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Abstract  
An approach to applying the structured model “state-probability of action” for decision making 
and reasoning under contradictory information got its further development. It was formulated 
in terms of nodes, each of which should be associated with a rectangular stochastic matrix 
“state-probability of action”, and decision making, reasoning etc. is carried out mainly by 
operating with matrices and vectors. A way to constructing matrices “state-probability of 
action” on the base of fuzzy sets and their membership functions has been suggested. A 
problem of equilibrium between two alternatives was explored for such a network. Some 
examples are provided, one of them represents the prospect of how the structured model “state-
probability of action” can be combined with some elements of the Analytic Hierarchy Process 
for tackling the problem of multi-criteria decision making. 
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1. Introduction. Related works 

Currently there is a growing interest to models of individual and collective decision making in a 
multi-agent environment, especially to those models that take into account behavioral aspects of agents’ 
actions and various factors affecting their decisions. We consider also agents of influence whose goals 
are to make other agents accept decisions desirable for the influencers. Provided that an influencer is 
aware of a supposed parameterized model describing behavior of agents, they can try to affect decisions 
of other agents by manipulating parameters of that model – probably in an indirect way by sharing a 
certain information with other agents. 

In [1] one possible approach to constructing such models has been suggested. This approach is based 
on considering a system of states corresponding to possible distributions of probabilities that an agent 
shall make available decisions if they are being in the certain state. Random walk across those states 
has been considered as well. A model based on this approach was called “state-probability of action” 
(or sometimes “state-probability of choice”) model. In [2] some parameters for this sort of models have 
been introduced and explored. 

For describing complex decision making influenced by a set of different factors it appears promising 
to join together separate nodes, each of which corresponds to a particular judgement and is described 
by a separate model “state-probability of action”, to form a network reflecting relations between those 
nodes. A basic approach to describing such relations, that is the structured model “state-probability of 
action”, has been suggested in [3], but this approach needs a further development. A specific issue is 
how to use fragments of the network formed by “state-probability of action” nodes for describing 
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uncertain logical reasoning, especially if this reasoning is carried out on the base of contradictory 
evidence. This is the problem this paper is devoted to. 
  

2. Methodology, model, and techniques: “state-probability of choice” nodes 
and connections between them 

Formally, for each node Q we have to specify a system of states 𝑆ொ = {𝑠ଵ
(ொ)

, 𝑠ଶ
(ொ)

, … }. Let 𝜉(ொ) be a 
random variable that means which state from  𝑆ொ  an agent is located in at the moment. We have to 
consider a vector of probabilities 

 

�̅�(ொ) = (�̅�ଵ
(ொ)

, �̅�ଶ
(ொ)

, … ) 
 

where �̅�
(ொ)

 is a probability that an agent is being in the state 𝑠
(ொ): 

 

�̅�
(ொ)

= 𝑃(𝜉(ொ) = 𝑠
(ொ)

) 
 

Instead of specifying �̅�
(ொ) explicitly, we might consider a random walk across Q and transitional 

probabilities in the corresponding Markov chain as it has been done in [1]. 
Let A and B be connected nodes, and B is a successor of A. We consider the relation 𝐴 → 𝐵 as an 

uncertain one, which means that the state 𝑆 the agent is located in depends on their state from 𝑆 . We 
specify the following probabilities: 

𝑦
(→)

= 𝑃 ቀ𝜉() = 𝑠
()

ቚ𝜉() = 𝑠
()

ቁ 

We can introduce the (𝑚 × 𝑚)-matrix 𝑌(→) = (𝑦
(→)

), where 𝑚 = ห𝑆()ห,  𝑚 = ห𝑆()ห, 

𝑦
(→)  are described above. 

The matrix 𝑌(→) belongs to the class of so-called rectangular stochastic matrices [1, 3, 4], which 
is a generalization of well-known square stochastic matrices. A rectangular matrix 𝑊 =

൫𝑤 ,   𝑖 = 1, 𝑚തതതതതത,   𝑗 = 1, 𝑛തതതതത൯ is said to be rectangular stochastic if it satisfices the following requirements: 

∀𝑖  𝑤



ୀଵ

= 1, 

∀𝑖, 𝑗    0 ≤ 𝑤 ≤ 1 
 
which means that the sum of elements in each row equals 1, but the matrix may be not a square one. 
As it was stated in [3], within such a notation in terms of vectors and matrices the following relation 

takes place: 
 

�̅�() = �̅�() ∙ 𝑌(→) 
 
Terminal nodes, which have no successors, have another meaning. They are related just to the action 

of decision making. Let there be n alternatives. We can introduce the “state-probability of action” model 
as follows: let its states numbering m represent possible distribution of probabilities of choice, and each 
element ℎ , 𝑖 = 1, 𝑚തതതതതത, 𝑗 = 1, 𝑛 തതതതതof the matrix 𝐻 = (ℎ) is the probability that an agent will choose the j-
th alternative if they are being in the i-th state. 

Let’s introduce the vector  𝑝 , 𝑗 = 1, 𝑛തതതതത, where 𝑝  is the probability that an agent will choose the j-th 
alternative. Then 

 



𝑝 = �̅�(ு) ∙ 𝐻 

3. Equilibrium of alternatives 

We will consider the most important particular case when there are two alternatives (n=2). For this 
case it is especially important to consider the situation of equilibrium of alternatives. This means that 
no alternative has advantage over the other, and 

 
𝑝 = (0.5, 0.5) 

 
Equilibrium of alternatives is of great importance for collective decision making by majority of votes 

[1, 2]. It can be shown that if a number of agents is large enough, a situation of equilibrium is the only 
situation when the alternatives are on a par with each other and are chosen in turn. Otherwise, one 
alternative holds the steady advantage over the other, and it is permanently winning. But there can be 
different situations of equilibrium. So, if an agent of influence wants to boost up an alternative which 
is currently losing, they can try to reach one of equilibrium situations and then walk away from it in the 
desired direction. In [1] some sufficient conditions of equilibrium situations were found, which 
significantly rely on the principles of symmetry. This will be illustrated below. 

To make the further considerations clearer, let’s regard a basic illustrative example. 
 
Example 1 
Let the terminal matrix H be as follows [1]: 
 

𝐻 =

⎝

⎜
⎜
⎜
⎜
⎜
⎛

1 0
0.9 0.1

0.75 0.25
0.6 0.4
0.5 0.5
0.4 0.6

0.25 0.75
0.1 0.9
0 1 ⎠

⎟
⎟
⎟
⎟
⎟
⎞

 

 
 
As it was shown in [1], for securing the situation of equilibrium between the alternatives the vector 

�̅�(ு) should be symmetric. For example, let’s take the following one: 
 

�̅�(ு) = (0.3, 0.1, 0. , 0. , 0.2, 0. , 0. , 0.1, 0.3) 
 
Then 
 

𝑝 = �̅�(ு) ∙ 𝐻 = (0.5, 0.5) 
 
This means that the alternatives should be chosen with the equal probabilities, and equilibrium of 

alternatives holds. 
Let’s assume that an agent of influence succeeds in changing the vector  �̅�(ு) – for example, it 

changes as follows: 
 

�̅�(ு) = (0.3, 0.1, 0., 0.1, 0.1, 0., 0., 0.1, 0.3) 
 
Then 𝑝 = (0.51, 0.49). Equilibrium of alternatives has been broken, and the first alternative will 

now win permanently. 
The problem is that the matrix H is postulated in a very arbitrary way. There is no sound reason for 

its elements to be chosen as they are, and they could have very different values. In addition to this, the 



states represented by H hardly can be clearly interpreted. Now we are going to discuss how this problem 
might be tackled. 

4. Getting matrices for terminal nodes 

One approach to making the model “state-probability of choice” more structured and intelligible 
was suggested in [3]. Firstly, it comprises distinguishing groups of states having more or less clear 
interpretation. For instance, such groups can be as follows: 

 proponents of a decision 
 those who hesitate 
 opponents of a decision 
A number of groups can be larger. 
In terms of concepts introduced in Section 2, this is a separate node associated with a model “state-

probability of action” with its own system of states L connected to the terminal one. So, we should 
somehow determine a transition matrix 𝑌(→ு) from L to H. Then we can get the more ingenious 
aggregated matrix 𝐻∗ = 𝑌(→ு) ∙ 𝐻. Given a vector �̅�(), which specifies probabilities that an agent is 
being in each state of L, the vector of choice probabilities p takes a view 

 
𝑝 = �̅�() ∙ 𝑌(→ு) ∙ 𝐻 = �̅�() ∙ 𝐻∗ 

 
Again, a question of equilibrium arises, and now it is connected with so-called centrosymmetric 

matrices [5, 6]. A (𝑚 × 𝑛) – matrix A is said to be centrosymmetric, if 
 

𝑎 = 𝑎ିାଵ,ିାଵ  ∀𝑖 = 1, 𝑚; 𝑗 = 1, 𝑛 
 
It is known that if both matrices 𝑌(→ு) and H are centrosymmetric, then their product 𝐻∗ is 

centrosymmetric as well. Then, if  �̅�() is a symmetric vector and 𝐻∗ is a centrosymmetric matrix, the 
vector p shall be symmetric, that is  𝑝 = (0.5, 0.5), and therefore equilibrium of alternatives holds. 

In [3] the matrix 𝑌(→ு) was just specified explicitly. But it seems reasonable to elaborate more 
flexible approaches to getting this matrix. 

5. A fuzzy approach to getting transitional matrix 

For specifying the transitional matrix 𝑌(→ு), we suggest an approach based on fuzzy sets. To 
formulate the idea more or less formally, let’s consider a family of fuzzy sets 𝑈(𝑙, 𝐻) with the 
membership functions 𝜇(,ு)(𝑥), which indicates the grade of relation of the state x represented by H 
to the certain state l from L. For instance, the state corresponding to the distribution (0.6, 0.4) relates in 
large measure to the state corresponding to hesitating agents but not to proponents or opponents of the 
decision. 

So, we can get a matrix 𝑈 = (𝑢), where 𝑢 = 𝜇
ቀ௦

(ಽ)
,ுቁ

(𝑠
(ு)

). The matrix 𝑌(→ு) can be obtained 

from this matrix by means of the well-known exponential transformation 
 

𝑦
(→ு)

=
𝑒ఉ௨ೕ

∑ 𝑒ఉ௨ೕ


 

 
where 𝛽 > 0 is a certain parameter. 
This looks similar to what we did in [2], but in that paper we did not take into consideration neither 

related systems of states nor fuzzy sets. 
Let’s illustrate this by the following example. 
 
Example 2 



Let’s take the terminal matrix H corresponding to a certain decision the same as in (1), and there are 
three groups of states on the level L: proponents of the decision, hesitating agents and opponents of the 
decision. We can take U as follows: 

 
 

𝑈 = ൭
1 0.8 0.3 0.1 0 0 0 0 0
0 0.1 0.4 0.9 1 0.9 0.4 0.1 0
0 0 0 0 0 0.1 0.3 0.8 1

൱ 

 
 
This matrix is centrosymmetric, so Y has to be centrosymmetric as well. If we take 𝛽 = 1, it 

approximately equals 
 
 

𝑌(→ு) = ൭
0.2192 0.1795 0.1089 0.0891 0.0807 0.0807 0.0807 0.0807 0.0807
0.0674 0.0745 0.1006 0.1658 0.1833 0.1658 0.1006 0.0745 0.0674
0.0807 0.0807 0.0807 0.0807 0.0807 0.0891 0.1089 0.1795 0.2192

൱ 

 
 
Then the aggregated matrix 
 

𝐻∗(ఉୀଵ) = 𝑌(→ு) ∙ 𝐻 ≈ ൭
0.6167 0.3833

0.5 0.5
0.3833 0.6177

൱ 

 
is centrosymmetric. Equilibrium of alternatives will hold for any symmetric vector  �̅�(). 
Like [2], the parameter 𝛽 can be interpreted as a parameter which indicates the degree of agents’ 

decisiveness, and an influencer can try to manipulate this parameter. The resulting matrix 
𝐻∗(ఉୀଵ) appears not to be very good due to the low value of 𝛽. If we take the increased value, for 
instance 𝛽 = 5, which means that the agents become more decisive, we will get 

 

𝐻∗(ఉୀହ) ≈ ൭
0.9487 0.0513

0.5 0.5
0.0513 0.9487

൱ 

 
 
Another promising approach is related to introducing fuzzy variables such as triangle, trapezoid etc. 

ones. 

6. The model “state-probability of action” and reasoning 

Now we a going to show how the structured model “state-probability of action” can be applied for 
uncertain and contradictory reasoning. Reasoning is typically carried out on the base of the knowledge 
by applying certain rules of inference to the known facts. But if we regard an agent’s knowledge as a 
logical system, it may be contradictory (especially if the agent is a human being). Therefore, for a 
statement A an agent may infer both A and its negation �̅�. In such a situation, we consider a probabilistic 
approach, which means that an agent can accept A with a certain probability, and this probability can 
be calculated with the help of the model “state-probability of action”. In this paper we are going to 
develop an approach preliminary outlined in [7], re-formulate it in terms of systems of states and to 
provide some more ingenious examples. 

Let an agent consider a decision L and therefore two related alternatives – to accept L or to reject L. 
Within the model “state-probability of action” we have to introduce systems of states corresponding to 
the rules of inference. For a single inference rule 𝐴 ⟹ 𝐵 we consider two systems of states: 𝑆() and 
𝑆(). So, we have to specify the vector �̅�() and the matrix  𝑌(⟹), then �̅�() can be obtained by the 



formula (). If the rule is a terminal one, that is the rule is 𝐴 ⟹ 𝐿, then we should specify the vector 
�̅�() , the matrix  𝑌(⟹) and in addition to this the matrix 𝐻∗ described above. 

Finally, for the rule 𝐴 ⟹ 𝐿 the vector of probabilities equals 
 

𝑝 = �̅�() ∙ 𝑌(⟹) ∙ 𝐻∗     (1) 
 
Multipliers in the equation (1) can be grouped in different ways. It can be rewritten in the following 

form: 
 

𝑝 = �̅�() ∙ 𝑅 
 
where 𝑅 = 𝑌(⟹) ∙ 𝐻∗. 
Surely, a chain of logical inference may be longer. 
If both 𝑌(⟹) and 𝐻∗ are centrosymmetric rectangular stochastic matrices, then their product R 

shall be a centrosymmetric rectangular stochastic matrix as well. Provided that �̅�() is a symmetric 
vector and R is a centrosymmetric matrix, equilibrium of alternatives holds. 

Another equivalent form of (1) can be constructed as follows: 
 

𝑝 = �̅�() ∙ 𝐻∗,      (2) 
 

�̅�() = �̅�() ∙ 𝑌(⟹)  
 
We will use this form below. 
It is possible that the decision L can be affected by different factors, and this typically can lead to 

contradictions. To make a closer look, let’s consider the following set of rules: 
 

𝐴ଵ ⟹ 𝐿, 
… 

𝐴 ⟹ 𝐿 
 
By applying the equation (2) we can get q different vectors: 
 

�̅�()() = �̅�(ೖ) ∙ 𝑌(ೖ⟹), 𝑘 = 1, 𝑞തതതതത 
 
The vector �̅�() can be obtained by combining all �̅�()(). In particular, we can get their convex 

combination: 
 
 

�̅�() = ∑ 𝑤

ୀଵ �̅�()(),     

   (3) 
 

0≤ 𝑤 ≤ 1, 
 

 𝑤 = 1



ୀଵ

 

 
 
We assume that the matrix 𝐻∗ is centrosymmetric. It can be shown that if all vectors �̅�()() are 

symmetric, their convex combination is symmetric and therefore equilibrium of alternatives holds for 
any values of 𝑤. Otherwise, for ensuring equilibrium the proper values of 𝑤  should be specially 
picked. 

Let’s regard some examples. 



7. Examples of combining evidence 

Example 3 
Firstly, we are going to illustrate one popular rule of what may be called paranormal logic, namely 

the rule “If A implies B and B is desirable, then A is true”. Surely, this rule is incorrect from the logical 
point of view, but people are often driven by it in their practice. 

So, we have the rule 𝐴 ⟹ 𝐵, B is here the terminal node. As it was explained before, 
 

𝑝 = �̅�() ∙ 𝑌(⟹) ∙ 𝐻∗ 
 

As for A, one evidence is the uncertain information whether it is true or false. It appears to be more 
flexible if we pick out a separate rule 𝐾 ⟹ 𝐴, where K denotes the statement “There is the evidence 
that A is true”. Based on this rule, we can get the vector 

 
�̅�()(ଵ) = �̅�() ∙ 𝑌(⟹) 

 
Another rule is 𝑊 ⟹ 𝐴, where W denotes the statement “B is desirable”. So, 
 

�̅�()(ଶ) = �̅�(ௐ) ∙ 𝑌(ௐ⟹) 
 
and the vector �̅�() should be obtained by combining �̅�()(ଵ) and �̅�()(ଶ). 
For all rules we are taking systems of states like to that we used for getting aggregated matrix 

𝐻∗ (proponents, opponents and hesitating agents). 
Let’s postulate the specific values. 
The matrix 𝐻∗ will be taken from the example 2 with 𝛽 = 5: 
 

𝐻∗ = ൭
0.9487 0.0513

0.5 0.5
0.0513 0.9487

൱ 

 
For the rule 𝐴 ⟹ 𝐵 we are taking the matrix 
 

𝑌(⟹) = ൭
0.8 0.2 0
0.3 0.4 0.3
0 0.2 0.8

൱ 

 
For the reason of simplicity, we are taking the same matrices 𝑌(⟹) and 𝑌(ௐ⟹): 
 

𝑌(⟹) = 𝑌(ௐ⟹) = ൭
0.9 0.1 0
0.1 0.8 0.1
0 0.1 0.9

൱ 

 
But vectors �̅�() and �̅�(ௐ) are very different. Assuming that there is no reliable information about 

A, we may take 
 

�̅�() = (0.1, 0.2, 0.7) 
 
But if a majority of agents wants B to be accepted, we may take 
 

�̅�(ௐ) = (0.7, 0.2, 0.1) 
 
Then 
 

�̅�()(ଵ) = �̅�() ∙ 𝑌(⟹) = (0.11, 0.24, 0.65) 



 
�̅�()(ଶ) = �̅�(ௐ) ∙ 𝑌(ௐ⟹) = (0.65, 0.24, 0.11) 

 
If we performed reasoning on the base of available knowledge about A only, our further calculations 

would be as follows: 
 

𝑝 = �̅�()(ଵ) ∙ 𝑌(⟹) ∙ 𝐻∗ = (0.3062, 0.6938), 
 
which means that B should be rejected. 
Similarly, if we proceeded the reasoning on the base of �̅�()(ଶ), B should be accepted. And if we 

carry out the combining: 
 

�̅�() = 0.5 ∙ �̅�()(ଵ) + 0.5 ∙ �̅�()(ଶ) = (0.38, 0.24, 0.38) 
 
we will get 
 

𝑝 = �̅�() ∙ 𝑌(⟹) ∙ 𝐻∗ = (0.5, 0.5) 
 
and equilibrium of alternatives will hold. 
Another example illustrates how the structured model “state-probability of action” can be combined 

with some elements of the Analytic Hierarchy Process (AHP) [8-12], which is a very famous method 
of hierarchical multi-factor decision making. 

 
Example 4 
Assume there are two alternatives and agents are to choose one of them. Similar to AHP, we consider 

decision making affected by multiple criteria. But instead of constructing pairwise comparison matrices 
for each criterion, we are trying to introduce states reflecting degrees of advantage of one alternative 
over the other. We stipulate the rule 𝐴 ⟹ 𝐿  with the following meaning: “if an alternative L is better 
with respect to any criterion, then L should be chosen”. We introduce the states for A as follows: 

 L is significantly better than a competing alternative; 
 L is better in some measure; 
 both alternatives are equivalent; 
 L is worse in some measure; 
 L is significantly worse. 
Certainly, systems of states may be quite different. For instance, states may correspond to the 

standard grades of Saaty scale, or we may use any other scale of preferences. Some reviews of different 
scales for pairwise comparisons can be found in [13, 14]. 

For the rule 𝐴 ⟹ 𝐿  we will specify the following matrix: 
 
 

𝑌(⟹) =

⎝

⎜
⎛

0.95 0.05 0
0.6 0.3 0.1
0 0.2 0.8

0.1 0.3 0.6
0 0.05 0.95⎠

⎟
⎞

 

 
 
For each k-th criterion we will specify its particular vector �̅�()(). Let there be 4 criteria, and 
 
 

�̅�()(ଵ) = (0.9, 0.1, 0, 0, 0. ) 
�̅�()(ଶ) = (0.6, 0.2, 0.1, 0.1, 0) 
�̅�()(ଷ) = (0, 0.1, 0.1, 0.2, 0.6) 



�̅�()(ସ) = (0, 0, 0, 0.1, 0.9) 
 
Either L or the competing alternative shall gain an advantage with respect to particular criteria. For 

combining criteria by using the formula (), we have to specify the coefficients 𝑤. For instance, we can 
take the Perronian vector (that is the normalized main eigenvector) of a pairwise comparison matrix 
across criteria, which is absolutely typical for the AHP. 

Let the comparison matrix be 
 

𝐶 =

⎝

⎜
⎜
⎜
⎛

1 2 3 4
1

2
1 2 3

1

3

1

2
1 2

1

4

1

3

1

2
1

⎠

⎟
⎟
⎟
⎞

 

 
 
Then its Perronian vector approximately equals 
 

𝑤 = (0.4673,    0.2772,    0.1601,     0.0954) 
 
 
With respect to this combined vector, final probabilities of alternatives are 
 

𝑝 = (0.6836,     0.3164) 
 
 
and the chosen alternative shall be L. 
Equilibrium of alternatives will hold if the Perronian vector of C is symmetric. This can take place 

if C is centrosymmetric, for example if it is as follows: 
 
 

𝐶 =

⎝

⎜
⎜
⎛

1
1

4

1

4
1

4 1 1 4
4 1 1 4

1
1

4

1

4
1

⎠

⎟
⎟
⎞

 

 
 
In this paper we don’t consider possible consistency or inconsistency of centrosymmetric pairwise 

comparisons, this issue needs to be specially studied. 
If a pairwise comparison matrix is considered as a parameter of a behavioral model, an influencer 

can try to affect these comparisons – maybe by influencing experts to change their opinions and thereby 
to modify their comparisons. 

8. Results, conclusions and discussion 

In this paper, the structured model “state-probability of action” has got a further development, which 
opens a prospect of constructing a model of decision making under the uncertain and/or contradictory 
information on the base of a network of connected nodes, each of which implements the model “state-
probability of action”. At a closer look, each node should be associated with a rectangular stochastic 
matrix “state-probability of action”, and decision making, reasoning etc. is carried out mainly by 
operating with matrices and vectors. For given or assumed statements, vectors of initial probabilities 



that an agent is being in the certain state related to these statements are to be provided. Such vectors 
might be specified explicitly, but they can be also obtained from a Markov chain with the given 
transitional probabilities, those are the probabilities of transitions across the states. 

Such a model comprises operating with chains of reasoning and combining contradictory evidence.  
In some measure it is similar to those like probabilistic Bayesian networks, belief networks, knowledge 
graphs etc. [15-18]. But the suggested model places more articulate emphasis on behavioral aspects of 
decision making and on considering possible contradictions in available evidence. 

An approach to constructing matrices “state-probability of action” on the base of fuzzy sets and their 
membership functions has been suggested. It appears that such a fuzzy approach might be considerably 
entrenched by using fuzzy numbers of different kinds (triangle, trapezoid etc.). 

The model “state-probability of action” was designed to be parametrized. If such a model describes 
a real situation of decision making and an agent of influence is aware of this model, then they can try 
to manipulate the parameters with the aim of making other agents accept decisions desirable for 
influencers. They can do it by sharing information with other agents; models aimed at describing 
dissemination of information across communities are rapidly developing now [19-22]. 

Some parameters for nodes implementing the structured model “state-probability of action” have 
been suggested and discussed in [2] and, following that, in this paper. The main of them are as follows 
(including but not limited to): 

 decisiveness of agents 
 pairwise comparisons between different criteria the final decision depends on if the suggested 
approach is being combined with the Analytic Hierarchy Process 
 weighting coefficients in formula (3), which are proposed to be used for combining evidence; 
meaningfully these coefficients may reflect how those pieces of evidence are important and/or 
reliable and how we do trust them 
 fuzzy membership functions and types of fuzzy numbers which can be applied for forming 
matrices “state-probability of action”, especially for terminal nodes 
 transitional probabilities across states. 
This list of parameters of the model surely can be extended. 
Two examples, which illustrate possible ways of applying the structured model “state-probability of 

action” to contradictory decision making and reasoning, have been provided. One of them illustrates a 
very proliferated, despite its actual incorrectness, rule of reasoning “If A implies B and B is desirable, 
then A is true”, which relates to what can be characterized as a paranormal logic and may be closely 
bound with a conflict between knowledge and wishes of an agent, especially of a human being. The 
other example illustrates the prospect of how the structured model “state-probability of action” can be 
combined with some elements of the Analytic Hierarchy Process for tackling the problem of multi-
criteria decision making. This appears especially important if decisions are made algorithmically on the 
base of certain parametrized procedures. 

For both examples, the problem of equilibrium between alternatives, which can be found within the 
model by combining contradictory pieces of evidence, has been explored. Those situations of 
equilibrium can be found on the base of symmetric vectors and centrosymmetric matrices, it appears 
interesting to search for non-symmetric ones. If the model is combined with the AHP, it appears 
important to investigate how consistent or inconsistent pairwise comparison matrices may be. 

As an overall final remark, the suggested model “state-probability of action” insofar as it is a 
probabilistic model admitting clear fuzzy generalization, and it is a model placing special emphasis on 
behavioral aspects of decision making, can find various applications as for modeling individual and 
collective decisions in socio-economic systems (political activity, information wars, fluctuations of 
ratings gained by political parties, voting on elections etc.) so in multi-agent systems of algorithmic 
decision making, especially if decisive rules applied in those systems are weakly formalized, unclear 
and volatile. 
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