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Abstract  
The method for intelligent diagnosis of COVID-19 based on the LeNet-ViT deep neural 

network was proposed. The LeNet-ViT model was created, it has the following advantages: 
the input image is not square, which expands the scope; the input image is pre-compressed and 
the new size depends on the original image size, and it is empirically determined, which 

increases the model training speed and the model identification accuracy; the number of pairs 
“convolutional layer - downsampling layer” depends on the image’s size, and  it is 

automatically determined, which increases the model classification accuracy; the number of 
layer planes is automatically determined, which speeds up the definition of the model structure; 
the patch size depends on the image size, and it is empirically determined, which increases the 

model identification accuracy; the number of encoder blocks is empirically determined, which 
increases the model learning speed; the use of a convolutional neural network allows to 
efficiently extract features, and the use of a visual transformer allows to effectively analyze 

these features. The proposed method for intelligent diagnosis of COVID-19 can be used in 
various intelligent computer systems for medical diagnostics. 
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1. Introduction 

The COVID-19 epidemic is rapidly spreading around the world and has already harmed the health 

and well-being of the people from different countries. By 2022, there are hundreds of millions was 

infected and millions was dead. Effective diagnosis of COVID-19 is essential to reduce the growth of 

the disease and promptly respond to those who become ill. 

Currently, the COVID-19 diagnosis uses the following methods: 

1. The RT-PCR Test [1–6]. The advantages are the ability to extract a DNA fragment that is 

unique for a particular pathogen (several pathogens can be searched in one sample); sensitivity to 

the pathogen (a small number of samples is sufficient); efficiency of issuing the result (artificial 

cultivation of the pathogen is not required); direct determination of the pathogen, and not the reaction 

to it (diagnosis is possible in the incubation period); universality (it is possible to search for any 

pathogen). The disadvantages are pain, laboriousness due to the lack of automation, the requirement 

of the work rules strictest observance in the laboratory, high cost and insufficient accuracy. 

2. The computerized tomography (CT) scan [7-12] is used to obtain an image. The advantages are 

the absence of pain, automation, the absence of the requirement of the work rules strictest observance 

in the laboratory and high accuracy. The disadvantage is the high cost. 
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3. Radiography [13-17] is used to obtain a CXR image. The advantages are the absence of pain, 

high speed, the absence of the requirement of the work rules strictest observance in the laboratory, 

and low cost. The disadvantage is insufficient accuracy. 

An ensemble of classifiers can be used to recognize CCT and CXR images (for example, decision 

tree, artificial neural network, naive Bayes, k-nearest neighbors, etc.) [18]. 

Currently, classifying deep neural networks have become widespread for intelligent image 

identification [19]. 

The following 2D convolutional networks is the first class of such networks. 

The LeNet-5 neural network [20] has the simplest architecture and uses two pairs of convolutional 

and downsampling layers, as well as two fully connected layers. The convolution layer reduces the 

shear sensitivity of image elements. The downsampling layer reduces the dimensionality of the image. 

A combination of LeNet-5 (for feature extraction) and long short-term memory (LSTM) (for 

classification) is currently popular [21]. 

Dark Net neural networks [22], AlexNet neural networks [23], and VGG neural networks (Visual 

Geometry Group) [24, 25] are a modification of LeNet. There can be several consecutive convolutional 

layers in these neural networks. 

ResNet neural networks [24, 25, 26] use a Residual block that contains two consecutive 

convolutional layers. The planes’ outputs of the layer preceding of this block are added to the planes’ 

outputs of the second convolutional layer of this block. A combination of ResNet (for feature extraction) 

and a support vector machine (SVM) (for classification) is currently popular [27]. 

The DenseNet neural network (Dense Convolutional Network) [25, 28] uses a fully connected 

(dense) block, which contains a set of Residual blocks. The planes’ outputs of the second convolutional 

layer of the current Residual block of this dense block are concatenated with the planes’ outputs of the 

second convolutional layer of all previous Residual blocks of this dense block and with the planes’ 

outputs of the layer preceding this dense block. In addition, the reduction of the convolutional layers’ 

planes (usually twice) located between dense blocks is used. 

The GoogLeNet neural network (Inception V1) [29] uses an Inception block that contains parallel 

convolutional layers with different sizes of connection regions and one downsampling layer. The 

planes’ outputs of these parallel layers are concatenated. The convolutional layers with a single 

connection area are connected in series to these parallel layers to reduce the number of operations (in 

the case of convolutional layers, such a convolutional layer is placed before them, and in the case of a 

downsampling layer, such a convolutional layer is placed after it). A combination of ResNet (for feature 

extraction) and support vector machine (SVM) (for classification) [27] used for diagnostics on CXR 

images is currently popular, which provided a diagnostic probability close to 100%. 

The Inception V3 neural network [25, 26, 30] is a modification of GoogLeNet, and its Inception and 

Reduction blocks are a modification of the GoogLeNet neural network’s Inception block. 

The Inception-ResNet-v2 neural network [25, 26, 31] is a modification of GoogLeNet and ResNet, 

its Inception block is a modification of the Residual and Inception block, and the Reduction block is a 

modification of the Inception block. 

The Xception neural network [25, 32] uses a Depthwise separable convolution block that performs 

first a pointwise convolution and then a depthwise convolution. For both convolutions, the ReLU 

activation function is usually used. 

The MobileNet neural network [33] uses a Depthwise separable convolution block that performs 

depthwise convolution first and then pointwise convolution. For both convolutions, a linear activation 

function is usually used. 

The MobileNet2 neural network [25, 34] uses an Inverse Residual block that performs pointwise 

convolution first, then depthwise convolution, and then pointwise again. For both convolutions, the 

SiLU activation function is usually used. 

The MobileNet3 neural network [35] uses a Squeeze-and-Excitation block in some Inverse Residual 

blocks. 

The following transformers is the second class of such networks. 

ViT (Visual Transformer) [36] contains an encoder as the main component, consisting of a sequence 

of blocks. Each block contains the first normalization layer, Multi-Head Attention (weights the image 

patches), the second normalization layer, a two-layer perceptron. 



DeiT (Data-efficient image Transformers) [37] contains an encoder as the main component, 

consisting of a sequence of blocks. Each block contains the first layer of normalization, Multi-Head 

Attention, the second layer of normalization, a two-layer perceptron, as in the case of ViT. DeiT, unlike 

ViT, additionally uses a distillation token in addition to patches. 

DeepViT (Deep Visual Transformer) [38] contains an encryptor as the main component, consisting 

of a sequence of blocks. Each block contains the first normalization layer, Re-Attention (Multi-Head 

Attention modification), the second normalization layer, a two-layer perceptron 

CaiT (Class-Attention in Image Transformers) [39] contains an encoder as the main component, 

consisting of a sequence of blocks. Each block contains the first normalization layer, Multi-Head 

Attention or Class-Attention (a modification of Multi-Head Attention that takes into account not only 

the patch, but also the class), the second normalization layer, a two-layer perceptron. 

CrossViT (Cross-Attention Multi-Scale Vision Transformer) [40] contains a multi-scale encoder 

consisting of a blocks’ sequence as the main component. Each block contains two encoders (each 

encoder is similar to a ViT encoder) for large and small size patches, and a Cross-Attention (a 

modification of Multi-Head Attention) that allows to share patches of different sizes. 

Hybrids of convolutional neural networks and transformers are actively currently used. 

The Compact Convolutional Transformer (CCT) [41] contains an encoder, as its main component, 

consisting of a sequence of blocks. Each block contains the first layer of normalization, Multi-Head 

Attention, the second layer of normalization, a two-layer perceptron, as in the case of ViT. Patch 

extraction is used with a sequence of pairs of convolutional and downsampling layers, instead of 

splitting the image into patches, and there is a pooling sequence layer after the encoder. 

The Pooling-based Vision Transformer (PiT) [42] contains an encoder as the main component, 

consisting of a sequence of blocks. Each block contains the first layer of normalization, Multi-Head 

Attention, the second layer of normalization, a two-layer perceptron, as in the case of ViT. PiT, unlike 

ViT, uses depthwise convolution (each plane of the current layer is connected only to the corresponding 

plane of the next layer) and a downsampling layer before and after the encoder. 

LeViT [43] contains a cipher consisting of a blocks’ sequence as the main component. Each block 

contains LeViT Attention (three convolutions with normalization are used) without downsampling and 

a two-layer perceptron. Between these blocks there are LeViT Attention (using three convolutions with 

normalization) with downsampling. Patch extraction is used using a sequence of pairs of convolutional 

and downsampling layers, instead of patching the image. LeViT, unlike ViT, additionally uses a 

distillation token in addition to patches. 

The Convolutional vision Transformer (CvT) [44] contains an encoder as the main component, 

consisting of a sequence of blocks. Each block contains the first layer of normalization, Multi-Head 

Attention, the second layer of normalization, a two-layer perceptron, as in the case of ViT. CvT, unlike 

ViT, uses patch extraction with a pairs’ sequence of convolutional and downsampling layers, instead of 

patching the image. 

MobileViT [45] contains Inverse Residual blocks from the MobileViT2 neural network and 

encoders, as the main components. Each encoder consists of a sequence of blocks. Each block contains 

the first layer of normalization, Multi-Head Attention, the second layer of normalization, a two-layer 

perceptron, as in the case of ViT. There are two convolutional layers before and after the encoder. 

Deep neural networks have one or more of the following disadvantages: 

• classification accuracy is insufficiently high; 

• complexity of neural network structure identification (number and size of layers, number of 

transformer blocks, patch size, etc.); 

• speed of parameters identification is insufficiently high. 

Parallel algorithms are used to increase the learning rate of deep neural networks [46-47]. The 

problem of creating an effective deep neural network is relevant. 

The goal of the research is to increase the intelligent diagnostics’ efficiency of COVID-19 through 

the use of deep neural networks. 

To achieve this goal, the following tasks were set and solved: 

1. To create a COVID-19 smart diagnostic model based on a convolutional neural network and a 

visual transformer. 

2. To select the quality criteria for the COVID-19 smart diagnostic method. 



3. To determine the structure of the COVID-19 smart diagnostic method. 

4. To conduct numerical research of the proposed method for intelligent diagnosis of COVID-19. 

2. LeNet-ViT deep neural network 

The LeNet-ViT deep neural network for CXR image classification was proposed by the research’s 

authors, and it is a non-recurrent network (fig. 1). LeNet-ViT includes a sequence of alternating 

convolutional and downsampling layers and a reshape layer, an encoder (consists of blocks; the k-th 

block structure is shown in fig. 2), a flattening block, a multilayer perceptron (MLP). 

The encoder, unlike traditional LeNet, was added after the convolutional and downsampling layers, 

which improves the efficiency of classification. 

 

 
Figure 1: LeNet-ViT for classification 

 

The input CvT image, unlike the traditional one, is not square; the input image is pre-compressed 

and the new size depends on the original image size and is empirically determined; the number of pairs 

“convolutional layer - downsampling layer” depends on the size of the image and is empirically 

determined; the number of planes is automatically determined, as the quotient of dividing the cells’ 

number in the input layer by two to the power (the power is equal to twice number of the pair 

“convolutional layer - downsampling layer”), which will save the total number of cells in the layer after 

downsampling; downsampling halves the planes’ layer size in height and width by half; the patch size 

depends on the image size and is empirically determined; the number of encoder blocks is empirically 

determined; the class number is not added to patches. 

3. The ANN functioning. 

1. Patch Shaping via convolution and downsampling. 

Let   – position in the connection areas, ( , )x y  = , IK  – is the number of cell planes in the I  

input layer (for RGB images 3), 
ls

K  – is the number of cell planes in the downsampling layer lS , 
lcK

– is the number of cell planes in the convolutional layer lC , lA  – is the connection area of the layer 

plane lS , L  – is the number of convolutional (or downsampling) layers. 

1.1. 1l = . 

 



 
Figure 2: Encoder k block 

 

1.2. The computation of the output signal for the convolutional layer: 
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where 
1
( , , )cw k i  – is the connection weight from the  -th position in the connection area of the k-th 

input layer’s plane of cells I to the i-th convolutional layer’s plane of cells 1C , ( , , )
lcw k i  – is the 

connection weight of the  -th position in the connection area of the downsampling layer 1lS −  to the i-

th convolutional layer’s plane of cells 1C , ( , )
lcu m i  – is the output of the cell in the m -th position in 

the i-th convolutional layer’s plane of cells 1C . 

1.3. The computation of the output signal of a downsampling cell (scale down by half based 

on averaging) 

2{0,1}
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l ls cu m k u m k
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l ls sm N N  , 1,
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k K , 22

l

l
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where ( , )
ls

w k k  – is the connection weight of the k-th convolutional layer’s plane of cells lC  to k-th 

downsampling layer’s plane of cells lS , ( , )
ls

u m k  – is the output of the cell in the m -th position in the 

k-th downsampling layer’s plane of cells lS . 

1.4. If l L , then 1l l= + , go to 1.2. 

1.5. The matrix 
(0)

[ ]niy , 
(1)1,i N , 1,n P  formation, corresponding to a sequence of flat 

patches (the patch matrix is turned into a vector) of P length. 
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2. The transformation of patch vectors in a fully connected layer. 
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where (1)
nijw  –is the connection weight from the i-th element of the image patch to the j-th neuron of the 

fully connected layer, (1)
njy  – is the output of the j-th neuron of the fully connected layer for the n-th 

patch. 

3. The positional encryption (patch position added) 
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4. The encoder for each block does the following: 

4.1. Normalization 
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where g – is the amplification parameter, 
(3)
niy  – is the output of the i-th normalization layer neuron for 

the n-th patch. 

4.2. Multihead attention 

There are ( )HN  attention heads are using. 

4.2.1. The computation of the requests for each attention head. 
(1)

( ) (3)
ln

1

N
Q

j nilij
i

q w y
=

=  , 
( )1, Hl N , 
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where ( )Q
lijw  – is the connection weight from the i-th image patch element to the j-th request for the l-

th attention head, ln jq  – is the j-th request for the l-th attention head for the n-th patch. 

4.2.2. The computation of the keys for each attention head. 
(1)
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where ( )K
lijw  – is the connection weight from the i-th image patch element to the j-th key for the l-th 

attention head, ln jk  – is the j-th key for the l-th attention head for the n-th patch. 

4.2.3. The computation of the key values for each attention head. 
(1)

( ) (3)
ln
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N
V

j nilij
i
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=

=  , 
( )1, Hl N , ( )1, Vj N , 1,n P , 

where ( )V
lijw  – is the connection weight from the i-th image patch element to the j-th key’s value for the 

l-th attention head, ln jv  – is the j-th key for the l-th attention head for the n-th patch. 

Usually, ( ) ( )V KN N=  

4.2.4. The computation of the attention weights (scores) for each attention head. 

Scaled multiplicative attention “dot” is used. The request and the key are matched. 
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where lmna  – is the connection weight between the m-th and n-th patches for the l-th attention head. 

4.2.5. The computation of the requests for each attention head. 

The multiplication of the attention weight (score) by the key value. 
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where ln jh  – is the weighted j-th key value for the j-th key for the l-th attention head for the n-th patch. 

4.2.6. The formation of the weighted key values matrix for attention heads and patches by 

concatenation 
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4.2.7. The computation of the multihead attention. 
( ) ( )
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where (4)
ijw  – is the connection weight from the j-th key value for the j-th neuron in the multihead 

attention layer, (4)
njy  – is the output of the j-th neuron in the multihead attention layer for n-th patch. 

4.3. Summation and normalization. 
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where g – is the amplification parameter, 
(5)
niy  – is the output of the i-th normalization layer‘s neuron 

for the n-th patch. 

4.4. The computation of the output signal for the two-layer perceptron’s hidden and output 

layers from P neural networks for P patches. 
(1)
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where ( )k
zjw  – is the connection weight of the z-th k-1-th layer’s neuron to j-th neuron of the k-th layer, 

( )k
njy  – is the output of the fully connected layer’s j-th neuron for n-th patch. 

5. Summation and normalization. 

( )(8) (4) (7) (4) (7)
( )ni ni ni i ni

g
y Norm y y y y 


= + = + − , 

(1)1,i N , 1,n P , 

(1)

(4) (7)

(1)
1

1
( )

N

ni ni
i

y y
N


=

= + , 

(1)

(4) (7) 2

(1)
1

1
( )

N

ni ni
i

y y
N

 
=

= + − , 

where g – is the amplification parameter, 
(8)
niy  – is the output of the i-th normalization layer‘s neuron 

for n-th patch. 

6. Flattening. 
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7. The computation of the output signal for the hidden and output layer of a two-layer perceptron. 
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where ( )k
zjw  – is the connection weight of the z-th k-1-th layer’s neuron to j-th neuron of the k-th layer, 

( )k
jy  – is the output of the j-th neuron of the k-th fully connected layer.  

4. The selection of quality criteria for the COVID-19 smart diagnostic method. 

The following criteria were chosen to evaluate the learning of the proposed deep neural networks 

mathematical models in this research: 

• accuracy criterion 
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• categorical cross-entropy criterion 
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where iy  – is the i -th vector by model, [0,1]ijy  , id  – is the i -th test vector, {0,1}ijd  ,  

I  – is the training set power, K  – is the classes number (neurons in the output layer), W – is the weight 

vector. 

5. The structure’s determination of the COVID-19 smart diagnostic method 

The block diagram of the COVID-19 intelligent diagnostic method for the proposed LeNet-ViT deep 

neural network is shown in fig. 3. 

 

 
Figure 3: Block diagram of the COVID-19 smart diagnostic method 

 



6. Numerical research 

The numerical research was carried out on the basis of data sets [48–49]. The size of the COVIDx 

CXR-3 dataset was 30386 records. No pre-processing of the dataset was performed.The training data 

set included 13992 COVID-19 Negative and 15994 COVID-19 Positive. The test data set included 200 

COVID-19 Negative and 200 COVID-19 Positive. 

The training was performed using the GPU due to the fact that the proposed deep neural networks 

don’t contain recurrent connections. The Tensorflow package was used to implement the proposed deep 

neural networks, and Google Collaboratory was chosen as the software environment. 

The LeNet-ViT model’s structure with two encoder blocks is shown in Table 1, where K is the 

number of classes. 

 

Table 1 
The LeNet-ViT model structure 

Layer type Input size 

A Text 

Input 1024x1024x3 

Resizing 32x32x3 

Conv2D 32x32x4 

MaxPooling2D 16x16x4 

Conv2D 16x16x16 

MaxPooling2D 8x8x16 

Reshape  16x64 

Full connect or Dense 16x128 

Add 16x128 

Normalization 16x128 

Multi-Head Attention 16x128 

Add 16x128 

Normalization 16x128 

MLP Hidden (Full connect or Dense) 16x128 

MLP Output (Full connect or Dense) 16x128 

Add 16x128 

Normalization 16x128 

Multi-Head Attention 16x128 

Add 16x128 

Normalization 16x128 

MLP Hidden (Full connect or Dense) 16x128 

MLP Output (Full connect or Dense) 16x128 

Add 16x128 

Normalization 16x128 

Flatten 2048 

MLP Hidden (Full connect or Dense) 2048 

MLP Output (Full connect or Dense) K 

 

The losses dependence (based on categorical entropy) on the image size for the LeNet-ViT model is 

shown in fig. 4. The losses dependence (based on categorical entropy) on the patch size for the LeNet-

ViT model is shown in fig. 5. The losses dependence (based on categorical entropy) on the number of 

iterations for the LeNet-ViT model is shown in fig. 6. The dependence of accuracy on the number of 

iterations for the LeNet-ViT model is shown in fig. 7. The losses dependence (based on categorical 

entropy) on the number of pairs “convolutional layer - downsampling layer” for the LeNet-ViT model 

is shown in fig. 8. 



 

 
Figure 4: The losses dependence (based on categorical entropy) on the image size for the LeNet-ViT 
model 
 

 
Figure 5: The losses dependence (based on categorical entropy) on the patch size for the LeNet-ViT 
model 
 

 
Figure 6: The losses dependence (based on categorical entropy) on the number of iterations for the 
LeNet-ViT model 
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Figure 7: The accuracy dependence (based on categorical entropy) on the number of iterations for the 
LeNet-ViT model 
 

 
Figure 8: The losses dependence (based on categorical entropy) on the number of pairs “convolutional 
layer - downsampling layer” for the LeNet-ViT model 
 

The following facts were found as a result of a numerical study: 

• the best image size after compression for LeNet-ViT in terms of loss (based on categorical 

entropy) is 32x32 (fig. 4); 

• the best compression patch size for LeNet-ViT in terms of loss (based on categorical entropy) 

is 8x8 (fig. 5); 

• the minimum number of iterations for LeNet-ViT in terms of loss (based on categorical entropy) 

(fig. 6) and accuracy (fig. 7) is 11; 

• the best number of convolutional layer-downsampling layer pairs for LeNet-ViT in terms of 

loss (based on categorical entropy) is 2 (fig. 8). 

The KFold cross-entropy method with 5 folds was used to prevent overfitting. 

7. Conclusions 

1. The relevant artificial intelligence methods have been researched to solve the problem of 

improving the efficiency of intelligent diagnosis of COVID-19. The using of deep neural networks 

is the most effective according to the research’s results. 
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2. The created LeNet-ViT model, unlike traditional CvT, has the following advantages: the input 

image is not square, which expands the scope; the input image is pre-compressed and the new size 

depends on the original image size and is empirically determined; this increases the model training 

speed and the model identification accuracy; the number of pairs “convolutional layer - 

downsampling layer” depends on the image size and is empirically determined; this increases the 

model identification accuracy, and the number of planes is automatically determined, as the quotient 

of dividing the cells’ number in the input layer by two to the power (the power is equal to twice 

number of the pair “convolutional layer - downsampling layer”), which will save the total number 

of cells in the layer after downsampling; it halves the size of the layer planes in height and width, 

which automates the structure definition of the model layers; the patch size depends on the image 

size and is empirically determined, which increases the model identification accuracy; the number 

of encoder blocks is empirically determined, which increases the model learning speed. 

3. Using of the proposed method of intelligent COVID-19 diagnostics for various intelligent 

medical diagnostic systems is a further research prospect. 

The KFold cross-entropy method with 5 folds was used to prevent overfitting. 
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