TraVis are documented in the following. In doing so,
the focus is on the TraVis part of the overall solution architecture, i.e. visual representa-
tion, analysis, and maintenance functionality, and thus particular the use cases specified in
section 2.2. The solution implementation architecture assumed in this paper also consists
of an adapted collaboration platform underlying TraVis. Therefore, this section presents
the essential details of the adaptations and the data transfer process between the platform
and TraVis.

CodeBeamer Information Model As already mentioned in section 3.1, the CodeBeamer
platform has been adapted and extended in the course of this research. Based on general
trace information models, CodeBeamer’s inherent information model and its accessabil-
ity via the Web service API have to be adapted to TraVis. Compared to the underlying
platform information model, some interrelations had to be simplified due to the vendor’s
practical restrictions. However, all vital elements of the TraVis information model are
represented—tracker items and all different kinds of artifacts (documents, wiki pages,

5http://java.sun.com/products/javawebstart/ (2007-10-16)
6http://hessian.caucho.com/ (2007-10-16)
7http://jung.sourceforge.net/ (2007-10-16)

http://java.sun.com/products/javawebstart/
http://hessian.caucho.com/
http://jung.sourceforge.net/
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source code, etc.), for instance, can be tracked by distinct realization states and versions
as well as categorized by embracing trackers or containers, respectively. Rationale in-
formation can be added by means of (wiki) comments to types of associations between
tracker items and artifacts. The model differentiates between four basic types of associa-
tions: depends, parent, child, and related. Moreover, responsible users can take
on various roles as they are associated to certain tracker items or artifacts. These include
owner, creator, assigned to, submitted by, modified by, and locker
(someone who has locked a particular artifact for non-concurrent editing). Change re-
quests are modeled as tracker items in a so-called change request tracker and therefore
not represented separately in the CodeBeamer model. Furthermore, items in change re-
quest and requirements trackers also dispose of wiki-based rationale descriptions directly
attached. For further adapting the CodeBeamer information model, specific project tem-
plates with predefined tracker structures are created. To be able to connect to the collabo-
ration server and extract the relevant traceability information, TraVis uses CodeBeamer’s
Web service API (for a detailed description of the packages used see [HGK07b]).

Data Capturing and Object Model Implementation After the connection has been
established, the user is promted to select a particular project. Choosing a project initi-
ates the data capturing and synchronization process. In doing so, the data is captured
from CodeBeamer’s information model by means requesting the different types of Data
Tranfer Objects (DTOs) over the Hessian Web service protocol. The traceability infor-
mation captured is then stored in TraVis’ internal object model which is implemented as
a doubly linked list (see above). Altogether, TraVis utilizes three different kinds of lists:
(1) CbVertexList for storing nodes, (2) CbEdgesList for representing edges, as
well as (3) CbAssocationsList as auxiliary list which all inherit their behavior from
AbstractList. Each list elements contains both a CodeBeamer DTO object as well as
the respective JUNG framework object, e.g. implementing the Vertex interface. More-
over, particular semantic information is added for more efficient retrieval of certain objects
(cp. class descriptions in [HGK07b]).

4 Use Case Application Examples

In this section, the use cases defined in section 2.2 are utilized to demonstrate how the
underlying requirements are implemented by the TraVis solution’s distinct functionalities
and thus evaluate the feasibility of the approach as well as the applicability of the imple-
mentation. In doing so, TRM acitivities concerning (a) representation and visualization as
well as (b) analysis and maintenance can be distinguished.
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4.1 Trace Representation and Visualization

Once the traceability information is transferred to TraVis, different means of displaying
the traceability network graph are provided. Starting with an empty panel, the application
requires the user to either manually select and deselect different element and association
types or use various menu options for filtering, searching, and transforming the graph.

Manual Selection. The checkboxes of the TraVis user interface allow for a fine-grained
configuration of the traceability information to be shown in the center panel. According
to the CodeBeamer information model, the following elements are available: (1) users
(stakeholders), (2) issue trackers, tracker items, and attachments (3) documents and fold-
ers (as parts of the DMS), (4) forums and single posts, (5) wiki pages, as well as (6) source
files. When selecting particular project elements, only the resulting combination types of
associations are activated while all other relations are shaded in grey. Accordingly, when
removing certain information elements, these changes update the active options of man-
ual selection. When checking or unchecking certain association types these are added or
removed, respectively. Checking Add/Remove all displays or hides all relation types pos-
sible. Moreover, edge labels can be manually adjoined by means the respective checkbox
in the Options menu. Therefore, the checkboxes are the universal tool for custom analyses
concerning all major TRM use cases.

Element Filters. In addition to manually removing elements and associations from the
graph, TraVis also provides numerous predefined filters for reducing network complexity
and facilitate inspection tasks. To be able to do so, inactive users, other disconnected
elements with no relations, as well as closed tracker items representing finished tasks can
be filtered out automatically. Moreover, tracker items can be added to the graph, removed,
and highlighted with respect to different tracker categories, implementation phases, and
realization states. As has been mentioned earlier, TraVis complemtarily analyzes links
between wiki pages and thus these can be added or filtered out by checking the Wiki Links
filter option. In addition to manually selecting and deselecting graph elements, filters are
thus also universally applicable to a variety of TRM tasks such as status reporting and
general traceability information management.

Predefined Views Besides selection options and filters, TraVis also disposes of many
other possible choices of graph representation. To facilitate overall usability and reduce
complexity of the application, TraVis currently provides the following predefined views
which can be easily adapted and extended to other use cases by means of TraVis’ object-
oriented and component-based architecture: (1) Ego View, (2) Editing (basic), (3) Editing
(all), (4) Task Distribution, (5) Major Artifacts, (6) Tracker Structure, and (7) Project
Management Analysis. The task distribution view reveals who is doing what as well as
collaboration structures formed by shared artifact relations between stakeholders which is
the basis for further analysis methods such as social network inspections (cp. next section
as well as 5). In the case of this particular task distribution view, the implementation
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consists of four different graph options: (1) the types of elements and associations included
(here tracker items, users, and their interrelations), (2) value-based vertex sizing (instead of
uniform sizing, see subsequent section), (3) mouse mode (picking), and (4) graph layout
(cp. also the following section). However, TraVis’ architecture allows for adapting and
creating views with more or less options very easily, e.g. by simply adding a new radio
button in the Views menu.

Search Functions For analyzing complex traceability networks, TraVis implements two
complementary types of searches: (1) an integrated type-ahead search and (2) a search
menu for adding and highlighting. The former search function can be utilized to spot and
find individual artifacts in very dense and complex graphs. In doing so, the type-ahead
search already highlights graph items while the user is still typing, i.e. the search process
can be gradually concretized while contents in the center pane instantly displays the search
results. For this and all other types of searching the traceability network information, the
artifacts’ titles and major description attributes are indexed and thus searchable. These
search results are categorized according to the types of elements found—such as tracker
items and documents in this case. By clicking particular elements in the result tree a graph
can be built up from scratch or complemented (cp. also filtering mechanisms above). The
Find Artifact (Highlight) function operates analogously to the type-ahead variant.

Transformations TraVis also provides different graph transformations such as distor-
tion, rotation and zooming. With respect to graph distortion, different lenses are defined
with both hyperbolic and linear magnifying optics. To further reduce the graph’s com-
plexity, the different lens modes can be combined with all other options, filters, and views
described so far. For zooming and rotating the graph both mouse and keyboard shortcut
controls are provided in addition to the respective items in the Options menu.

The functionality described above pertains to all major use cases in section 2.2. More use
case-specific features are presented in the following subsection.

4.2 Trace Analysis and Maintenance

The implementation details described so far focused on visualizing the information re-
trieved from the platform for universally supporting different software engineering deci-
sions and use cases. On top of that, TraVis also provides tool-supported methods for visual
traceability network analysis and maintenance. Therefore, the following paragraphs expli-
cate the TraVis functionality for exploring and analyzing the graph by means of additional
information visualizations as well as visual editing capabilities.

Gradual Graph Exploration Since the size of real-world traceability graphs are a ma-
jor concern in TRM, incremental exploration techniques are a good solution for analyzing
huge graphs originating from one particular element (cf. [HMM00], p. 37). This ele-
ment can either be specified by a change request or found by the search and add function
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described above. The context menu option Show connected vertices adds all elements con-
nected to a requirement resulting of a search operation, as well as the respective relation
types as edge labels (related, depends, etc.). By applying this method in turn to one
of the newly added elements, the graph is gradually explored from its origin. Furthermore,
it is possible to show all connected vertices, i.e. the complete adjacency graph, of one par-
ticular start node by means of the corresponding option in the context menu (see figure 1).
This type of information visualization therefore identifies artifacts directly and indirectly
affected by changes to the focal artifact and thus facilitates impact analyses (cf. section
2.2.1). Moreover, status reporting is supported by enabling to follow the horizontal trace
path of one requirement up to the current realization state. Additional artifact information
is displayed on mouse-over operations in the form of tooltips. Vice versa, TraVis also
allows for removing particular nodes.

Figure 1: Gradual Graph Exploration Functionality

Trace Network Analysis Besides manual trace network analysis by means of the check-
boxes and options explicated above, TraVis also provides a comprehensive network analy-
sis function activated by choosing the predefined project management analysis view. This
non-visual “view” analyzes the number of traces among the different types of trackers
and displays a detailed dynamically generated list of requirements and relations between
tracker items. In doing so, customized trackers in addition to standard requirements,
change requests, and bug trackers are considered as well. This function facilitates auditing
the overall project documentation as well as determining traceability as a quality measure
(cp. also data collection and measurement procedures in evaluation section. Again, the
show connected vertices can also be applied to particular users and thus monitored what
artifact development activities they are currently involved in. Using the task distribution
view, on the other hand, also supports project monitoring and controlling—e.g. by spotting
out project members that do not participate in any collaborative activities. Furthermore,
the function Team Statistics in the Project menu returns a list of all project members’
relations to certain project elements such as tracker items and documents, for instance,



12

which also enables project managers to compare and assess the developers’ collaboration
intensity.

Value-Based Node Sizing Also mainly for project management (monitoring and con-
trolling) purposes, TraVis implements variable node sizing algorithms for indicating cus-
tomer value based on requirements analysis results such as priorities and other value mea-
sures. The customer value assigned to the requirements is then propagated to related
and dependent artifacts such as design documents and source code (stakeholder nodes
excluded). Therefore, the initial heuristic algorithm for calculating the node sizes has
been improved by adapting the PageRank algorithm known from the Google8 search en-
gine to the premises of the solution architecture (cp. also [PBMW98]). The PageRank
algorithm is based on the assumption that nodes in a network (here: artifacts and tracker
items) are more important (or valuable) according to the number of incoming relations
and their respective values. It has been shown that the values within a network converge
after a finite number of iterations [PBMW98]. To achieve this state, TraVis initializes the
nodes other than requirements with a value of 1

number(nodes) and defines a constant d9 of
0.85 to accelerate convergence. The new value of one particular node is thus calculated as
the sum of the related nodes’ start values while the node’s new start value is determined
by (1 − d) + d ∗ new value. Value-based node sizing and the customer values written
back to the platform as additional attributes thus provide decision support for prioritizing
artifact-related activities according to their customer value and therefore iterative as well
as agile methods (see 2 for an extract of a value-based graph). Furthermore, customer
value information also complements and quantifies the overall projects awareness as well
as personnel turnover decisions (cf. section 2.2.5).

Figure 2: Extract from a Value-Based Task Distribution Graph

8http://www.google.com/ (2007-10-20)
9Using a constant d is recommended by [PBMW98] and has been calibrated here by means of the data

from early evaluations and open source projects on the CodeBeamer-based JavaForge platform: http://
javaforge.com/ (2007-10-20). The TraVis implementation of PageRank now converges after less than 10
iterations. However, to provide some safety buffer TraVis calculates 15 iterations.

http://www.google.com/
http://javaforge.com/
http://javaforge.com/
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Rationale Information Management Besides customer value, the artifact nodes of the
traceability network carry a lot of additional information which can be utilized to compre-
hend justifications behind design and change decisions—i.e. rationale information. To be
able to prepare and provide this artifact context information in an easily processible man-
ner, the graphs are complemented by a so-called element information pane. Depending
on the node currently selected in the center pane either additional artifact or stakeholder
information is displayed. While user element information is mainly useful for monitor-
ing purposes, artifact rationale information facilitates both impact analyses and general
project documentation and maintenance activities.

Editing and Platform Synchronization Starting with one of the predefined editing
views (cp. section 4.1), for instance, or after manually selecting mouse mode editing
on the lower righthand side in combination with any other view or filter, allows for remov-
ing and creating new associations between elements of the graph. This is conducted by
simply dragging and dropping a line from one node to the other. After that, an association
comment and type can be specified before the edge is added to the graph. Newly created
edges as well as deleted ones are first recorded by TraVis’ internal object model and later
committed as a complete transaction to the platform by clicking on Submit Changes in
the Project menu. Accordingly, changes made directly to the platform via its Web user
interface can be synchronized by means of the Reload Project function. Visual editing
essentially facilitates collaborative capturing and maintenance of traceability information
and thus overall project documentation (cf. use case description in section 2.2.3).

5 Summary and Outlook

As has been demonstrated in the preceding sections, the current TraVis prototype imple-
ments all major functions and use cases specified with respect to TraVis’ visual repre-
sentation, analysis, and maintenance support. It has also been shown that the adapted
version of CodeBeamer used for this prototypical implementation of the overall solution
approach covers the complementary collaborative capturing and maintenance processes.
These TRM activities are particularly important in distributed software projects—mainly
for enabling workplace awareness and informal coordination. TRM methods as well as
their combination with the VBSE approach can increase the quality of the artifacts to be
developed within the individual project phases and therefore the quality of the final prod-
uct. For tool-based project support the application of a software development platform that
supports communication between team members and enables the storage of data should be
considered. Additionally, tracking and managing requirements to the new product should
also be supported (cp. [RGBH07]).

Therefore, within this paper, the novel trace visualization tool TraVis 2 is introduced,
which is based on an underlying collaboration platform—here CodeBeamer, for instance—
enhancing its functionality by graphical visualization as well as filtering. Through the vi-
sualization of the different relations between the artifacts and stakeholders as well as other
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functionalities provided by the tool, various use cases that occur within a distributed devel-
opment project are supported. Hereby, the focus of the tool is mainly the support of project
management functionality—requirments and change management in particular. This pa-
per documents how different use cases identified and substantiated in both literature and
practice can be supported and implemented by an Internet-enabled solution architecture
based on an underlying collaboration platform.

Within future versions of the tool, functionality for additional analyses like the graphical
display of the social networks between project members and across multiple projects—
both intra- and inter-organizationally—shall be integrated. The alternative visualization
of the traceability network, e.g. a matrix view of artifact types that is already supported
within RequisitePro (IBM), or a process view of artifacts, i.e. a classification of artifacts
regarding individual process phases. Besides these enhancements, already integrated func-
tionality should also be evaluated experimentally to gather conclusions for future TRM
requirements and development activities. Moreover, additional case studies and controlled
experiments involving partners within the software industry are planned.
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[HMM00] Ivan Herman, Guy Melançon, and M. Scott Marshall. Graph Visualization and Naviga-
tion in Information Visualization: A Survey. IEEE Transactions on Visualization and
Computer Graphics, 6(1):24–43, 2000.

[HMPR04] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. Design Science in
Information Systems Research. MIS Quarterly, 28(1):75–105, 2004.

[HRH07] Tobias Hildenbrand, Franz Rothlauf, and Armin Heinzl. Ansätze zur kollaborativen
Softwareerstellung. WIRTSCHAFTSINFORMATIK, 49(Sonderheft):S72–S80, 2007.

[Kru04] Philippe Kruchten. The Rational Unified Process: An Introduction. Addison-Wesley,
Boston, USA, 3. auflage edition, 2004.

[KS98] Gerald Kotonya and Ian Sommerville. Requirements Engineering – Processes and
Techniques. John Wiley & Sons, Chichester, UK, 1998.

[LS96] Mikael Lindvall and Kristian Sandahl. Practical Implications of Traceability. Software
Practice and Experience, 26(10):1161–1180, 1996.

[LS98] Mikael Lindvall and Kristian Sandahl. Traceability Aspects of Impact Analysis in
Object-Oriented Systems. Journal of Software Maintenance: Research and Practice,
10(1):37–57, 1998.

[LS04] Seung C. Lee and Ashraf I. Shirani. A Component Based Methodology for Web Ap-
plication Development. Journal of Systems and Software, 71(1-2):177–187, 2004.

[MM01] Jonathan I. Maletic and Andrian Marcus. Supporting Program Comprehension Using
Semantic and Structural Information. In Proceedings of the 23rd International Con-
ference on Software Engineering (ICSE’01), pages 113–122. IEEE Computer Society,
2001.



16

[Mob82] William Hodges Mobley. Employee Turnover: Causes, Consequences and Control.
Addison-Wesley, Reading, USA, 1982.

[PBMW98] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageRank
Citation Ranking: Bringing Order to the Web. Stanford Digital Library Technologies
Project, 1998.

[Poh07] Klaus Pohl. Requirements Engineering – Grundlagen, Prinzipien, Techniken.
dpunkt.verlag, Heidelberg, Deutschland, 1. auflage edition, 2007.

[RGBH07] Felix Rodriguez, Michael Geisser, Kay Berkling, and Tobias Hildenbrand. Evaluating
Collaboration Platforms for Offshore Software Development Scenarios. In Proceedings
of the 1st International Conference on Software Engineering Approaches For Offshore
and Outsourced Development (SEAFOOD’07), pages 96–108. Springer, 2007.

[RJ01] Balasubramaniam Ramesh and Matthias Jarke. Towards Reference Models for Re-
quirements Traceability. IEEE Transactions on Software Engineering, 27(1):58–93,
2001.

[Sch02] Bruno Schienmann. Kontinuierliches Anforderungsmanagement: Prozesse, Techniken,
Werkzeuge. Addison-Wesley, Boston, USA, 2002.

[Som07] Ian Sommerville. Software Engineering. Addison-Wesley, Boston, USA, 8. auflage
edition, 2007.

[SZ04] George Spanoudakis and Andrea Zisman. Software Traceability: A Roadmap. In Shi-
Kuo Chang, editor, Handbook of Software Engineering and Knowledge Engineering,
pages 395–428. World Scientific Publishing, River Edge, USA, 2004.

[Wie05] Karl E. Wiegers. More About Software Requirements: Thorny Issues and Practical
Advice. Microsoft Press, Redmond, USA, 2005.


	Introduction
	Conceptional Design
	Solution Methodology
	TRM Use Cases
	Change Management and Impact Analysis
	Project Status Reporting
	Project Documentation Support
	Project Monitoring and Inspection
	Post-Specification Software Engineering Support


	Implementation
	Implementation Technologies
	Solution Implementation Details

	Use Case Application Examples
	Trace Representation and Visualization
	Trace Analysis and Maintenance

	Summary and Outlook

