
Extracting JSON Schemas with tagged unions
Stefan Klessinger1, Meike Klettke2, Uta Störl3 and Stefanie Scherzinger1

1University of Passau, Passau, Germany
2University of Regensburg, Regensburg, Germany
3University of Hagen, Hagen, Germany

Abstract
With data lakes and schema-free NoSQL document stores, extracting a descriptive schema from JSON data collections is an
acute challenge. In this paper, we target the discovery of tagged unions, a JSON Schema design pattern where the value of
one property of an object (the tag) conditionally implies subschemas for sibling properties. We formalize these implications
as conditional functional dependencies and capture them using the JSON Schema operators if-then-else. We further motivate
our heuristics to avoid overfitting. Experiments with our prototype implementation are promising, and show that this form
of tagged unions can successfully be detected in real-world GeoJSON and TopoJSON datasets. In discussing future work, we
outline how our approach can be extended further.

1. Introduction
JSON is a popular data exchange format. Extracting a
schema from collections of JSON documents is a real-
world challenge which is actively being researched [1, 2,
3, 4, 5, 6, 7, 8].

Ideally, the extracted schema describes the data tightly,
yet without overfitting. In this article, we target the de-
tection of a specific schema design pattern in the JSON
Schema language, the pattern of tagged unions, also known
as discriminated unions, labeled unions, or variant types.
This is a recommended design pattern [9], and has been
found to be quite common in real-world schemas [10].

Example 1. Figure 1 shows GeoJSON data. The array
starting in line 2 holds four objects, of type Point and
LineString. Point coordinates are encoded as an array
of numbers, while lines are encoded as an array of points,
and hence, an array of number arrays.

The GeoJSON specification (IETF RFC 7946, clickable
link embedded in the PDF) describes six types of ge-
ometries, including polygons and multi-polygons. Con-
sistently, the property type serves as a tag to distin-
guish the subschema of sibling property coordinates,
thereby instantiating a tagged union.

GeoJSON comes without an official JSON Schema spec-
ification [11]. In Figure 2, we therefore show a hand-
crafted excerpt using the if-then-else construct to
enforce the tagged union, with the following seman-
tics: If the object in question has a property labeled

DEco@VLDB’22: First International Workshop on Data Ecosystems,
September 5, 2022, Sydney, Australia
$ stefan.klessinger@uni-passau.de (S. Klessinger);
meike.klettke@ur.de (M. Klettke); uta.stoerl@fernuni-hagen.de
(U. Störl); stefanie.scherzinger@uni-passau.de (S. Scherzinger)
� 0000-0003-0551-8389 (M. Klettke); 0000-0003-2771-142X
(U. Störl)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

1 { "type ": " GeometryCollection ",
2 " geometries ": [
3 { "type ": " Point ",
4 " coordinates ": [30 ,10] },
5 { "type ": " Point ",
6 " coordinates ": [40 ,15] },
7 { "type ": " LineString ",
8 " coordinates ": [[55 ,5] , [10 ,30] , [10 ,10]] },
9 { "type ": " LineString ",

10 " coordinates ": [[30 ,10] , [10 ,30] , [40 ,40]] }
11] }

Figure 1: GeoJSON data. The value of property type (here
Point and LineString) determines the subschema of prop-
erty coordinates as either encoding a geometric point (an
array of numbers), or a line (an array of points).

type with the value Point, then the value of property
coordinates must be an array of numbers. Else, if the
property type has the value LineString, the value of
coordinates must be an array of points, and hence, an
array of number arrays.

Example 2. Various schemas listed on SchemaStore.org,
a community-curated collection of JSON Schema dec-
larations, encode tagged unions using if-then-else.
Among them are the Minecraft schemas which use tagged
unions to encode so-called data packs for configuring
Minecraft worlds. Other examples are Github Issue Forms,
or the cloudify schema (clickable links in the PDF).

In schema extraction, the detection of tagged unions
has so far received limited attention: Several approaches
are able to detect union types, i.e., properties whose type
is a union of types, but they do not detect the depen-
dency w.r.t. a specific property value (the “tag” in the
tagged union). Figure 3a shows an example: This schema
for GeoJSON data does not restrict the values for prop-
erty type (it allows all strings) and allows alternative
subschemas for property coordinates. As it is overly
general, the schema allows to encode lines as mere ar-

27

1 "if ": {
2 " properties ": {
3 "type ": { " const ": " Point " } },
4 " required ": ["type"] },
5 "then ": {
6 " properties ": {
7 " coordinates ": {
8 "type ": " array ",
9 " items ": { "type ": " number " } } } },

10 "else ": {
11 "if ": {
12 " properties ": {
13 "type ": { " const ": " LineString " } },
14 " required ": ["type"] },
15 "then ": {
16 " properties ": {
17 " coordinates ": {
18 "type ": " array ",
19 " items ": {
20 "type ": " array ",
21 " items ": { "type ": " number " } } } } } }

Figure 2: JSON Schema snippet declaring a tagged union for
GeoJSON geometry objects Point and LineString.

rays of numbers (rather than arrays of number-arrays),
in violation of the GeoJSON specification.

Existing approaches to JSON Schema extraction fail
to detect tagged unions. Notably, in describing their
approach to schema extraction based on typing JSON
values, Baazizi et al. [2] outline how their approach can
be extended to include tagged unions. However, they do
not discuss strategies against overfitting to the input data
during the discovery of tagged unions.

Our proposal follows a different approach, and relies
on a relational encoding of JSON objects from which we
then derive conditional dependencies. A central part of
our contribution are our heuristics, which filter out de-
pendencies that have insufficient support in the input
data, so that they are not reflected in the derived schema.
Specifically, ours is the first proposal towards the discov-
ery of tagged unions that — to our knowledge — includes
an experimental evaluation over real-world data.

Contributions. This paper makes the following con-
tributions:

• We target the detection of tagged unions in JSON
schema extraction, specifically, tagged unions
that are based on dependencies between a prop-
erty value and the implied subschema of its sib-
ling properties.

• Our approach relies on the discovery of unary
constant conditional functional dependencies in
a relational encoding of the JSON objects. Tradi-
tionally, conditional functional dependencies are
employed in the context of data cleaning, and we
apply them to a new domain.

• Our approach is composable with existing algo-
rithms for JSON schema extraction, as we impose
the tagged unions on top of the schemas derived

by state-of-the-art third-party tools.
• Our experiments on real-world GeoJSON datasets

(and its sibling format TopoJSON) show that mean-
ingful tagged unions can indeed be identified. We
illustrate the impact of a configurable threshold
on the number of tagged unions detected, and
consequently, the size of the extracted schema.

We further outline promising directions of future work.

Artifact availability and reproducibility. We have
made our research artifacts (code, data, extracted schemas),
as well as a fully automated reproduction package, long-
term available online [12].

Structure of this paper. In Section 2, we introduce
the preliminaries. Section 3 discusses related work. In
Section 4, we present our approach, specifically the archi-
tecture and heuristics employed, and an outlook on future
extensions. In Section 5, our experiments are presented
and discussed. In Section 6, we draw our conclusions and
discuss opportunities for future work.

2. Preliminaries

2.1. JSON Data Model and JSON Schema
JSON data model.
The grammar below (adopted from [13]) captures the syn-
tax of JSON values, namely basic values, objects, or arrays.
Basic values 𝐵 include the null value, Booleans, num-
bers 𝑛, and strings 𝑠. Objects 𝑂 represent sets of mem-
bers, each member being a name-value pair, arrays 𝐴
represent sequences of values.

𝐽 ::= 𝐵 | 𝑂 | 𝐴
𝐵 ::= null | true | false | 𝑛 | 𝑠 𝑛 ∈ Num, 𝑠 ∈ Str
𝑂 ::= {𝑙1 : 𝐽1, . . . , 𝑙𝑛 : 𝐽𝑛} 𝑛 ≥ 0, 𝑖 ̸= 𝑗 ⇒ 𝑙𝑖 ̸= 𝑙𝑗
𝐴 ::= [𝐽1, . . . , 𝐽𝑛] 𝑛 ≥ 0

JSON Schema. JSON Schema is a language for defin-
ing the structure of JSON documents. The syntax and
semantics of JSON Schema have been formalized in [14],
and we informally present some of the main keywords:

Assertions include required, enum, const, pattern
and type, and indicate a test that is performed on the
corresponding instance.

Applicators include the Boolean operators not, anyOf,
allOf, oneOf, as well as, if-then-else. They fur-
ther include the object operators patternProperties,
additionalProperties, and properties, and the ar-
ray operator items, and the reference operator $ref.
They apply a different operator to the same instance or
to a component of the current instance.

Annotations (title, description, and $comment)
do not affect validation but indicate an annotation asso-
ciated to the instance.

28

1 " anyOf ": [
2 { "type ": " object ",
3 " properties ": {
4 "type": { "type": "string" },
5 " coordinates ": {
6 "type ": " array ",
7 " items ": { "type ": " number " } } }
8 },
9 { "type ": " object ",

10 " properties ": {
11 "type": { "type": "string" },
12 " coordinates ": {
13 "type ": " array ",
14 " items ": { "type ": " array ",
15 " items ": { "type ": " number " }
16 } } } }]

(a) Union type.

1 " anyOf ": [
2 { "type ": " object ",
3 " properties ": {
4 "type": { "const": "Point" },
5 " coordinates ": {
6 "type ": " array ",
7 " items ": { "type ": " number " } } }
8 },
9 { "type ": " object ",

10 " properties ": {
11 "type": { "const": "LineString" },
12 " coordinates ": {
13 "type ": " array ",
14 " items ": { "type ": " array ",
15 " items ": { "type ": " number " }
16 } } } }]

(b) Tagged union.

Figure 3: Snippets of different encodings of GeoJSON geometries in JSON Schema. Left: Union type encoding, as extracted by
traditional schema extraction tools (with syntactic variations, depending on the tool). Right: Tagged union encoding using
anyOf, as an alternative to the if-then-else construct. While near-identical in syntax, differing only in lines 4 and 11, the
schema semantics differ, as the union type allows incorrect encodings of points or line strings in GeoJSON.

Union types A property with several possible types
(or subschemas) can be described as a union type [15],
i.e., the union of all types the property assumes. In JSON
Schema, this can be encoded by a disjunction, using the
union operators anyOf or oneOf (where the former is
inclusive, and the latter exclusive). Such an encoding is
exemplified in Figure 3a for GeoJSON. Union types are
recognized by most of the existing tools for JSON Schema
extraction (as we will discuss in greater detail in our dis-
cussion of related work). While the schema distinguishes
two variants for encoding coordinates (an array of
numbers, or an array thereof), it does not capture any
dependencies between the value of property type and
the subschema for the sibling property coordinates.
Also, the domain of property type is not restricted to
specific string values.

Tagged unions The if-then-else operator allows
for declaring tagged unions, and was introduced (rather
recently) with JSON Schema Draft 7.

In Example 1, we informally introduced the semantics.
As for terminology, we distinguish one property as the
tag (in our example, the property labeled type), and
identify one or more properties with implied subschemas
(in our example, for coordinates).

The tag-property may go by any name. While the
schemas for GitHub Issue Forms and cloudify from Ex-
ample 2 incidentally also rely on a tag labeled “type”, in
the example of Minecraft (see data snippets in Figure 5),
the tag-property is labeled “condition”.

An alternative encoding for tagged unions is to use a
union operator, as shown in Figure 3b. Two different com-
binations of values for property type and subschemas
for property coordinates are given in accordance with
the GeoJSON definition. Again, an object may either be a

“Point” with coordinates encoded as an array of numbers
or a “LineString” with an array of points.

Note that while Figures 3a and 3b differ only marginally
in their syntax, the difference in semantics is striking:
The tagged union captures the dependency between the
value of property type and the subschema of property
coordinates. While union type encodings can be de-
rived by several state-of-the-art schema extraction tools,
schemas with tagged unions are – so far – manually
crafted, since existing approaches to schema extraction
are not capable of discovering value-based dependencies.

Our approach can produce either the if-then-else
encoding or the encoding exemplified in Figure 3b. We
chose to implement the former, because it is more lenient
w.r.t. unexpected tag values (in this case no restrictions
are specified). Note that this is not a limitation of our
approach, and a merely technical limitation.

2.2. Dependencies
For the relational model, the concept of functional depen-
dencies is well explored, and various generalizations are
known, such as conditional functional dependencies [16]
which only apply to a subset of the tuples. In the follow-
ing, we extend these notions to JSON data, assuming a
relational encoding of all objects that are reachable by
the same path from the document root. This idea of a
relational encoding of semi-structured data for the defini-
tion or detection of dependencies is a common approach,
e.g., for XML [17], JSON [18], or RDF data [19].

Relational encoding Given a JSON value, we consider
all labeled paths from the root to a JSON object. Paths
may be encoded in JSONPath [20], a straightforward path
language for JSON.

29

We next introduce the schema for our relational en-
coding. We reserve attribute 𝑂.id for an (internal) object
identifier. The object identifier must be unique, but we
do not impose any constraints on its semantics. In the
following, we will simply use the line of code in the file
containing the JSON Schema declaration (after pretty
printing), where the scope of the object is first entered.

We identify the labels of all properties reachable by a
given path 𝑝:

𝐿𝑝 = {𝑙𝑖 | object {𝑙1 : 𝐽1, . . . , 𝑙𝑛 : 𝐽𝑛}
is reachable by path 𝑝}

For each property label 𝑙𝑖 in 𝐿𝑝 where 𝐽𝑖 occurs as
a basic value, we define a relational attribute 𝑙𝑖.value
that captures the basic value 𝐽𝑖. These properties are
considered to be candidates for tags.

Further, for each property label 𝑙𝑖 in 𝐿𝑝, we define
an attribute 𝑙𝑖.type, capturing the subschema directly
derived from its value 𝐽𝑖.

For each object reachable by path 𝑝, we then insert
one tuple into this relation, choosing some unique object
identifier for each object. The attribute values are pop-
ulated with the semantics described above; null values
mark missing entries.

Example 3. Table 1 shows the encoding for the JSON
objects from Figure 1 in the array starting from line 3,
reachable by the JSONPath /geometries[*]. By t1
and t2, we abbreviate the subschemas directly derived
from the JSON values, requiring an array of numbers (t1)
and an array of arrays of numbers (t2), namely

{ "type" : "array",

"items": { "type":"number" }}
(t1)

and further

{ "type": "array", "items":{

"type": "array",

"items": { "type": "number" }}}

(t2)

Table 1
Relational encoding for the objects in Figure 1 that are reach-
able by path /geometries[*] (JSONPath syntax). Sub-
schemas t1 and t2 abbreviated as in Example 3.

𝑂.id type.value type.type coordinates.type

3 Point string t1
5 Point string t1
7 LineString string t2
9 LineString string t2

Dependencies We next introduce dependencies over
this relational encoding. Traditional functional depen-
dencies (FDs) capture constraints that hold on all tuples
of a relation. Moreover, conditional functional dependen-
cies (CFDs) [16] are functional dependencies that hold
on only a subset of the tuples. While in their full gen-
erality, CFDs are a generalization of classical functional
dependencies, we will focus on a very restricted subclass
that is related to association rules [21], and that can be
defined quite compactly.

Definition 4. If 𝒜 is a set of attributes, then a unary con-
stant conditional functional dependency over 𝒜 (ucCFD)
is an expression of the form

[𝐴 = 𝑎] → [𝐵 = 𝑏]

where 𝐴,𝐵 are attributes in 𝒜 and 𝑎, 𝑏 are constants
from the domains of 𝐴 and 𝐵 respectively. A relation
𝑅 over 𝒜 satisfies [𝐴 = 𝑎] → [𝐵 = 𝑏] if for each
pair of tuples 𝑠, 𝑡 ∈ 𝑅, 𝜋𝐴(𝑠) = 𝜋𝐴(𝑡) = 𝑎 implies
𝜋𝐵(𝑠) = 𝜋𝐵(𝑡) = 𝑏.

Example 5. The dependency below holds in Table 1 and
reads as follows:

[type.value = "Point"] → [coordinates.type = t1]

The left-hand-side, in brackets, declares a condition
that must be satisfied for the dependency to hold: We con-
sider all attributes where the value of attribute type.value
is the string “Point”. For all tuples where this condition is
satisfied, the value of attribute coordinates.type must
be the subschema abbreviated as t1.

In our domain of application, namely JSON values,
these dependencies express powerful constraints between
property values and subschemas: In the example depen-
dency above, it is implied that if the value of property
type is the string constant “Point”, then the value of
the sibling property coordinates must conform to the
subschema t1.

In the remainder of this article, we exclusively focus on
the discovery of such value-type constraints, where the
attribute on the left-hand-side of a ucCFD is of the form
“𝐴.value” (the value of property 𝐴, which we consider
to be a candidate for a tag in a tagged union), and the
attribute on the right-hand-side is of the form “𝐵.type”
(the subschema of the sibling property 𝐵).

Traditionally, tagged unions are declared by switch-
ing on the value of a single tag property. This is also
the recommended practice in JSON Schema [9], and in
agreement with what we observe in real-world data [10].
We are therefore confident that our restriction to unary
dependencies is justified.

30

3. Related Work
Our article builds upon the rich body of related work
in the area of schema extraction and the theory of data
dependencies.

Schema and constraint definition. Schema lan-
guages for semi-structured data are well-researched.

XML was developed as a semi-structured data format
with implicit structural information and an optional ex-
plicit schema. The simplest schema language for XML is
DTD (Document Type Definition). The lack of means to
express data types and exact cardinalities in DTDs moti-
vated the development of further schema languages, such
as XML Schema [22], Schematron [23], and RelaxNG [24].
All three support the definition of constraints. In XML
Schema, alternatives can be defined by specifying con-
ditions on path expressions (XPath). In version 1.1 of
XML Schema, the concept of assertions allows to encode
constructs such as tagged unions. Schematron can define
rules with context information (XPath) and messages
(that are sent in the success or error case). RelaxNG en-
ables the definition of inference rules. This historical
excursion shows the necessity of exact and expressive
schema languages. The same holds true for the descrip-
tion of JSON data. The preliminaries on JSON Schema
were already covered in paragraph 2.1.

Schema extraction. In relational databases which fol-
low a schema-first approach, all available databases have
an explicit schema stored in the databases catalog. With
semi-structured data, on the other hand, there are many
datasets available that have been published without such
explicit schema information. Schema extraction (also
known as reverse engineering) is therefore an important
subtask in data profiling for semi-structured data.

XML schema extraction. For schema extraction from
XML documents, different approaches have been devel-
oped, (e.g. [25, 26, 27, 28, 29, 30]). In all algorithms, a
simple schema consisting of element and attribute names,
nesting, optional and required information is derived. We
are not aware of any approaches to extracting complex
schema constraints, such as tagged unions.

JSON schema extraction. Early work on schema ex-
traction from JSON data [1] adds — besides the schema
itself — also the extraction of statistics and a detection of
outliers. In [6], the extraction of schema versions over
time, as well as evolution operations mapping between
consecutive schema versions, is presented.

Recent surveys of different schema extraction approach-
es were provided by [4] (qualitative comparison) and [5]

(quantitative comparison). Several of the examined ap-
proaches also support the extraction of union types: [1]
and [31] use the JSON Schema keyword oneOf, while [2]
use the union type constructor of their own proprietary
schema language. The authors of [32] encode the ex-
tracted schema in the XML Schema language, and encode
union types using entity versioning, while [33] pursue
an alternative approach of reducing different types to
their most generic type.

But neither Klettke et al. [1] nor Frozza et al. [31]
support tagged unions within their extraction of union
types. The approach by Baazizi et al. [2] is based on type
inference. They achieve scalability by inferring types in
a MapReduce-based approach. The authors do discuss
the challenge of extracting tagged unions, and describe
an extension to their algorithm to address this challenge.
However, there is no implementation or evaluation of
this feature, or of any heuristics to prevent overfitting in
tagged unions.

In a further, recent contribution, Spoth et al. [3] focus
on resolving ambiguities during schema extraction, such
as sets encoded as objects rather than arrays. As their
approach does not consider property values, it cannot
detect tagged unions.

Durner et al. [34] recently presented an approach for
fast analytics on semi-structured data. Using various
algorithms, the JSON data is divided into tiles, and lo-
cal schemas are extracted. However, tagged unions are
neither considered nor recognized.

A completely different approach for schema inference
has been suggested in [35]. In this work, a supervised
learning method (based on the well-known C4.5 classifi-
cation algorithm) is used for detecting hidden rules in the
different variants of datasets. These rules can be either
structure-based or value-based. An interesting observa-
tion of this work was that based on an empirical study
(interviews), value-based rules are considered more im-
portant by human consumers than structure-based rules
to distinguish variants. The result of the approach is a
decision tree that distinguishes the different schema vari-
ants with value-based or structure-based conditions on
each edge. Even if the approach in the paper is very differ-
ent from ours, we recognize the motivation that consid-
ering value-based conditions in heterogeneous databases
is important.

Dependencies. For an overview of data dependencies,
we refer to a comprehensive survey [36], and focus on
functional, inclusion, and conditional functional depen-
dencies in the following.

Functional dependencies and inclusion dependen-
cies. Functional dependencies [37, 38, 39, 18] and in-
clusion dependencies on semi-structured data [40, 18]

31

define semantic constraints on data to guarantee certain
data characteristics, to normalize data [41], and to ensure
data quality. These constraints can also be applied in
data cleaning. In [42], an overview over different meth-
ods and the semantic constraints, rules, or patterns to
detect errors in the data cleaning process is given. Schel-
ter et al. [43] use declarative rules in unit tests to check
the data quality (defined with several metrics). Some ex-
amples are: completeness of datasets, range conditions,
certain cardinalities and constraints on statistics. Both
approaches do not infer the semantic constraints from
data but show how declarative rules can be leveraged
during data preprocessing.

The discovery of valid uniqueness constraints, func-
tional dependencies and inclusion dependencies is a well-
studied field in relational databases [44, 45, 46, 47, 48]
and even more relevant in JSON data (or, more generally,
NoSQL data) because often these semantic constraints
are not predefined in the NoSQL databases. They are im-
plicitly available in the data but for data cleaning tasks,
this information is required in form of rules and con-
straints. Hence, development of algorithms to derive
explicit semantic constraints from NoSQL data is of par-
ticular importance.

Methods for deriving semantic constraints from data
can build upon the algorithms developed for relational
databases. Additionally, the algorithms have to scale
with large volumes of data, and be robust despite the
heterogeneity of datasets (variety) and low data quality
(outliers in datasets).

Arenas and Libkin define functional and inclusion de-
pendencies for XML [17], as a basis for schema normal-
ization. More recently, Mior [18] targets the mining of
functional and inclusion dependencies from JSON data.
Both formalisms do not allow to capture the conditional
functional dependencies required in our context.

However, Mior compares the performance of depen-
dency discovery in a relational encoding of the JSON
data (termed “static unrolling”) with a dynamic unrolling
technique, showing that the latter has superior runtime
performance. Mior focuses on the discovery of functional
dependencies and inclusion dependencies. While his ap-
proach does not consider the special case of conditional
functional dependencies, which is relevant in our context,
it is capable of deriving approximate dependencies, thus
being more robust w.r.t. vagueness in the input data.

Kruse et al. developed in [40] the scalable discovery of
inclusion dependencies from data. Scalability of the ap-
proach is achieved by two reasons: the approach is only
concentrating on discovery of unary inclusion depen-
dencies (consisting of one attribute on the left-hand and
on the right-hand side) and is developing a distributed
approach. Combining both, a very efficient algorithm
can be developed for analyzing large datasets. The het-
erogeneity of datasets has not been considered in this

approach. In previous work on inferring inclusion de-
pendencies from JSON data [6], we suggested an efficient
method that uses lattice characteristics to optimize the
algorithm. To consider outliers, a threshold is introduced.
With it, it is possible to derive related inclusion depen-
dencies which are violated by a small number of outliers.

A further relaxation of functional dependency discov-
ery has been suggested in [49] for data lakes. Here, out-
liers are not ignored, but properties that have different
yet similar labels are combined. This method can be used
for data exploration and profiling of datasets with lower
data quality.

Conditional functional dependencies. Conditional
functional dependencies [16] were first introduced for
relational data, in the context of data cleaning. We apply
conditional functional dependencies in a new context,
the relational encoding of JSON objects.

In [50, 51], three algorithms for CFD mining are pro-
posed and evaluated: CTANE and FastCFD build upon
existing algorithms for FD discovery, TANE and FastFD,
respectively and are intended for general CFD discov-
ery. The third algorithm is custom-designed for constant
CFDs, as also targeted by us.

In [52], additional rules for pruning the search space
and consequently speeding up the mining process are
proposed for constant CFDs. Further approaches, based
on FD discovery and pattern mining, are explored in [21].

4. Approach
Our end-to-end approach is sketched in Figure 4. In our
upcoming walk-through of the architecture, we first focus
on the basic approach, as well as our heuristics against
overfitting and schema bloat. We then outline future
work extensions to robustly generalize our approach to
a larger family of tagged unions.

4.1. Architecture
Composability. We design our approach to be compos-
able with existing schema extraction algorithms: Given a
collection of JSON values, we extract a JSON Schema de-
scription 𝑆, using any third-party tool. Along the process
sketched along the bottom, we further derive the declara-
tion of tagged unions, denoted 𝑇 , a sequence of (possibly
nested) JSON Schema if-then-else statements.

By the conjunction of the subschemas as
{"allOf": [S,𝑇]}, the composite schema requires the
JSON values to satisfy both subschemas, imposing tagged
unions on schema 𝑆. This approach allows us to focus
on the particular challenge of identifying tagged unions,
while conveniently leveraging state-of-the-art schema
extraction tools for describing the other aspects of the

32

JSON
Schema

JSON

JSON
Schema
{allOf:[𝑆,𝑇]}

A

...

B

...

C

...

Parse
Tree

X Y Z
· · ·
· · ·
· · ·

Comp.
Records of Rel.

Encoding

𝜋X={. . . }
𝜋Y={. . . }
𝜋Z={. . . }

Position
List

Indices
[X=v1]→[Y=t1]

[X=v2]→[Y=t2]

[X=v3]→[Z=t3]

CFDs
Candidate List

[X=v1]→[Y=t1]

[X=v2]→[Y=t2]

[X=v3]→[Z=t3]

CFDs List

8
Schema 𝑆

1

2 3 4 5 6

7if-then-else
Constraints 𝑇

Schema Extrac-
tion, e.g. [1] Dependency Discovery

Figure 4: System architecture overview. (1) A third-party tool is used to extract a JSON Schema description 𝑆 of JSON input
data. Steps (2) through (7) visualize the discovery of tagged unions as schema 𝑇 , and are described in Section 4. In step (8), the
schemas 𝑆 and 𝑇 are composed into a composite schema. Boxed areas capture state-of-the-art algorithms integrated in our
architecture. A, B and C are JSON property labels while X, Y and Z are attributes in our relation encoding (e.g., A.value).

schema. We leave it to future work to recursively merge
the composite schema, thereby improving the readability
as well as the locality of the interacting constraints.

Relational encoding. In a first step towards the dis-
covery of tagged unions, we parse all JSON values into a
single parse tree (adding a virtual root node), and deter-
mine the set of all labeled paths from the root to a JSON
object. For each such path, we then derive the relational
encoding of all properties in the reachable objects. We
have already introduced this data structure in Section 2,
and resume the discussion of our running example.

Example 6. Consider the GeoJSON value in Figure 1.
Table 1 shows the relational encoding of the four objects
reachable by the path /geometries[*]. The role of
the unique object identifier is to preserve cardinalities
in repeating attribute values, allowing us to later filter
dependencies based on their support in the input.

The running example has been designed to be simple,
and it ignores challenges such as properties with varying
types, dealing with several properties whose values have
basic types, or null-values in the relational encoding. Our
approach can be extended to robustly handle these cases
as well, and we refer to Section 4.3 for a discussion on
the most interesting future generalizations.

Dependency discovery. Based on the relational en-
coding, we discover conditional functional dependencies.
We restrict ourselves to unary constant conditional de-
pendencies in our relational encoding, of the form

[𝐴.value = 𝑐] → [𝐵.type = 𝜎]

where the left-hand-side denotes the value of the can-
didate tag, and the right-hand-side a property with an
implied subschema. Above, 𝐴 and 𝐵 are distinct prop-
erty labels, 𝑐 is a basic-value constant, and 𝜎 denotes the

implied subschema. Recall that with the dot-notation, we
distinguish the value of JSON property 𝐴 (i.e., 𝐴.value)
from the subschema of sibling property 𝐵 (i.e., 𝐵.type)
in our relational encoding of JSON objects.
Example 7. From the relational encoding in Table 1, we
derive the following dependencies, again using the abbre-
viations t1 and t2 for the subschemas introduced earlier:

[type.value = "Point"] → [coordinates.type = t1]

[type.value = "LineString"] → [coordinates.type = t2]

Recall that in the context of our application, they are
interpreted as follows. Given a JSON object reachable
by the path /geometries[*], if the value of property
type is “Point”, the value of the sibling property coordi-
nates must conform to the subschema t1 (an array of
numbers). If the value of property type is “LineString”,
then the value of sibling property coordinates must
conform to the subschema t2 (an array of points).

In the discovery of these dependencies, we leverage
state-of-the-art algorithms [53, 47, 54, 55] (originally de-
veloped for the discovery of traditional functional de-
pendencies), such as a compressed-records encoding of
the relation, computing position list indexes (PLIs) and
producing a sequence of candidate dependencies. PLIs
are calculated for each column of the relational encoding
and allow to effectively group all rows (identified by their
row number) with the same value in the same subset.

In the following, we outline the general idea. Inferring
conditional functional dependencies from PLIs can be
achieved by finding inclusions between them: given PLIs
𝜋A.value = {{1, 2, 3}, {4, 5, 6}} of attribute 𝐴.value and
𝜋B.type = {{1, 2, 3, 4}, {5}, {6}} of attribute 𝐵.type, we
receive the inclusion {1, 2, 3} ⊂ {1, 2, 3, 4}, allowing us
to infer that the values of JSON property A corresponding
to rows 1, 2 and 3 determine the subschemas of the sibling
property B.

More sophisticated algorithms developed for the dis-
covery of conditional functional dependencies (CFDs),

33

such as CFDMiner, CTANE and FastCFD [50], could be
deployed just as well. As our current restrictions, most
notably the one to unary dependencies, obfuscate many
of the challenges in FD and CFD discovery, we opted for
our simpler approach.

Pruning candidate dependencies. To avoid over-
fitting in the derived schemas, we heuristically prune
candidate dependencies, as described in the upcoming
Section 4.2.

Finalization. In a final step, the conditional functional
dependencies are transformed into nested if-then-else
statements in JSON Schema 𝑇 . This step is merely tech-
nical, as is the construction of the composite schema.

4.2. Heuristics
In our approach, an inherent challenge is dealing with
high numbers of discovered dependencies, which may
lead to overfitting the derived schema w.r.t. the input data.
We next distinguish default heuristics and heuristics that
are configurable by an expert user.

4.2.1. Default Heuristics

The following heuristics are always applied, as they pre-
vent schema bloat due to overfitting.

Single-valued attributes. In discovering dependen-
cies, we ignore all attributes from the relational encoding
with a single-valued domain. In Table 1, this concerns
the attribute type.type.

Unique attributes. Unique property values are rec-
ognized as conditional functional dependencies, and ul-
timately, cause overfitting and schema bloat. In depen-
dency discovery, we therefore ignore all attributes where
the domain consists of unique values (such as the object
identifier 𝑂.id, which does not appear in the input data,
and need not be considered in dependency discovery).

Union rule. We apply the union rule to the discovered
dependencies, so that one tag may imply the subschemas
for several sibling properties. This improves schema
succinctness.

4.2.2. Configurable Heuristics

The following heuristics is reasonable in many cases. As
it is not universally applicable, we make it configurable.

Minimum Threshold 𝜋min. Especially in large data-
sets, it is to be expected that dependencies are inferred
that have no real semantics, despite us ignoring attributes
with unique values. Our implementation has a config-
urable minimum threshold: Dependencies with insuffi-
cient support in the input are then ignored during the
generation of if-then-else statements.

By allowing to configure this threshold, either as an
absolute or relative value, the number of discovered de-
pendencies can be influenced. Our experiments evaluate
this effect.

4.3. Future Generalizations of the
Approach

In GeoJSON data, which served as our motivation for
the discovery of tagged unions, the geometry objects
are highly regular. When inspecting further instances
of tagged unions in real-world data, we encounter vari-
ations that require us to generalize our approach. For
illustration, we again resort to an example.

1 [{ " condition ": " minecraft : time_check ",
2 " period ": 24000 ,
3 " value ": { "min ": 0.0 } }]

(a) The value of property min (line 3) is numeric.

1 [{ " condition ": " minecraft : weather_check ",
2 " raining ": false ,
3 " thundering ": false },
4 { " condition ": " minecraft : time_check ",
5 " period ": 24000 ,
6 " value ": {
7 "min ": {
8 " target ": {
9 "name ": "% StartSunburn ",

10 "type ": " minecraft : fixed " },
11 " score ": " Daytime ",
12 "type ": " minecraft : score " } } }]

(b) The value of property min (line 7) is of type object.

Figure 5: Minecraft JSON data (snippets edited and short-
ened, clickable links to GitHub source in the subcaptions).
Property condition functions as the tag in the tagged union.

Example 8. We consider JSON data used in the Minecraft
game, as shown in Figure 5. The property condition
functions as a tag, and distinguishes notions such as “time
checks” and “weather checks”, among others. Depending
on the tag value, different sibling properties exist: Given
that the tag value is a “weather check”, sibling properties
labeled raining and thundering exist. Given that the
tag value is a “time check”, sibling properties labeled
period and value exist.

To extend our approach to such more general forms
of tagged unions, we need to be able to detect condi-
tional dependencies between the value of a candidate tag,

34

and the existence of a sibling property (which we term
value-label constraints, to distinguish from the value-
type constraints that we already handle). Here, a specific
challenge is to handle optional sibling properties, which
are not always present.

Example 9. Resuming the previous example of a Minecraft
“time check”, the subschema for property value is an
object with a property min. The subschema of property
min, however, may vary. In the top example, it is a nu-
meric value. In the bottom example, it is a nested object.
Our approach outlined so far cannot detect this condi-
tional functional dependency, because the subschemas
of the sibling property differ.

To detect value-type dependencies where the types on
the right-hand-side may vary, we need to relax the rec-
ognized subschema. In our current prototype implemen-
tation, we introduce attributes min.type1, . . . , min.type𝑘
(e.g., for a fixed limit 𝑘 = 6), where we describe the
subschema with a varying degree of detail. For instance,
from a shallow min.type1= {"type": "object} to
a very fine-grained description that fully captures all
nested objects. In pruning candidate dependencies, we
only keep the most detailed subschema for which a CFD
still holds. This allows us to detect a common subschema
in many practical cases.

5. Experiments
We next describe our experiments using real-world geo-
spatial datasets encoded in JSON. For notational simplic-
ity, we will write “CFDs” when we refer to the subfamily
of unary constant conditional functional dependencies,
as introduced in Section 2.

5.1. Setup
Implementation. Our prototype is implemented in
Python, using the library anytree for managing parse
trees. For schema validation, we use the Python library
jsonschema (clickable links in the PDF).

For the “third-party” schema extraction tool, we em-
ploy a tool that we have built in earlier work [1]. Note
that our approach is designed to work with any other tool
for JSON Schema extraction. Also, since we construct
the composite schema by combining two subschemas,
we are not restricted to Python-based tools.

To confirm the composability of our approach, we have
successfully built a variant of our architecture based on
the schema extraction tool by Frozza et al. [31, 56] (with
minor technical adaptions), but we do not report the
results, since they do not contribute new insights.

Artifact availability and reproducibility. Our re-
search artifacts (code, data, extracted schemas), as well

as a fully automated reproduction package, are avail-
able online [12]. Additionally, in the PDF version of this
article, clickable links in Table 2 allow our readers to di-
rectly inspect the input datasets, as well as the extracted
schemas.

Datasets. We consider the five JSON datasets listed in
Table 2, all in the GeoJSON or the related TopoJSON for-
mat. For simplicity, we will commonly treat the formats
GeoJSON and TopoJSON synonymously, in discussing
our results.

We identified these datasets by manually searching
open data servers, as well as by performing a search over
all open-source licensed repositories on GitHub using
Google BigQuery. Our selection criteria were (1) a suf-
ficiently large document size and (2) that at least two
different types of geometries co-occur, so that we may
be able to infer tagged unions.

We briefly describe the datasets:
• Map Germany is a TopoJSON dataset, describ-

ing a map of Germany and surrounding areas,
including cities, urban areas, and rivers. This
dataset uses geometry types Point, LineString,
MultiLineString, Polygon and MultiPolygon.

• Map EU is a TopoJSON dataset. Its structure is
comparable to Map Germany but describes coun-
tries in the EU in detail and contains the borders
of some adjacent countries.

• WorldGen Berlin is a GeoJSON dataset from Open-
StreetMap.

• US House Members lists members of the US House
of representatives, including their place of birth,
hometown and congressional district, encoded in
GeoJSON.

• Wildlife Sites contains wildlife sites in West York-
shire, described either as a GeoJSON Polygon or
MultiPolygon.

The datasets encode GeoJSON or the related TopoJSON
format (distinguished as formats “T” and “G” in the table).
We list the size of each dataset in lines of code after pretty-
printing (column |𝐷|).

In lieu of a ground truth describing the number of con-
ditional functional dependencies in the data that is not
GeoJSON-encoded, we report in the table the number
of detectable CFDs in the GeoJSON-parts only (𝐷𝑒𝑡𝐺𝑒𝑜).
We manually determine this value for each dataset, in-
specting all distinct types of GeoJSON objects (e.g., Point,
LineString, Polygon) on each different path. We ignore
all paths where the value of the GeoJSON type does not
vary. While these can be detected as CFDs from the data,
they are not meaningful for recognizing tagged unions,
and should be modeled, for instance, simply as constant
values instead.

35

Table 2
Summary of experimental results. Links embedded in the PDF refer to the original dataset (𝐷). We state the dataset format
(TopoJSON or GeoJSON) and report its size (|𝐷|) in lines of code (LoC), the size of the conventionally extracted schema 𝑆 (in
LoC) and the number of theoretically detectable Geo-/TopoJSON CFDs (𝐷𝑒𝑡𝐺𝑒𝑜). For different threshold settings 𝜋min, we
produce a subschema 𝑇 encoding the tagged unions. “Ratio𝑇 ” reports the share of 𝑇 w.r.t. the size of the composite schema.
Further, the number of CFDs initially discovered (w/o heuristics), after applying threshold 𝜋min (see Section 4.2.2), and after
applying the remaining default heuristics (see Section 4.2.1) are reported. The last column reports the result of checking
whether dataset 𝐷 is valid w.r.t. the extracted composite schema (a checkmark symbol “✓” denotes a successful check). The
checkmarks are clickable links, embedded in the PDF, to the composite schema.

Dataset D For-
mat

|D|
(LoC)

|S|
(LoC)

DetGeo 𝜋min |T|
(LoC)

Ratio
𝑇

CFDs w/o
Heuristics

CFDs
w/
𝜋min

CFDs w/
𝜋min and
Heuristics

Va-
lid

50% 126 23.6% 11 4 ✓
Map Germany T 181 585 405 6 35% 158 27.9% 44 14 5 ✓

15% 190 31.7% 20 6 ✓
50% 95 20.7% 6 3 ✓

Map EU T 122 380 359 6 35% 95 20.7% 10 6 3 ✓
15% 127 25.9% 8 4 ✓
50% 150 10.0% 76 4 ✓

WorldGen B. G 56 441 1 339 11 35% 182 11.9% 1 243 109 5 ✓
15% 278 17.1% 184 8 ✓
50% 54 9.8% 459 2 ✓

US House M. G 22 745 493 2 35% 54 9.8% 719 470 2 ✓
15% 54 9.8% 660 2 ✓
50% 38 20.5% 18 1 ✓

Wildlife Sites G 876 482 143 2 35% 38 20.5% 360 18 1 ✓
15% 92 38.5% 50 3 ✓

Execution environment. Our experiments were con-
ducted on an off-the-shelf notebook with an Intel i7-
1165G7 CPU with 4.7GHz and 16GB of main memory.

5.2. Experimental Design
Workflow. For each data collection, we extract com-
posite schemas choosing three settings for the minimum
threshold 𝜋min: an aggressive setting of 50%, requiring a
conditional functional dependency to occur in at least
half of the tuples in the relational encoding of all objects
reachable by a given path, and more lenient settings with
35% and 15%, respectively.

For each threshold setting, we generate schemas 𝑆
(from the third-party tool) and 𝑇 (encoding the tagged
unions), as well as the composite schema.

Each composite schema is validated against the spec-
ification of JSON Schema Draft-07, confirming that the
composite schema conforms. The input datasets are fur-
ther validated against the extracted composite schema,
checking for any logical errors in schema extraction.

Metrics. In our quantitative assessment, we report
schema sizes (after syntactic normalization by pretty-
printing), the number of conditional functional depen-
dencies initially discovered, and after filtering according
to our heuristics.

We use DetGeo as a target in discussing recall of depen-
dency discovery in the GeoJSON part of the input.

5.3. Results
Table 2 summarizes our results. Note that all composite
schemas successfully validate against Draft-07, and fur-
ther, that all JSON datasets validate against the composite
schemas.

Decreasing the threshold 𝜋min leads to more condi-
tional functional dependencies being discovered. The
share of the subschema encoding tagged unions com-
pared to the entire composite schema ranges between
10% and up to approx. 38%. While the 38% share might
appear to be large, the composite schema has less than
250 lines in total, compared to 800K lines of JSON input.
Thus, this dataset is highly regular in its structure, and
the extracted schema comparatively compact.

For the bottom three datasets, we detect conditional
functional dependencies in the hundreds, even more than
one thousand in the case of the WorldGen Berlin data.
However, applying the threshold and the other heuris-
tics drastically reduces the dependencies towards the
number of tagged unions that we expect to find (c.f. the
target DetGeo). Note that there are only six distinct ge-
ometries in GeoJSON which may, however, occur on
different paths, leading to more than six if-then-else

36

statements in the GeoJSON part.
After applying heuristics and a threshold of 15%, we

only miss two detectable CFDs in Map EU and three in
WorldGen Berlin. Missed CFDs can be attributed to the
threshold being too coarse.

Manually inspecting the final dependencies, we find
one unexpected dependency for Wildlife Sites with a
threshold of 15%. This is the only false positive depen-
dency across all datasets. It results in a tagged union
being declared for a specific date, which is not seman-
tically meaningful. Further, this dependency is outside
the GeoJSON-encoded part of the data, explaining why
the number of detected CFDs is higher than 𝐷𝑒𝑡𝐺𝑒𝑜.
Thus, we have a single case of overfitting for the datasets
analyzed. Overall, we observe very high precision in rec-
ognizing the GeoJSON/TopoJSON dependencies resident
in the data.

We do not focus on runtime evaluation, as our im-
plementation is prototypical and unoptimized. Yet to
provide a general perspective, we share our observation
that runtimes vary greatly between datasets, ranging
from roughly one second to approximately one minute.
This is a waiting time which we deem acceptable for a
non-interactive, irregular task.

Since our approach is main-memory based, memory
is a physical limitation to the inputs that we can pro-
cess. For the datasets considered here, 16GB of RAM are
sufficient to run our experiments.

5.4. Discussion
The comparison between the number of dependencies
found with different heuristics shows the effectiveness
of these heuristics in pruning dependencies. In particu-
lar, this concerns the configuration knob represented by
minimum threshold.

Our approach to setting this threshold is rather coarse,
with 50% obviously too rigid, but 15% delivering mean-
ingful results. In future work, we plan to investigate
how to auto-adjust the threshold, based on statistical
distributions obtained by profiling the input.

An obvious threat to the generalizability of our re-
sults — however promising they are — is that the Geo-
JSON datasets are highly regular in their structure. In
the GeoJSON-part, they contain only a small number of
detectable dependencies, between two and eleven. There-
fore, we refrain from computing the metrics precision
and recall, as they are easily distorted when working
with small numbers. However, the manual inspection of
the derived dependencies, and the comparison against
the target DetGeo, shows that our approach is indeed suc-
cessful for the input datasets chosen.

To counter the threat of generalizability, further experi-
ments over different real-world datasets (e.g., the datasets

listed in Example 2), as well as synthetic data, and data
not encoding any tagged unions, are required.

We do not focus on the performance of our unopti-
mized prototype implementation, as the algorithm is
only executed once for each dataset. Of course, scal-
ability to larger inputs is an issue to be addressed in
future work, as CFD discovery in general is an expensive
problem: Already in addressing the discovery of func-
tional dependencies in their full generality, algorithms
have exponential runtime complexity [57]. Several algo-
rithms for the specific problem of CFD discovery have
been proposed [50]. Their evaluations show that runtime
performance depends heavily on the input, with some
algorithms scaling better with size of the dataset (i.e., the
number of tuples) thus being suitable for large datasets,
while others perform better with higher arity. For con-
stant CFDs, Li et al. [52] achieved promising runtime
improvements by applying custom rules for pruning the
search space.

With strong restrictions to the problem space, such as
our restriction to unary constant CFDs in our case, we can
expect reasonable runtime performance on real-world
inputs (which are often reasonably well-behaved).

In our experiments, we observed a considerable impact
of our heuristics and threshold on runtime, reducing the
processing time for all datasets by up to two orders of
magnitude. This is promising for further optimizations.

6. Conclusion and Outlook
In this article, we proposed a method to infer conditional
functional dependencies from JSON data. We use the
identified dependencies as the basis for declaring tagged
unions in JSON schema extraction.

This allows us to capture value-based constraints. In
fact, in [35] Gallinucci et al. report on expert interviews
with users, regarding the users’ preferences in schemas
over nested data. Their interviews reveal that value-
based conditions have a greater influence on the differ-
entiation of schema variants than structural constraints,
and are therefore preferred.

In future work, our approach can be extended for the
extraction of further variants of dependencies, for in-
stance, traditional conditional functional dependencies
that capture implications between atomic property val-
ues, or dependencies where the value of the tag property
implies the existence of a specific sibling property, as
discussed in greater detail in Section 4.3. This allows to
recognize a larger family of tagged unions.

Our prototype implementation is currently main-mem-
ory based, which limits the size of inputs that we can
handle. Making our implementation scale to larger inputs
is one of the immediate next steps. Here, we may build
upon first results by Mior [18], who shows that discover-

37

ing dependencies in a relational encoding of JSON data
has inferior runtime performance when compared to dis-
covering dependencies in a streaming fashion. Also, we
plan to consider a MapReduce-based approach to schema
extraction, as implemented by Baazizi et al. in [2].

Ultimately, our goal is to obtain a schema declaration
that human consumers consider to be comprehensive, but
that may also be efficiently processed programmatically.
In order to obtain more succinct schemas, we need to
resolve redundancies between the schema extracted by a
third-party tool and our encoding of tagged unions. This
requires rewriting the composite schema based on an
algebraic representation of JSON Schema operators, such
as the schema algebra proposed by Attouche et al. [13].

Further, identifying metrics that capture the quality of
the extracted schemas will allow to quantitatively com-
pare schemas extracted by different approaches. Given
suitable metrics, the configuration of heuristics could
even be adjusted automatically. A possible direction is
to explore the notions of precision and recall, and the
proxy-metric of schema entropy, as introduced by Spoth
et al. in [3].

A further task is to adopt a CFD inference algorithm
that is robust despite poor data quality and that can infer
constraints despite outliers in the data. Naturally, this
requires a relaxation to “soft” CFDs, a task where we may
also build upon existing work on relational [21] and even
JSON data [18].

In summary, our long-term vision is to extract com-
prehensible and therefore human-consumable schema
declarations from JSON data. We believe that the detec-
tion of schema design patterns that are popular among
schema designers, such as tagged unions, is an important
building block towards realizing this vision.

Acknowledgments: This work was funded by Deut-
sche Forschungsgemeinschaft (DFG, German Research
Foundation) grant #385808805. We thank Thomas Kirz
for expertly typesetting the systems architecture in LATEX.
We thank the anonymous reviewers of DEco’22, espe-
cially reviewer #2, for the detailed and helpful feedback.

References
[1] M. Klettke, U. Störl, S. Scherzinger, Schema extrac-

tion and structural outlier detection for JSON-based
NoSQL data stores, in: Proc. BTW, volume P-241,
GI, 2015, pp. 425–444.

[2] M. A. Baazizi, D. Colazzo, G. Ghelli, C. Sartiani,
Parametric schema inference for massive JSON
datasets, VLDB J. 28 (2019) 497–521.

[3] W. Spoth, O. Kennedy, Y. Lu, B. C. Hammerschmidt,
Z. H. Liu, Reducing Ambiguity in JSON Schema
Discovery, in: Proc. SIGMOD, 2021, pp. 1732–1744.

[4] P. Contos, M. Svoboda, JSON schema inference
approaches, in: Proc. ER (Workshops), 2020, pp.
173–183.

[5] I. Veinhardt Latták., P. Koupil., A comparative anal-
ysis of JSON schema inference algorithms, in: Proc.
ENASE, 2022, pp. 379–386.

[6] M. Klettke, H. Awolin, U. Störl, D. Müller,
S. Scherzinger, Uncovering the evolution history of
data lakes, in: Proc. Big Data, 2017, pp. 2462–2471.

[7] M. A. Baazizi, C. Berti, D. Colazzo, G. Ghelli, C. Sar-
tiani, Human-in-the-loop schema inference for
massive JSON datasets, in: Proc. EDBT, 2020, pp.
635–638.

[8] J. Namba, Enhancing JSON schema discovery by
uncovering hidden data, in: Proc. VLDB 2021 PhD
Workshop, 2021.

[9] M. Droettboom, Understanding JSON schema,
https://json-schema.org/understanding-json-
schema/reference/conditionals.html#if-then-else,
2022. Draft 2020-12.

[10] M. A. Baazizi, D. Colazzo, G. Ghelli, C. Sartiani,
S. Scherzinger, An empirical study on the "usage
of not" in real-world JSON schema documents, in:
Proc. ER, 2021, pp. 102–112.

[11] A. A. Frozza, R. dos Santos Mello, Js4geo: A canon-
ical JSON schema for geographic data suitable to
NoSQL databases, GeoInformatica 24 (2020) 987–
1019.

[12] S. Klessinger, M. Klettke, U. Störl, S. Scherzinger,
Extracting JSON Schemas with Tagged
Unions (Reproduction Package), 2022. URL:
https://doi.org/10.5281/zenodo.6985647.
doi:10.5281/zenodo.6985647.

[13] L. Attouche, M. A. Baazizi, D. Colazzo, G. Ghelli,
C. Sartiani, S. Scherzinger, Witness genera-
tion for JSON schema, CoRR abs/2202.12849
(2022). URL: https://arxiv.org/abs/2202.12849.
arXiv:2202.12849.

[14] F. Pezoa, J. L. Reutter, F. Suárez, M. Ugarte, D. Vrgoc,
Foundations of JSON Schema, in: Proc. WWW,
2016, pp. 263–273.

[15] F. Suárez, J. Reutter, D. Vrgoc, M. Ugarte, F. Pezoa,
JSON Schema: Multiple Types (Software), https://
cswr.github.io/JsonSchema/spec/multiple_types/,
2016.

[16] P. Bohannon, W. Fan, F. Geerts, X. Jia, A. Kementsi-
etsidis, Conditional functional dependencies for
data cleaning, in: Proc. ICDE, 2007, pp. 746–755.

[17] M. Arenas, L. Libkin, A normal form for xml
documents, ACM Trans. Database Syst. 29 (2004)
195–232.

[18] M. J. Mior, Fast discovery of nested dependencies on
JSON data, CoRR abs/2111.10398 (2021). URL: https:
//arxiv.org/abs/2111.10398. arXiv:2111.10398.

[19] S. Kruse, A. Jentzsch, T. Papenbrock, Z. Kaoudi,

38

J. Quiané-Ruiz, F. Naumann, Rdfind: Scalable con-
ditional inclusion dependency discovery in RDF
datasets, in: Proc. SIGMOD, 2016, pp. 953–967.

[20] J. Friesen, Java XML and JSON: Document Process-
ing for Java SE, Apress, 2019, pp. 299–322.

[21] J. Rammelaere, F. Geerts, Revisiting conditional
functional dependency discovery: Splitting the "C"
from the "FD", in: Proc. ECML PKDD, 2018, pp.
552–568.

[22] W3C, W3C XML Schema Definition Language
(XSD) 1.1 Part 1: Structures, W3C Recom-
mendation, 2012. URL: https://www.w3.org/TR/
xmlschema11-1/.

[23] ISO/IEC, ISO/IEC 19757-3:2020 Information tech-
nology — Document Schema Definition Languages
(DSDL) — Part 3: Rule-based validation — Schema-
tron, ISO/IEC Standard, 2020. URL: https://www.
iso.org/standard/74515.html.

[24] ISO/IEC, ISO/IEC 19757-2:2008 Information tech-
nology — Document Schema Definition Language
(DSDL) — Part 2: Regular-grammar-based valida-
tion — RELAX NG, ISO/IEC Standard, 2008. URL:
https://www.iso.org/standard/52348.html.

[25] M. Garofalakis, A. Gionis, R. Rastogi, S. Seshadri,
K. Shim, XTRACT: A system for extracting docu-
ment type descriptors from XML documents, in:
Proc. SIGMOD, 2000, pp. 165–176.

[26] C.-H. Moh, E.-P. Lim, W.-K. Ng, DTD-Miner: a tool
for mining DTD from XML documents, in: Proc.
WECWIS, 2000, pp. 144–151.

[27] J. Hegewald, F. Naumann, M. Weis, Xstruct: Ef-
ficient schema extraction from multiple and large
XML documents, in: Proc. Workshops ICDE, 2006.

[28] M. Klempa, M. Kozák, M. Mikula, R. Smetana,
J. Stárka, M. Svirec, M. Vitásek, M. Necaský, I. Hol-
ubová, jInfer : A framework for XML schema infer-
ence, Comput. J. 58 (2015) 134–156.

[29] B. Chidlovskii, Schema extraction from xml collec-
tions, in: Proc. JCDL, 2002, p. 291–292.

[30] I. Mlýnková, M. Nečaský, Heuristic methods for in-
ference of xml schemas: Lessons learned and open
issues, Informatica 24 (2013) 577–602.

[31] A. A. Frozza, R. dos Santos Mello, F. de Souza da
Costa, An approach for schema extraction of JSON
and extended JSON document collections, in: Proc.
IRI, 2018, pp. 356–363.

[32] D. S. Ruiz, S. F. Morales, J. G. Molina, Inferring
versioned schemas from NoSQL databases and its
applications, in: Proc. ER, 2015, pp. 467–480.

[33] J. L. C. Izquierdo, J. Cabot, Discovering implicit
schemas in JSON data, in: Proc. ICWE, 2013, pp.
68–83.

[34] D. Durner, V. Leis, T. Neumann, JSON tiles: Fast an-
alytics on semi-structured data, in: Proc. SIGMOD,
2021, pp. 445–458.

[35] E. Gallinucci, M. Golfarelli, S. Rizzi, Schema profil-
ing of document-oriented databases, Inf. Syst. 75
(2018) 13–25.

[36] S. Song, F. Gao, R. Huang, C. Wang, Data depen-
dencies extended for variety and veracity: A family
tree, IEEE Transactions on Knowledge and Data
Engineering 34 (2022) 4717–4736.

[37] M. L. Lee, T. W. Ling, W. L. Low, Designing func-
tional dependencies for XML, in: Proc. EDBT, 2002,
pp. 124–141.

[38] S. Hartmann, S. Link, More functional dependencies
for xml, in: L. Kalinichenko, R. Manthey, B. Thal-
heim, U. Wloka (Eds.), Advances in Databases and
Information Systems, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2003, pp. 355–369.

[39] L. Kot, W. M. White, Characterization of the inter-
action of XML functional dependencies with DTDs,
in: Proc. ICDT, 2007, pp. 119–133.

[40] S. Kruse, T. Papenbrock, F. Naumann, Scaling out
the discovery of inclusion dependencies, in: Proc.
BTW, 2015, pp. 445–454.

[41] T. Vajk, P. Fehér, K. Fekete, H. Charaf, Denormal-
izing data into schema-free databases, in: Proc.
CogInfoCom, 2013, pp. 747–752.

[42] X. Chu, I. F. Ilyas, S. Krishnan, J. Wang, Data clean-
ing: Overview and emerging challenges, in: Proc.
SIGMOD, 2016, pp. 2201–2206.

[43] S. Schelter, D. Lange, P. Schmidt, M. Celikel, F. Biess-
mann, A. Grafberger, Automating large-scale data
quality verification, Proc. VLDB Endow. 11 (2018)
1781–1794.

[44] J. Kivinen, H. Mannila, Approximate inference of
functional dependencies from relations, Theoretical
Computer Science 149 (1995) 129–149.

[45] H. Mannila, K.-J. Räihä, On the complexity of in-
ferring functional dependencies, Discrete Applied
Mathematics 40 (1992) 237–243.

[46] H. Yao, H. J. Hamilton, Mining functional depen-
dencies from data, Data Mining and Knowledge
Discovery 16 (2008) 197–219.

[47] T. Papenbrock, F. Naumann, A hybrid approach
to functional dependency discovery, in: Proc. SIG-
MOD, 2016, pp. 821–833.

[48] J. Bauckmann, U. Leser, F. Naumann, V. Tietz, Effi-
ciently detecting inclusion dependencies, in: Proc.
ICDE, 2007, pp. 1448–1450.

[49] R. Hai, C. Quix, D. Wang, Relaxed functional de-
pendency discovery in heterogeneous data lakes,
in: Proc. ER, 2019, pp. 225–239.

[50] W. Fan, F. Geerts, L. V. S. Lakshmanan, M. Xiong,
Discovering conditional functional dependencies,
in: Proc. ICDE, 2009, pp. 1231–1234.

[51] W. Fan, F. Geerts, J. Li, M. Xiong, Discovering
conditional functional dependencies, IEEE Trans.
Knowl. Data Eng. 23 (2011) 683–698.

39

[52] J. Li, J. Liu, H. Toivonen, J. Yong, Effective pruning
for the discovery of conditional functional depen-
dencies, Comput. J. 56 (2013) 378–392.

[53] I. F. Ilyas, X. Chu, Data Cleaning, ACM, 2019.
[54] P. Schirmer, T. Papenbrock, S. Kruse, F. Nau-

mann, D. Hempfing, T. Mayer, D. Neuschäfer-Rube,
Dynfd: Functional dependency discovery in dy-
namic datasets, in: Proc. EDBT, 2019, pp. 253–264.

[55] Z. Wei, S. Link, Discovery and ranking of functional
dependencies, in: Proc. ICDE, 2019, pp. 1526–1537.

[56] A. A. Frozza, R. dos Santos Mello, F. de Souza da
Costa, An approach for schema extraction of
JSON and extended JSON document collec-
tions (software), https://github.com/gbd-ufsc/
JSONSchemaDiscovery, 2018.

[57] J. Liu, J. Li, C. Liu, Y. Chen, Discover dependencies
from data - A review, IEEE Trans. Knowl. Data Eng.
24 (2012) 251–264.

40

