
A Metagrammar of Causatives in Morphologically
Rich Languages
Valeria Generalova

1
, Simon Petitjean

1

1Heinrich Heine University of Dusseldorf, Institute for Language and Information, Department of Computational
Linguistics, TreeGraSP project, Univesitaetstr. 1, 40225 Dusseldorf, Germany

Abstract
Agglutinative languages are known to encode (almost) each grammatical category with a separate

morpheme. It results in longer words that might be challenging for some NLP methods. However,

the one-to-one correspondence between word segments and their meanings makes agglutinative lan-

guages especially suitable for descriptions with help of rule-based precision grammar formalisms. The

present paper demonstrates a solution for describing agglutinative languages with help of eXtensible

MetaGrammar (XMG). The main innovation of the present paper consists in a careful representation

of agglutinative morphology, offering a clear distinction between derivational and inflectional affixes.

In the metagrammar, morphology and syntax are represented in a single tree structure, where each

morpheme is regarded as a leaf. This paper presents data from three genetically non-related languages:

Finnish, Bashkir and Kannada. More languages can be easily added since linguistic generalizations are

described separately from individual language properties. The paper focuses on a single type of linguistic

constructions, namely, morphological causatives derived from transitive verbs.

Keywords
causative, verbal derivation, morphologically rich languages, syntactic trees, metagrammar, precision

grammar,

1. Introduction

Currently, the most widespread approach for processing natural language comprises large

corpora and machine-learning algorithms that automatically detect features relevant to the

analysis. It performs best on widely spoken languages with little morphology, which constitute

a minor fraction of all world languages. However, morphologically-rich languages encode

information about their structure overtly, making the machine search of syntactic and semantic

rules less relevant. Moreover, since the features of particular phenomena can be induced from

the morphology, one does not need to collect large amounts of training data for these languages.

In this paper, we present a rule-based approach for creating a thorough analysis of a spe-

cific linguistic phenomenon. Namely, we present a formalized description of three-argument

causative constructions in three genetically non-related languages, linking three language levels

in the single output representation: morphology, syntax, and semantics.

This solution is based on the creation of a metagrammar [1], which is a factorized description

The International Conference and Workshop on Agglutinative Language Technologies as a challenge of Natural
Language Processing (ALTNLP), June 7-8, 2022, Koper, Slovenia
$ generalo@hhu.de (V. Generalova); petitjean@phil.uni-duesseldorf.de (S. Petitjean)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:generalo@hhu.de
mailto:petitjean@phil.uni-duesseldorf.de
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


of a grammar. Instead of listing explicitly all the rules needed for analyzing the language

phenomena, we propose a compact implementation of our linguistic theory, which can be

later unfolded into the full set of rules. In particular, we use the XMG framework (eXtensible

MetaGrammar; Crabbé et al. [2], Petitjean et al. [3]), whose key features are its independence

from any grammar theory or formalism and its extensive use of logic programming concepts,

namely, unification and inheritance.

Creating rules for analyzing linguistic phenomena is a complex and time-consuming task.

Therefore, we develop a set of generalized rules that can be reused (with further specifications

when needed) for typologically diverse languages. In contrast to generalizations obtained via

machine learning, these inferences are linguistically salient and interpretable by the researchers.

The very process of developing a metagrammar of a given phenomenon and specifying rules for

a given language might bring new insights in typological or language-specific grammar studies.

With our approach, the main effort to add the support for new languages consists in writing

language plugins, which contain all the language-specific aspects regarding the constructions that

we consider. This architecture (more details in[4]) offers an ideal framework for field linguists

to incrementally formally describe new data while being able to evaluate the formalization

through syntactic/morphological analysis of growing sets of examples.

In this paper, we mainly focus on using the rich morphology of (predominantly) agglutinative

languages to parse (i. e., create a detailed syntactic representation of) complete sentences in

target languages. Section 2 presents our data and outlines the main challenges for the presented

prototype. Section 3 contains all the necessary background. Section 4 couches the principles of

our solution and tackles the challenges accounted for in Section 2. Finally, Section 5 summarizes

our findings and decisions and traces paths for future research.

2. Data

The paper examines constructions like the Finnish (1)
1
. They are based on a transitive verb

(tapa-), from which a causative is built through the affix (-tt-). The verb becomes trivalent, and

the whole sentence includes three arguments marked with different morphological cases
2
. The

two of them being prototypical for transitive constructions (in Finnish, nom and acc), the third

case demonstrates significant cross-linguistic variation [7, 8].

(1) FinnishSatu

Satu.nom

tapa-tt-i

kill-caus-pst.3sg

etana-n

slug-acc

Diane-lla.

Diane-adess

‘Satu had Diane kill the slug.’ [9, p. 222,(20)]

In constructions of this kind, there are two different processes to model: derivation (addition

of the caus suffix to the verbal root) and inflection (addition of case markers to nouns, addition

of tense, person and other morphemes to verb). The derivation can change the shape of the

syntactic tree and the semantics of the whole construction. Inflection, in contrast, is considered

1

Abbreviations: 1 = first person, 3 = third person, abl = ablative, acc = accusative, adess = adessive, caus =

causative, ins = instrumental, ipfv = imperfective, m = masculine, nom = nominative, pst = past, sg = singular.

2

In our analysis, we follow [5, 8] and consider all participants included as arguments in the logical structure of

the predicate to be core arguments. Prior research (for instance, [6] realized within the Lexical Functional Grammar

(LFG) framework) call adess components of constructions like (1) oblique.



to modify the feature structure of constituents but not the structure of the sentence itself. This

fundamental difference proves it important to make a clear distinction between derivational

and inflectional elements in the final solution.

The language sample of our project is controlled for having a single explicit derivational

caus marker on a single verb. Thus, the suggested solution currently does not cover lexical or

periphrastic causatives (e.g., like in English and French).

One of the goals of this paper is to present some challenges in handling inflectional mor-

phology. For instance, some languages allow more than one noun to have an unmarked case

(although respective case markers exist in the paradigm). This situation is called differential

object marking [10] and is often observed in Turkic languages. Example (2) from Bashkir

demonstrates this phenomenon.

(2) Bashkirmin

1.sg

bala-nan

child-abl

xat

letter

jað-ð@r-a-m

write-caus-ipfv-1.sg

‘I make the child write a letter.’ [11, p. 225]

The nominative case is normally unmarked in Bashkir. Therefore the lack of an overt case

marker on the word ‘min’ is well expected. In contrast, the accusative case has a corresponding

segmental marker. It is omitted in sentence (2) because the object is non-specific (for a detailed

analysis of this phenomenon see [12]).

Another trait of morphologically-rich languages is stacking several inflectional morphemes

on the verb. Example (3) shows a sentence from Kannada (Dravidian), where tense and person

are expressed with two different verbal suffixes.

(3) KannadaAvanu-∅
3sg-nom

nann-inda

1sg-ins

t̄ıy-annu

tea-acc

kud-is-id-anu

drink-caus-pst-3sg.m

‘He had/let me drink tea.’ Cole 1983:121 cited in [13, p. 384, (vi)]

This situation is not uncommon in the world’s languages and thus requires special attention.

These three languages – Finnish, Bashkir and Kannada – have been selected for presentation

as they clearly exemplify the focus areas of this paper. The same architecture can be applied

not only to other Uralic, Turkic or Dravidian languages but to a wide range of morphologically

rich idioms (cf. [4]).

3. Background

3.1. Role and Reference Grammar

The underlying theoretical background of this paper is Role and Reference Grammar (RRG;

Van Valin and LaPolla [14], Van Valin [5]) in its formalized version developed by [15].

The trees in this paper follow the RRG concept of the “layered structure of the clause" [5, 3-8].

The upper level is SENTENCE which contains a CLAUSE, or several CLAUSEs. These notions

are used in the common linguistic sense and play a minor role in the scope of this paper. The

noteworthy layer in RRG is CORE which comprises a predicate with all its arguments. All the

structures examined in this paper are COREs.

Adjuncts can be added to any layer of the as PERIPHERY. The difference between CORE

elements and PERIPHERY in syntax is semantically motivated: what is included in the semantic



representation of the verb is considered CORE; everything else is PERIPHERY (see discussion

of some apparent discrepancies in [5, 8]). Syntactic peripheral elements are not shown in the

present paper, but the same mechanism is used for morphological elements.

In this respect, our solution follows one of the recent advances in RRG ([16], [17]): the layered

structure of the word, i. e., the representation of a single graphical word with the principles of the

syntactic layering. Most attention in this respect has so far been on head-marking languages. We

claim that the internal structure of words in morphologically rich dependent-marking languages

is vital for correct syntax-to-semantics linking. In our solution, morphological elements not

contributing to syntactic changes are considered adjuncts (see below).

The RRG concept of the layered structure also applies to phrases (NPs, PPs and others). Thus,

an NP has its CORE_N and NUC_N positions, where modifiers can attach. These syntactic

layers are included in the architecture presented in this paper, although no language examples

with modifiers are considered for clarity.

3.2. RRG Formalization

The formalization of RRG as Tree Wrapping Grammars, or TWG [15], inherits most principles

from (lexicalized) Tree Adjoining Grammars [18, 19]. A TWG is a set of elementary trees that

can be composed using different operations. Fig. 1 shows an example set of elementary trees

and their composition, while the resulting analysis is shown in Fig.2. Feature structures can be

attached to the nodes to carry morphosyntactic information (boxed numbers indicate shared

values between features of a same tree). While lexicalization allows reducing the number of

trees considered during parsing, the use of lexical anchors reduces the size of the grammar itself:

each tree contains an anchor node (marked with ◇). Anchoring is the insertion of a compatible

lexical item below an anchor node.

The second crucial operation for building syntactic trees is substitution, i. e., the ability to

replace a node with another tree. Trees can be inserted only to specifically selected nodes

(marked with ↓) and must root in the nodes with the same category. The processing of a

sentence is done only when each of the substitution nodes is provided with a tree.

In Fig. 1, the leftmost tree (rooted in CORE) has three substitution nodes (NPs). Each of them

can take the rightmost tree below them. Note that this tree has NP as its root (highest node);

therefore, it is eligible for each NP↓ node, but not for the AFF_CAUS↓. Substitution (as lexical

anchoring) triggers the unification of the feature structures attached to the nodes, leading the

variables 1 and 2 to receive the value ade. This allows to propagate the value of some features

across trees and, in our example, ensures that the case of the last argument of the verb (which

comes from the nominal affix) is the expected one.

To handle adjuncts and operators, [15] following [18] suggested using sister adjunction. This

operation requires specific trees, called auxiliary trees, whose root is marked with *. This

operation is optional and unlimited, i. e. a tree can have any number of adjuncts, including zero.

An auxiliary tree can attach only to nodes having the same category as its root. For instance, in

Fig. 1, the small tree below, to which the morpheme -i anchors, is an auxiliary tree attaching to

any node of the category VERB
3
. The third operation defined in [15], wrapping substitution,

3

The position of the adjoined tree relatively to the other daughters of the adjunction site can be controlled with

features attached to the edges of the tree. This is not shown in our solution.



CORE

NP ↓ NUC

VERB

STEM

ROOT_V ◇

tapa

AFF_CAUS ↓

NP ↓ NP↓[case = ade]

AFF_CAUS ◇

tt

VERB *

AFF_INFL ◇

i

NP[case = 1 ]

CORE_N

NUC_N

NOUN

ROOT_N ◇

Diane

AFF_CASE↓[case = 1 ] AFF_CASE ◇[case = 2 ]

lla[case = ade]

Figure 1: Partial composition of elementary trees for the sentence (1). Arrows, dashed arrows and
dotted arrows indicate respectively substitution, sister adjunction and lexical anchoring.

CORE

NP

CORE_N

NUC_N

NOUN

ROOT_N

Satu

NUC

VERB

STEM

ROOT_V

tapa

AFF_CAUS

tt

AFF_INFL

i

NP

CORE_N

NUC_N

NOUN

ROOT_N

etana

AFF_CASE

n

NP[case = ade]

CORE_N

NUC_N

NOUN

ROOT_N

Diane

AFF_CASE[case = ade]

lla

Figure 2: Derived tree for the sentence (1)

allows for dealing with long-distance dependencies and is not used in the present paper.

3.3. Metagrammars and parsing

The basic elements of an XMG metagrammar are called classes; they contain partial linguistic

descriptions, which can be combined and reused. Working at this more abstract level helps

avoid redundancies in the rules and express generalizations. In this work, the generalizations

are partly multilingual and ease the integration of new languages into the resource.

Descriptions are made into dimensions, which allow separating the different levels of linguistic

description (in our work, syntax, morphology and lexical information).

The principal part of our implementation effort, namely the description of the syntax and

morphology, is done in the syn dimension of XMG, in which trees can be described using domi-

nance and linear precedence between nodes. Nodes can be given morphosyntactic information

(feature structures) or receive marks specific to the target formalism (anchor, sister adjunction

or substitution nodes in our case). Unification variables can be used in all dimensions to refer



to nodes, values, imported classes, or feature structures.

Classes are organized in a hierarchy thanks to an import mechanism: a class importing

another receives the description of the latter getting access to a subset of the variables defined

inside of it. Descriptions contained in the high-level classes can therefore combine descriptions

from lower-level classes and extend them (define constraints between nodes of different classes,

add features). As in a logic program, constraints, instructions, and imports of classes can be

combined in a conjunctive or disjunctive way to express alternatives.

Once the metagrammar is written, it needs to be processed by XMG to generate the resulting

grammar, which the parser will use. This processing step, called compilation, consists in

producing all the trees which match the description of a selected set of classes. Because of

the disjunction and partial descriptions with constraints, the execution of a class can lead to

the production of any finite number of trees, as long as no tree constraint is violated and all

feature unifications are successful. The set of trees generated by a class is called a tree family,

and is named after the class. The compiled descriptions are then given to the TuLiPA [20, 21]

parser, which will use them for analyzing input sentences. For the analysis of each sentence,

the features ascribed to each morpheme are used to select the relevant trees from the grammar

and restrict the set of operations (described in Sec. 3.2) that can be applied between them.

In order to perform lexical anchoring, we separate the lexicon from the trees: we generate on

one side an inventory of syntactic structures (in our case, syntactic and morphological), and

on the other side a lexicon of segmental morphemes. This (language-specific) lexicon simply

lists a set of morphosyntactic features and indicates in which tree family it can be used as a

lexical anchor. For instance, the lexicon maps the Finnish morpheme tapa to the tree family

IntersectionFIN, which lists all possible syntactic/morphological configurations for Finnish

verbal roots. The unanchored trees (where the leaf receiving the lexical item is marked with ◇)

are described in the previously introduced syn dimension.

3.4. Situating our research

After describing key theoretical and technical concepts behind our research, we would like to

situate it in a broader context of NLP practices and grammar engineering initiatives.

The most recent survey of approaches towards morphological processing of low-resource

languages [22] summarizes existing tasks in computational morphology. However, they all

have to do with morphological level only, without relating it to syntax or semantics. This is

also applicable to the finite-state approaches to morphology like [23] or [24]. Therefore, our

approach falls out of the main trend and thus requires additional description.

One of the closest comparable alternatives to the system we work with is the LinGO Grammar

Matrix [25]. From the theoretical point of view, our system is different as it relies on Role and

Reference Grammar (RRG), while the LinGO project is built with HPSG. Both theories make

extensive use of features, which helps to use them in a formalized description. The Grammar

Matrix features a special library on valence modifications [26]. Although this module is multilin-

gual, it does not pay sufficient attention to the inner structure of words in morphologically-rich

languages, in contrast to the approach presented in this paper.

The best developed RRG-based account for derivational morphology is presented in [27].

Although it relies on an early version of RRG (before the formalization by [15]), it describes



rules of lexical derivation as logical structures. The section dedicated to causatives pays specific

attention to causative-forming affixes but does not deal with the question of handling the

inflection of newly derived verbs. Also, this proposal does not offer any link between morphology

and syntax, i. e., does not show argument structures allowed by causative verbs.

There are also XMG-based projects focused on representing morphological processes. Namely,

[28] explores the semantics of the English suffix -al. However, we are dealing with a different

kind of task, trying to tie together morphology and syntax, taking into account the structure

of different parts of speech. A study of a morphologically rich language Ikota (Bantu family)

[29] offers a syntax-compatible treatment of a rather complex morphology. The difference

from our study is that it presents morphology in a flat way, while we establish a hierarchy of

morphological operations. Not to mention that all these projects deal with one language each,

while we set one of our main goals in encoding cross-linguistic generalizations applicable to

genetically non-related languages.

4. Solution

The solution we present comprises two main parts: construction classes that capture cross-

linguistic generalizations and language plugins that encode language-specific information as

a feature structure. Our metagrammar decomposes the description of trees such as the ones

shown in Fig. 1 into a set of classes, which are then combined thanks to the import mechanism.

These classes separate the syntactic and morphologic parts of the linguistic analysis and can be

reused to build trees for other types of constructions. The classes for three-argument causative

constructions define a set of trees in which verbal roots can be anchored. The classes for

arguments define a set of trees for nominal roots with slots for all types of adjuncts. These trees

can fill the substitution slots of a verbal tree. The construction classes are built in a language-

independent way. In order to generate the trees specific to a given language, the construction

class must simply be combined with the language plugin class. The language-specific features

of the nodes used in the construction (for instance, the case values of the arguments) receive

through this process the values specified in the plugin. The plugin information also allows

discarding the configurations that are not allowed, for example, because of the word order.

4.1. Standard case

In this section, we describe in detail all the steps in describing and parsing sentence (1).

Affixes for nominal cases are introduced in a class describing nouns, which generates two

trees. The first one (4
th

tree of Fig.1) has a substitution node for a case affix. In (1), this is how

acc and adess noun phrases are built. The second variant is just the nominal root without overt

case markers. Cases eligible for zero marking are listed in language plugins (for Finnish, it is

just nom). Variable sharing between the plugin and the tree will set the case feature of the NP

node to nom in the second variant of the Finnish noun tree.

Derivational verbal affixes (for the moment, only caus) are described as substitution nodes

in the trees for verbal roots (1
st

tree of Fig. 1 for instance). Namely, we introduced a class

CausativeVerbalStem for a causative stem, which adds a substitution node for an affix next

to the verbal root. The verbal root is defined in a separate class which is also used to build



non-causative constructions. Inflectional verbal affixes are realized as auxiliary trees, such as

the 2
nd

tree of Fig. 1, adjoining at the Verb level (corresponding to the graphical word of the

verb). This decision allows for an economical yet precise representation of multi-morpheme

words. In (1), there is a single synthetic marker -i for tense and person; more agglutination is

described in the next section.

Once the verb is combined from morphemes, it starts functioning as a syntactic unit. The class

describing the verbal morphology is imported in every class defining the argument structure

of the verb, to make it lexicalized (with the verbal root as a lexical anchor). In our example,

the upper-level class creates a causative-of-transitive construction. Importantly, it corresponds

to the cross-linguistic notion of a causative construction. Therefore, in this construction, we

encode the necessity of three NPs and one NUC with a causative verb inside but do not specify

either the morphological information or the word order.
4

The intersection of the verbal constructions class with the Finnish language plugin (by

importing both classes in a new class CausativeFinnish) reveals that the PSA (an RRG term for

the syntactic subject) is nominative and unmarked, the direct object is accusative, etc. The class

CausativeFinnish is, in fact, the uppermost class where the verbal root is used. It generates the

family of trees where the verbal roots of the lexicon can be anchored.

After compilation of the metagrammar, the parser considers all the relevant trees for the

morphemes given in the input. For sentence (1), it produces the analysis shown in Fig. 2.

4.2. Several unmarked cases

Some languages happen two have several (in most cases, two) NPs without overt case marking

in a single sentence. If a single case value could have been represented as a zero feature value,

the task becomes problematic if two zeros have to encode different case values. To handle this

issue, we introduce a special feature to the language plugin called UnmarkedCases and specify

its value using a so-called atomic disjunction, which allows assigning a set of possible values

instead of a single one.

In Bashkir, two cases can be unmarked: nom and acc. Using a standard disjunction would

have generated two trees for unmarked nouns. In the parsing of sentence (2), min and xat
could have been anchored to both these trees, while in our solution, they are both anchored

to instances of the same tree (with an underspecified case value). The correct case value is

selected when the lexical anchoring triggers the unification of the atomic disjunction with the

case value coming from the lexical entry of the morpheme. The anchoring of the noun fails its

case value is not listed in the atomic disjunction.In other words, we determine the case of the

words min and xat to an extent, but not completely: we know that it must be either nom or acc,

but nothing else.

So, once an unmarked word is encountered, it anchors to a nominal tree without the case

marker node. When intersected with the Bashkir language plugins, the case feature on this

NP receives the underspecified value, nom or acc5
. Afterwards, when the substitution takes

place and the NP tree is inserted into the CORE tree, the construction class sets the expected

case value of all arguments depending on the construction requirements and the word order

4

The code for a crucial subclass is given in Fig. 4.

5

See Fig. 3 for a graphical view of the classes.



(e.g., the first NP must encode the causer and bear nom case). At this moment, the value of the

case required by the construction unifies with one of the values from the disjunction, and the

substituted NP receives one single determined case. If the morphological case required by the

construction does not match any of the values available in the disjunction, the substitution is

not possible. For this reason, nouns without case marking cannot take the place of the causee

in Bashkir.

4.3. Several inflectional affixes

Contrarily to Finnish, some languages express tense and person (as well as other verbal inflec-

tional categories) in separate morphemes, like Bashkir in (2) and Kannada in (3). Our solution

can handle any number of inflectional affixes as long as they are placed after the stem or before

it, but not inside. Currently, there are no ordering constraints, i. e. the parser tries to adjoin the

morphemes in all possible orders. This shortcut is feasible for parsing well-formed sentences,

which is our current goal. The addition of such constraints is technically possible through the

mechanism of edge features in TWG and constitutes one of the next steps of our work.

5. Conclusion

In this paper, we showed how a factorized description could help create a multilingual resource

for analyzing a type of morphological constructions. We presented an in-depth approach that

combines information from separate morphemes to create a detailed syntactic representation

without analyzing any previously collected corpora. We also demonstrated that our architecture

complies with linguistic evidence and theoretical assumptions. In future work, we would

like to keep extending the resource developed in this study to more languages to account for

more syntactic and morphological configurations. Namely, we aim to cover the second kind of

valency-increasing constructions, i.e., applicatives.

References

[1] M. Candito, A principle-based hierarchical representation of ltags, in: COLING 1996

Volume 1: The 16th International Conference on Computational Linguistics, 1996.

[2] B. Crabbé, D. Duchier, C. Gardent, J. L. Roux, Y. Parmentier, Xmg: extensible metagrammar,

Computational Linguistics 39 (2013) 591–629.

[3] S. Petitjean, D. Duchier, Y. Parmentier, Xmg 2: describing description languages, in:

International Conference on Logical Aspects of Computational Linguistics, Springer, 2016,

pp. 255–272.

[4] V. Generalova, S. Petitjean, A prototype of a metagrammar describing three-argument

constructions with a morphological causative, Typology of Morphosyntactic Parameters 3

(2020) 29–51.

[5] R. D. Van Valin, Jr., Exploring the syntax-semantics interface, Cambridge University Press,

2005.



[6] L. Pylkkänen, The linking of event structure and grammatical functions in finnish, in:

M. Butt, T. H. King (Eds.), Proceedings of the LFG97 Conference, CSLI Publications,

University of California, San Diego, 1997, pp. 1–15.

[7] B. Comrie, The syntax of causative constructions: cross-language similarities and di-

vergences, in: M. Shibatani (Ed.), Syntax and semantics: The grammar of causative

constructions, Academic Press, 1976, pp. 261–312.

[8] R. M. W. Dixon, A. Y. Aikhenvald, Introduction, in: R. M. W. Dixon, A. Y. Aikhenvald (Eds.),

Changing valency: Case studies in transitivity, Cambridge University Press, Cambridge,

2000, pp. 1–29.

[9] S. Manninen, D. Nelson, What is a passive? the case of finnish, Studia linguistica 58 (2004)

212–251.

[10] K. Sinnemäki, A typological perspective on differential object marking, Linguistics 52

(2014) 281–313.

[11] N. K. Dmitriev, Grammatika baškirskogo jazyka [Grammar of Bashkir], Nauka, Moscow,

2008 [1948].

[12] A. R. Garejshina, Mnogofaktornyj podhod k padezhnomu var’irovaniju (na materiale

differencirovannogo padezhnogo markirovanija v bashkirskom jazyke) [Multifactorial

approach to differential case marking (on the material of differential case marking in

Bashkir)], Bachelor thesis, Moscow State University, 2014.

[13] W. Foley, R. D. Van Valin, Jr., Functional syntax and universal grammar, Cambridge

University Press, 1984.

[14] R. D. Van Valin, Jr., R. J. LaPolla, Syntax: Structure, meaning, and function, Cambridge

University Press, 1997.

[15] R. Osswald, L. Kallmeyer, Towards a formalization of Role and Reference Grammar, in:

R. Kailuweit, E. Staudinger, L. Künkel (Eds.), Applying and expanding Role and Reference

Grammar (NIHIN Studies), Freiburg: Albert-Ludwigs-Universität, Universitätsbibliothek,

2018, pp. 355–378.

[16] D. Bentlei, R. Marial Uson, W. Nakamura, R. D. Van Valin, Jr. (Eds.), The Cambridge

Handbook of Role and Reference Grammar, Cambridge University Press, in press.

[17] R. D. Van Valin, Jr., Head-marking languages and linguistic theory, in: B. Bickel, L. A.

Grenoble, D. A. Peterson, A. Timberlake (Eds.), Language typology and historical contin-

gency: In honor of Johanna Nichols, volume 104 of Typological Studies in Language, 2013,

pp. 91–124.

[18] L. Kallmeyer, R. Osswald, R. D. Van Valin, Jr., Tree wrapping for role and reference

grammar, in: G. Morrill, M.-J. Nederhof (Eds.), Formal Grammar, 2013, pp. 175–190.

[19] D. Arps, T. Bladier, L. Kallmeyer, Chart-based rrg parsing for automatically extracted and

hand-crafted rrg grammars, in: University at Buffalo, Role and Reference Grammar RRG

Conference, 2019.

[20] L. Kallmeyer, T. Lichte, W. Maier, Y. Parmentier, J. Dellert, K. Evang, Tulipa: towards a

multi-formalism parsing environment for grammar engineering, in: Proceedings of the

Workshop on Grammar Engineering Across Frameworks, 2008, pp. 1–8.

[21] D. Arps, S. Petitjean, A parser for ltag and frame semantics, in: Proceedings of the Eleventh

International Conference on Language Resources and Evaluation (LREC 2018), 2018.

[22] A. Wiemerslage, M. Silfverberg, C. Yang, A. D. McCarthy, G. Nicolai, E. Colunga, K. Kann,



Morphological processing of low-resource languages: Where we are and what’s next,

arXiv preprint arXiv:2203.08909 (2022).

[23] M. Hulden, Foma: a finite-state compiler and library, in: Proceedings of the 12th Conference

of the European Chapter of the Association for Computational Linguistics, Association for

Computational Linguistics, 2009, pp. 29–32.

[24] K. Lindén, E. Axelson, S. Hardwick, M. Silfverberg, T. Pirinen, HFST–framework for

compiling and applying morphologies (2011) 67–85.

[25] E. M. Bender, S. Drellishak, A. Fokkens, L. Poulson, S. Saleem, Grammar customization,

Research on Language and Computation 8 (2010) 23–72.

[26] C. M. Curtis, A parametric implementation of valence-changing morphology in the LinGO

Grammar Matrix, Master’s thesis, University of Washington, 2018.

[27] F. J. Cortés Rodríguez, Derivational morphology in role and reference grammar: a new

proposal, Revista Española de Lingüística Aplicada 19 (2006) 41–66.

[28] M. Andreou, S. Petitjean, Describing derivational polysemy with xmg, in: Actes des 24ème

Conférence sur le Traitement Automatique des Langues Naturelles. Volume 2-Articles

courts, 2017, pp. 94–101.

[29] D. Duchier, B. M. Ekoukou, Y. Parmentier, S. Petitjean, E. Schang, Describing

morphologically-rich languages using metagrammars: a look at verbs in ikota, Language

Technology for Normalisation of Less-Resourced Languages (2012) 55–66.

A. Classes of the metagrammar

NounWithCase

noun[case = 1 ]

nroot◇[case = 1 ]

1 = 𝐿𝐹 .UnmarkedCases

∨ noun[case = 2 ]

nroot◇

PluginBashkir

𝐿𝐹

...
UnmarkedCases @{nom, acc}
...

casemark↓[case = 2 ]

Argument

np[case = 3 ]

core_n[case = 3 ]

nuc_n[case = 3 ]

noun[case = 3 ]

∧

ArgumentBashkir

Argument ∧ PluginBashkir

NounWithCase

Figure 3: Metagrammatical classes used to build nominal trees for Bashkir. The operators ∨ and ∧
respectively correspond to disjunction and conjunction, while @ introduces an atomic disjunction.
Dashed lines represent (node) variable sharing between classes. As an exported variable, 𝐿𝐹 is colored
in red. This export allows to set the value of 1 according to the information provided by the plugin.
Only the simple top level class and the plugin class are language specific.



class AllRangeCausConstruction
import VerbalSpine[]
export ?CORE ?LF ?Causer ?Causee ?Theme ?Recipient ?CaseCausee ?CaseTheme
declare ?LF ?Causer ?Causee ?Theme ?Recipient ?CaseCausee ?CaseTheme
{
<syn>{
node ?Causer (mark = subst) [cat = np, case = ?LF.MorphPsaCase];
?CORE -> ?Causer;
{
{
?Trans = intr;
node ?Causee (mark = subst) [cat = np, case = ?LF.MorphUgCase];
?CORE -> ?Causee

} | {
?Trans = tr;
node ?Causee (mark = subst) [cat = np, case = ?CaseCausee];
node ?Theme (mark = subst) [cat = np, case = ?CaseTheme];
?CORE -> ?Causee; ?CORE -> ?Theme

} | {
?Trans = ditr;
node ?Causee (mark = subst) [cat = np];
node ?Recipient (mark = subst) [cat = np];
node ?Theme (mark = subst) [cat = np];
?CORE -> ?Causee; ?CORE -> ?Recipient; ?CORE -> ?Theme

}
}

}
}

Figure 4: Code for the class AllRangeConstructions. The symbols ; and | are respectively the
conjunction and disjunction operators. The keyword node is used to declare a syntactic node, followed
by its identifier, properties and features. The dominance constraint between nodes is expressed using
->. Linear precedence constraints are not used in this class, as it should account for the word order
of any language. Forbidden configurations for a given language can then be filtered out by using the
plugin information. All possible trees are generated for the 3 disjunctively separated blocks: for instance,
24 configurations of the arguments are generated for transitive verbs (?Trans = tr).


	1 Introduction
	2 Data
	3 Background
	3.1 Role and Reference Grammar
	3.2 RRG Formalization
	3.3 Metagrammars and parsing
	3.4 Situating our research

	4 Solution
	4.1 Standard case
	4.2 Several unmarked cases
	4.3 Several inflectional affixes

	5 Conclusion
	A Classes of the metagrammar

