
Towards Model Driven Safety and Security by Design
Miguel Campusano, Simon Hacks and Eun-Young Kang

SDU Software Engineering, Maersk Mc-Kinney Moller Institute, University of Southern Denmark, Odense

Abstract
Software is getting more and more complex, while it gets more and more important to make it safe and secure. At the same
time, the expectations towards the software developers increase and it is unrealistic that they are able to cope properly with all
safety and security requirements. To enable developers to focus on the important parts of the system, model driven software
development got widely adopted. Within this work, we extend this approach by proposing an architecture, which allows to
automatize the analysis of the safety and security properties of the system under design. After the analysis of the system,
feedback will be provided to the developers so that they are able to reason about the design decisions that they recently made.
To discuss our approach, we rely on a model driven approach for drone mission planning and envision how the different
components of the architecture would need to interact.

Keywords
Model Driven Software Engineering, Automatized Analysis, Safety, Security, Model Checking

1. Introduction
The complexity of software is increasing as the prob-
lems that software solves are getting more and more dif-
ficult [1]. This is particularly true when software is used
to interact with the real world, by physical interaction
using cyber-physical systems, or by providing remote in-
terfaces to enable interaction from all over the world [2].
Due to this interaction, there are new demands toward
the safety and security of such safety-critical systems:
systems should not harm the people using them nor ne-
glect access to the system from an unauthorized source.
However, because of the complexity of these systems, it
is unreasonable to expect developers to produce bug-free,
safe and secure code. For this, models play a central role,
as high-level abstraction allows developers to focus on
the fundamental complexity of the systems (i.e., what
the system is supposed to do) instead of their incidental
complexity (e.g., safety and security) [3]. This high-level
abstraction allows developers to build safe and secure
code by design by taking care of the incidental complexity.
As it is challenging to include proper safety and security
measures into a system subsequently, it is preferable to
follow a safety/security by design approach while devel-
oping a software system [4]. In each development phase,
the respective measures can be included instead of cum-
bersomely included at the end. This increases the safety
and security of the system, while reducing the needed
effort to introduce the needed measures.

QuASoQ 2022: 10th International Workshop on Quantitative Ap-
proaches to Software Quality, December 06, 2022, virtual
Envelope-Open mica@mmmi.sdu.dk (M. Campusano); shacks@mmmi.sdu.dk
(S. Hacks); eyk@mmmi.sdu.dk (E. Kang)
Orcid 0000-0002-7894-6635 (M. Campusano); 0000-0003-0478-9347
(S. Hacks); 0000-0002-4589-2378 (E. Kang)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

There is a pressing need for methods and tools to ver-
ify and validate reliability of software systems, i.e., all
software we build should be correct, robust, safe, and
secure under certain circumstances. To prove safety and
achieve error-free software systems, formal reasoning
and methods are used by detecting when the system tran-
sitions into an unsafe state (i.e., one where it violates a
critical safety requirement) [5, 6]. While testing can pro-
vide some reassurance that the systems being developed
are bug-free, it is limited by the skills and expertise of the
tester. It is not guaranteed that testing can find all errors
or show their absence whereas formal verification can
by employing exhaustive analysis [7]. Thus, the use of a
combination of both approaches and software engineer-
ing techniques ensures potential errors are captured as
early as possible. Our focus is on the use of formal meth-
ods alongside testing approaches, formal verification can
be applied to establish functional correctness and can be
combined with model-driven testing. This approach is
integrated into a development workflow and provides
correct configurations and practical considerations of
design from an industrial perspective.

There are different approaches to achieve security by
design for software systems [4]. One approach is to con-
tinuously perform penetration tests of the system under
development [8]. However, this requires a large portion
of resources to be permanently executed. Moreover, this
requires already a system that can be tested. Another
option is to perform attack simulations on a threat model
that represents the system based on known vulnerabili-
ties. This allows not only an easy security assessment of
the actual system under development, but also it is possi-
ble to compare the security properties of different possi-
ble systems without having them already developed [9].

To enable software developers to assess the safety and
security of their systems in almost real-time, it is nat-

34

mailto:mica@mmmi.sdu.dk
mailto:shacks@mmmi.sdu.dk
mailto:eyk@mmmi.sdu.dk
https://orcid.org/0000-0002-7894-6635
https://orcid.org/0000-0003-0478-9347
https://orcid.org/0000-0002-4589-2378
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Figure 1: Simplified ROS-DOTS architecture. The different lines represent different types of interaction: black arrows are
request/response calls, white arrows are callbacks, and dotted lines are constant data flow by publish/subscribe pattern.

ural to combine the beforehand presented approaches.
Therefore, the models and design created by developers
are not solely used for implementing and generating the
system, but they are also transformed automatically into
the respective representations that are needed for the
assessment of the safety and security. In the background,
the assessment will be executed and as soon as the re-
sults are available, the developer gets informed about
potential safety or security issues in their actual software
architecture thought these same models. In a second step,
the developer also gets suggestions how to improve the
safety and security based on the comparison of different
possible evolutions of the actual architecture.

Within this work, we present the first step towards an
automatized model driven safety and security assessment
of software systems. To achieve this, we discuss first
the background of Model Driven Software Development,
Safety Assessment, and Security Assessment. Afterwards,
we present our vision of achieving a model driven safety
and security assessment before we discuss first insights
and how we plan to continue our work.

2. Background and Related Work

2.1. Model Driven Software Development
Model Driven Software Development (MDSD) refers to
using software abstractions to separate fundamental and
incidental complexity of systems. These abstractions are
done by models, which are the representation of the es-
sential aspects of the system. By using them, developers
can define structures and behaviors on these systems
efficiently, considering the domain-specific aspects of the
systems. Then, developers can use this high-level abstrac-
tion of the designed system to generate executable source
code by a sequence of model transformations [10, 11].

Any modeling approach is described using metamod-

els [11]. Models are abstractions over similar programs
while metamodels are abstractions over similar models
from a particular domain. One specific way of designing
systems using models is first designing a metamodel in
the form of a Domain Specific Language (DSL). A DSL is a
concise language that describes a solution of a particular
domain. Developers can use the DSL to define programs
that specify the behaviors of the different models of the
system. Moreover, the domain abstractions allow the
DSL to be used by developers and domain experts [12].

We have successfully used MDSD to develop Un-
manned Aerial Systems (UAS), commonly refers as
drones. We built a DSL for the specification of multi-UAS
missions, called Drone Operation Template Specification
(DOTS) [13], which uses specific languages constructions
to coordinate the use of several UAS in the airspace. The
DOTS programs are then loaded to a service-oriented
architecture called ROS-DOTS [14] (Robot Operation Sys-
tem (ROS)). This architecture provides several services
for UAS, in particular multi-UAS mission planning (i.e.,
specification of UAS flight paths to fulfill a goal), dynamic
replanning of missions (i.e., flight paths modification of
ongoing UAS missions), and a detect-and-avoid system
(i.e., local collision alerting of UAS). Figure 1 shows a
simplified version of ROS-DOTS.

2.2. Safety Assessment
Safety assessment methods include preliminary and sys-
tem hazard and risk analysis, fault tree generation and
analysis, failure mode and effects analysis. Despite such
well-established methods provide an efficient support
for safety engineers, the methods could benefit from an
integration with system modeling, verification, and vali-
dation (V&V) environments. Efforts have been put into
investigation of safety assessment through the MDSE
based on general purpose System Modeling Language
(SysML) [15], Similar studies are also conducted in other

35

modeling language such as EAST-ADL [16, 17, 18, 19]
or AADL [20] that support writing transformation rules
towards formal languages to permit their analysis by for-
mal tools. However, these languages are limited for robot
design compared to our domain specific UAS and meta at-
tack languages. Systems theory process analysis (STPA)
[21, 22, 23] has been studied in the context of unifying
both safety and security assessment. However, their ap-
proaches lack formalism that limits formal V&V. As far
as we know, our approach is the first to combine both
safety and security assessment based on MDSE, STPA,
attack simulations, and formal V&V to guarantee trust-
worthiness in cyber-physical systems, e.g., robot, UAS,
manufacturing, and IoT systems, etc.

To reasoning about and analysis of a design model it is
essential that the modeling language has a well-defined
(informal or formal) semantics. For cyber-physical sys-
tems (which heavily rely on the real-time aspect) a
promising approach to provide analysis of models is to
formally specify systems in a modeling language such
as Timed Automata (TA) [24]. A TA is a finite state ma-
chine extended with clocks, where a clock is a variable
over the positive real numbers. All clocks in a TA star
at zero, grow continuously at the same rate, and can be
tested and reset to zero. Clocks are tested using con-
straints on clocks, called guards. A TA over actions 𝐴
is defined as a tuple < 𝑁 , 𝑙0, 𝐸, 𝑉𝐶, 𝐼 >, where 𝑁 and 𝐸
are the locations and edges, 𝑙0 ∈ 𝑁 is the initial location,
𝑉𝐶 is the set of clock variables, and 𝐼 ∶ 𝑁 ⟼ 𝐺 with
guards 𝑔 ∈ 𝐺, actions 𝑎 ∈ 𝐴, and a set of clocks 𝑟 ⊆ 𝑉𝐶 to
be reset (an alternative notation is 𝑥 ∶= 0 for the rest of
a clock 𝑥). Figure 3 shows an example of a TA (model
in right side), which is a formal representation of the
RiskStatus state diagram (in left side). The actions used
in the TA are risky and no_risky . The location No Alert
is marked initial, as indicated by an extra circle inside
it. The edge from No Alert to Alert is labelled with the
action risky with a guard status . The mode has a clock
Time , which is used to measure the time elapsed since the
action no_risk . The location After Alert is labelled with
a clock invariant to ensure that the delay is less than five
time units between the actions no_risky and risky/reset
time . Edges are labelled with guards to ensure that the
delay is more than five time units and the current status
is not alert, i.e., status != alert .

2.3. Security Assessment
Designing secure and reliable systems is challenging and
attackers constantly find opportunities to compromise
systems. There are different countermeasures at the dis-
posal of organizations to cope with this challenge, such
as applying best practices (e.g., OWASP [25]), penetra-
tion testing [26], established frameworks (e.g., Process
for Attack Simulation and Threat Analysis (PASTA) [27]),

or threat modeling [9].
Here, we facilitate threat modeling to analyze the se-

curity properties of the system under design. Via threat
modeling one wants to reason about the complexity of a
system, as well as identifying potential threats [28]. Usu-
ally, this is done by graphs, where each of the threats is
modeled as a node and they are connected by edges [29].
Given a threat model, attack simulations allow to analyze
attack scenarios on the described infrastructure [30, 31].

More concretely, we rely on the Meta Attack Language
(MAL) as tool to perform our attack simulations. For a
detailed overview of the MAL, we refer readers to the
original paper [32]. First, a MAL DSL contains the main
concepts of a domain under study, so called assets . An
asset contains attack steps , which represent the actual
attacks/threats that can be executed.

An attack step can be connected with n following steps
creating an attack path, which is used for the attack sim-
ulation. Attack steps can be either OR or AND. Addition-
ally, each attack step can be related with specific types of
risks (i.e., confidentiality (C), integrity (I), and availability
(A)). Furthermore, we have defenses at our disposal that
do not allow connected attack steps to be performed. Fi-
nally, we can assign probability distributions to represent
the effort to complete the related attack step. Assets have
relations between them, so called associations . More-
over, we have inheritance between assets and each child
asset inherits all the attack steps of the parent asset. Ad-
ditionally, the assets can be organized into categories.

In List. 1, a short example of a MAL DSL is presented.
In this example, we have four assets and their connections
of attack steps from one asset to another. In the Host
asset, the connect attack step is an OR attack step, while
access is an AND attack step. The -> symbol denotes the
connected next attack step. For example, if an attacker
performs phish on the User , it is possible to reach obtain
on the associated Password and as a result finally perform
authenticate on the associated Host . In the last lines of the
example the associations between the assets are defined.

3. Automated Safety and Security
Assessment

3.1. Architecture Framework
TheMDSD approach allows developers to design systems
using high-level abstractions (i.e., models). Then, these
abstractions generate executable source code correspond-
ing to the system’s behavior. Our objective is to use an
MDSD approach to model and build systems considering
safety and security in their design. To do this, we plan
to reuse the same abstractions that define programs to
generate safety and security assessment artifacts. This
conceptual model and the interaction between the sys-

36

Figure 2: Methodology Roadmap

Figure 3: ros-state diagram for the risk status behavior of Detect and Avoid (DAA) service (left side) and its corresponding
TA (right side)

Figure 4: Conceptual feedback of a privacy issue of a UAS
moving to a location given directly in the DOTS DSL.

tem architecture, safety assessment, and security attack
simulations can be seen in Figure 2. In the context of
this work, we use the example of defining multi-UAS
missions. In this system, we have two different high-
level definitions: models derived over the DOTS DSL and

models derived over the services and their interactions
in the ROS-DOTS architecture.

First, the assessment of the safety and security proper-
ties of the models generated by the DSL can be explicitly
shown to developers. To allow this level of feedback, a
bi-directional connection between the models and the
generated artifacts that validate security and safety prop-
erties should be available. In other words, models should
generate artifacts in a way that the artifacts can relate
to the models that generated them. Then, like in every
modern Integrated Development Environment (IDE), the
system can mark the problematic lines of code in the DSL
program with a meaningful message for developers to
fix the problems. For example, we can consider the case
of a UAS transporting a package from point A to B. An
operator can use any UAS capable of carrying a payload
for this action. However, the system may restrict the use

37

1 c a t e go ry System {
2 a s s e t Network {
3 | a c c e s s
4 −> ho s t s . connec t
5 }
6
7 a s s e t Host {
8 | connec t
9 −> a c c e s s

10 | a u t h e n t i c a t e
11 −> a c c e s s
12 | guessPwd
13 −> guessedPwd
14 | guessedPwd [Exp (0 . 0 2)]
15 −> a u t h e n t i c a t e
16 & a c c e s s {C , I ,A}
17 }
18
19 a s s e t User {
20 | a t t emp tPh i s h i ng
21 −> ph i sh
22 | ph i sh [Exp (0 . 1)]
23 −> passwords . o b t a i n
24 }
25
26 a s s e t Password {
27 | o b t a i n {C }
28 −> hos t . a u t h e n t i c a t e
29 }
30 }
31
32 a s s o c i a t i o n s {
33 Network [networks] ∗
34 <−− NetworkAccess −−> ∗ [ho s t s] Host
35 Host [hos t] 1
36 <−− C r e d e n t i a l s −−> ∗ [passwords] Password
37 User [u s e r] 1
38 <−− C r e d e n t i a l s −−> ∗ [passwords] Password
39 }

Listing 1: Exemplary MAL Code

of a UAS with extra properties, which can entail security
issues, for example, a UAS with a camera attached. An
attacker can intercept the link between the UAS and the
operator, accessing the camera images, which can bring
privacy issues for the people living around the path of the
UAS. While a UAS with a camera is essential for other use
cases (e.g., monitoring a geographical area), we want to
limit the use of the right UAS for the right job, to reduce
security and safety issues. Figure 4 shows a concept of
how this feedback can be displayed in DOTS.

Second, the safety and security properties of the ar-
chitecture itself should also be checked and informed to
developers. To do this, we can use the same idea of a
bi-directional connection between the executable archi-
tecture and the generated artifacts that check security
and safety properties. The architecture can generate
artifacts to test properties over single services and the
communication between multiple services. One example
of a single service test is to check how the detect-and-
avoid service works (DAA in Figure 1). This service alerts
operators when a UAS is in a direct collision path with
an external agent in the airspace. It is vital to check the
safety properties of this service to ensure a safe interac-
tion of agents in the airspace.

As a key example of a multi-service architecture tester,
we present the dynamic replanning feature. This feature
replans the path of every UAS involved in a mission when
new constraints that affect the original plan are added
into the airspace. This feature uses three services: Plan-
ner, Mission Monitor, and Dynamic Replanning. Suppose
the dynamic replan service returns a plan with safety
problems, such as 2 UAS in a direct path against each
other. In that case, our safety checker can inform this
issue directly to developers.

3.2. Formal framework for Safety and
Security Assessment

To be trustworthy, systems need to remain safe and
secure while being resilient to unpredictable changes,
functional/operational failures and cyber-security threats.
Rigorous V&V is essential to ensure trustworthiness of
systems and clear definition of requirements is an impor-
tant prerequisite for V&V.

Most engineering practice highly relies on V&V test-
and-fix of system nature, which is time-consuming, ex-
pensive, and limiting the possibilities for exploration of
alternatives in system design. Thus, we provide a correct-
by-construction approach based on a combination of anal-
ysis techniques such as Systems Theoretic Process Anal-
ysis (STPA) [21] and formal verification such as model
checking to generate critical requirements, remove am-
biguities in the requirements, and specify formal safety
and security properties that should be satisfied by the
system. We also suggest a modularized/compositional
approach for formal modeling to enhance re-usability
and to reduce the complexity of formal modeling.

To facilitate the formal verification, the system ar-
chitecture (illustrated in Figure 2) consisting of a set of
function/service blocks and its operational behaviors are
translated into a formal modeling description, UPPAAL
1 TA. To explicitly annotate and reason about the func-
tional or operational behavior of each block (e.g., DAA
in Figure 1) at the architecture level, we first adopt a
state diagram (RiskStatus ros-state diagram in Figure
3) and extend it with a UML profile which integrates
relevant concepts from our ROS-DOTS. Such a profiled
model is then translated into a formal modeling descrip-
tion, UPPAAL TA. The translation process is supported
in fully automatic by using our DSL. The communica-
tions between different blocks are also transformed into
synchronization channels among other TAs in UPPAAL.
Indeed, each asset and its behavioral logic in Listing 1
are visualized in a TA and the associations are repre-
sented in synchronization channels among different TAs.

1https://uppaal.org. An integrated tool environment for formal mod-
eling, validation and verification of real-time systems modeled as
networks of TA

38

Figure 5: Sketch of a possible uasLang for security analysis

Similarly, a path-planning TA can be generated based on
the Planner block and its ros-state diagram .

The auto-generated TA model is then amenable to for-
mal verification using a UPPAAL model checker against
safety and security requirements. Furthermore, addi-
tional safety and security constraints are identified based
on STPA and feedback from model checking and attack
simulation (which will be further explained in the follow-
ing section). The system design can be refined by adding
the new constraints which inhibit any hazards. Finally,
we prove correctness and consistency of the safety and
security constraints through formal verification and im-
prove the system’s design accordingly. In addition to
formal verification, testing can be performed to validate
the implementation (code as written/automatically gen-
erated by our DSL) actually runs correctly w.r.t. to the
safe and secure design/specification.

The security of a system is affected by a broad variety
of aspects. Formal verification of a system is an important
step to assure to its security. However, to get a complete
verification of the system, every detail about the system
must be known. Moreover, depending on the system’s
size, a complete verification is time intensive and, thus,
usually only conducted for extremely sensitive system
like rockets transporting humans to space. Alternatively,
a verification on an abstracted view of the system can be
conducted, which is less time intensive, but accompanied
by the cost of a not complete verification.

To address this shortcoming, we foresee in our archi-
tecture to not solely rely on verification, but also on
threat modeling and attack simulations as they are also
able to cope with incomplete information (i.e., ”known
unkowns” [33]). We facilitate MAL [32] as vehicle to per-
form out attack simulations. More concretely, we imag-
ine a uasLang (cf. Figure 5) that might reuse certain parts

of existing MAL languages [34], such as coreLang [35]
for the fundamental IT parts or icsLang [36] for the op-
eration technology (OT) similar parts (e.g., sensors or
actuators).

In the following, we will shortly elaborate on the differ-
ent assets that we envision in a possible uasLang . Firstly,
we have the assets often referred to as cyber physical
system. There is the UAS itself, which is the hardware
platform carrying the Payload. Moreover, a UAS has Sen-
sors, which help it to orientate itself in the real-world.
The entire platform is controlled by the Firmware, which
processes the incoming data from the Sensors and com-
municates with the controlling assets Planner and Moni-
toring.

The Planner is the central unit coordinating the differ-
ent UAS and the routes they are taking to reach to their
waypoints. The Monitoring receives the actual state of
the UAS and provides an interface to external systems
that might further process this data. Further, both assets
can incorporate External Libraries, e.g., to perform better
routing or providing additional reporting capabilities.

The communication between the UAS and the con-
trolling units takes place in classical Local Network, like
Ethernet, in which the IT parts are hosted and a Mobile
Network, like 5G, that covers the operation area of the
UAS. These two networks are usually separated by some
kind of Router restricting the network access.

Given uasLang and the models created during the
model driven software development, we are now able
to create a threat model that represents the actual in-
frastructure and perform attack simulations in securi-
CAD [30]. The simulations will tell us potential threats
in the architecture and in which time an attacker might
be able to exploit them. This information is then played
back to the developer, so that they are able to determine

39

possible countermeasures in their system’s architecture
to improve the security.

4. Challenges & Future Directions
The distinctive features of cyber-physical systems with
regard to model checking are their complexity, modular-
ity and the need to comply with safety and security re-
quirements, which means that every failure result should
be thoroughly analyzed and fixed. Despite being one of
the most reliable approaches for ensuring system cor-
rectness, model checking requires additional knowledge
about a system as a whole and efforts aimed to localize
an error in the model of the system. A tool or frame-
work that supports user-friendly model checking which
focuses on explanation of negative verification results
and performs an analysis that the refined system design
is still consistent would be highly beneficial. For example,
in the system verification process, once a violation of a
safety or security constraint/requirement is detected, a
counterexample (failure trace) generated by a UPPAAL
model checker that can be visualized in the architecture
model in order to pinpoint on which time step/block has
caused the property failure. Seemingly including such
aspects into our framework and tool is crucial for making
the formal verification techniques more approachable to
engineers.

For the security assessment, we recognize that not
all parts of the architecture (cf. Figure 1) are reflected
one-to-one in uasLang . However, this is no issue due to
two reasons. Firstly, the security assessment takes the
point of view of an attacker. Thus, we are not solely in-
terested in the system’s architecture, but to all parts that
are exposed to the environment. Consequently, uasLang
contains further information (e.g., on concrete UAS de-
ployed), that might be provided from outside of our pre-
sented solution. Other parts of the architecture might
not be of greater relevance for the security assessment
(e.g., the web server), as they do not change in our set-
ting (and even do not have a representation in the used
model driven software development approach) and thus
do not have any influence on the outcome of the attack
simulation results.

Secondly, it is recommended to base a newly developed
MAL DSL on another existing MAL DSL [34, 37]. Conse-
quently, we would base uasLang at least on coreLang [35].
In other words, wewould have all assets available that are
available in the base language (i.e., coreLang) and, thus,
would be able to model all IT related assets presented in
Figure 1.

Moreover, we have more consideration on the model-
ing of the architecture, when we relate this modeling to
users and developers. For example, a DSL is built to be
concise, to have the necessary features to describe the so-

lution using models, and no more. However, developers
may need to define extra properties for assessing security
and safety properties, that are not needed to solve the
problem itself. In other words, they may need to define
aspects of the incidental complexity of the problem they
are solving. While this may be an issue, we envision an
architecture where developers should declare as few as
possible incidental properties. In addition, even when
they need to declare these properties, the system may
allow them to define them in other parts of the system,
such as configuration files, environment variables, di-
rectly into the architecture, etc.

Finally, we are aware that checking safety and security
properties may take some time, making it inappropriate
to give feedback to developers when they are writing
their programs. Even when certain properties can be
checked fast enough to give them while developers write
their programs, we need to be aware of the properties
that can take more time. For the properties that take
a considerable amount of time, we envision a system
that gives feedback to developers when the program is
running (similar to debugging), or when the program
finishes its execution (similar to the case of automatic
testing or continuous integration/delivery systems).

References
[1] T. Mens, On the complexity of software systems,

Computer 45 (2012) 79–81.
[2] K. Zhang, D. Han, H. Feng, Research on the

complexity in internet of things, in: 2010 In-
ternational Conference on Advanced Intelligence
and Awarenss Internet (AIAI 2010), IET, 2010, pp.
395–398.

[3] O. Pastor, S. España, J. I. Panach, N. Aquino, Model-
driven development, Informatik-Spektrum 31
(2008) 394–407.

[4] M. Waidner, M. Backes, J. Müller-Quade, Develop-
ment of secure software with security by design,
Fraunhofer-Verlag, 2014.

[5] E. M. Clarke, J. M. Wing, Formal methods: State of
the art and future directions, ACM Comput. Surv.
28 (1996) 626–643.

[6] F. Benaben, M. Larnac, J. Pignon, J. Magnier, A pro-
cess for improving multi-technology system high
level design: Modeling, verification and validation
of complex optronic systems, in: 2000 International
Conference On Systems, Man & Cybernetics, vol-
ume 1–5, IEEE, 2000, pp. 1036–1040.

[7] C. Baier, J.-P. Katoen, Principles of Model Checking,
MIT Press, Cambridge, 2007.

[8] B. Arkin, S. Stender, G. McGraw, Software pene-
tration testing, IEEE Security & Privacy 3 (2005)
84–87.

40

[9] W. Xiong, R. Lagerström, Threat modeling–a sys-
tematic literature review, Computers & security 84
(2019) 53–69.

[10] S. Beydeda, M. Book, V. Gruhn, et al., Model-driven
software development, volume 15, Springer, 2005.

[11] M. Völter, T. Stahl, J. Bettin, A. Haase, S. Helsen,
Model-driven software development: technology,
engineering, management, John Wiley & Sons,
2013.

[12] M. Fowler, R. Parsons, Domain-specific languages,
Addison-Wesley Professional, 2010.

[13] M. Campusano, N. Heltner, N. Mølby, K. Jensen,
U. P. Schultz, Towards declarative specification
of multi-drone bvlos missions for utm, in: 2020
Fourth IEEE International Conference on Robotic
Computing (IRC), IEEE, 2020, pp. 430–431.

[14] M. Campusano, K. Jensen, U. P. Schultz, To-
wards a service-oriented u-space architecture for
autonomous drone operations, in: 2021 IEEE/ACM
3rd International Workshop on Robotics Software
Engineering (RoSE), IEEE, 2021, pp. 63–66.

[15] P. David, V. Idasiak, F. Kratz, Reliability study of
complex physical systems using sysml, Reliability
Engineering & System Safety 95 (2010) 431–450.

[16] EAST-ADL, last accessed on 20.10.2022. http://
maenad.eu/index.htm.

[17] E. Kang, P. Schobbens, Schedulability analysis sup-
port for automotive systems: from requirement to
implementation, in: Symposium on Applied Com-
puting, ACM, 2014, pp. 1080–1085.

[18] L. Huang, T. Liang, E. Kang, Tool-supported anal-
ysis of dynamic and stochastic behaviors in cyber-
physical systems, in: 19th International Conference
on Software Quality, Reliability and Security, IEEE,
2019, pp. 228–239.

[19] E. Kang, G. Perrouin, P. Schobbens, Model-based
verification of energy-aware real-time automotive
systems, in: 18th International Conference on Engi-
neering of Complex Computer Systems, IEEE, 2013,
pp. 135–144.

[20] P. Feiler, D. Gluch, Model-Based Engineering with
AADL: An Introduction to the SAE Architecture
Analysis & Design Language, Addison-Wesley Pro-
fessional, 2012.

[21] N. Leveson, J. Thomas, STPA Handbook, Cam-
bridge, 2018.

[22] I. Friedberg, K. McLaughlin, P. Smith, D. Laverty,
S. Sezer, STPA-SafeSec: Safety and security analysis
for cyber-physical systems, Journal of Information
Security and Applications 34 (2017) 183–196.

[23] W. Young, N. G. Leveson, An integrated approach to
safety and security based on systems theory, Com-
mun. ACM 57 (2014) 31–35. doi:10.1145/2556938 .

[24] R. Alur, D. L. Dill, A theory of timed automata,
Theoretical Computer Science 126 (1994) 183–235.

[25] M. Bach-Nutman, Understanding the top 10 owasp
vulnerabilities, arXiv preprint arXiv:2012.09960
(2020).

[26] M. Bishop, About penetration testing, IEEE Security
& Privacy 5 (2007) 84–87.

[27] M. M. Morana, T. Uceda Vélez, Risk centric threat
modeling: Process for attack simulation and threat
analysis, John Wiley & Sons, Hoboken, New Jersey,
2015.

[28] A. Shostack, Threat modeling: Designing for secu-
rity, Wiley, Indianapolis, IN, USA, 2014.

[29] S. Myagmar, A. J. Lee, W. Yurcik, Threat modeling
as a basis for security requirements, in: SREIS,
volume 2005, Citeseer, 2005, pp. 1–8.

[30] M. Ekstedt, P. Johnson, R. Lagerström, D. Gorton,
J. Nydrén, K. Shahzad, securiCAD by foreseeti:
A CAD tool for enterprise cyber security manage-
ment, in: 19th International EDOCWorkshop, IEEE,
2015, pp. 152–155.

[31] H. Holm, K. Shahzad, M. Buschle, M. Ekstedt, P2Cy-
SeMoL: Predictive, probabilistic cyber security mod-
eling language, IEEE Trans Dependable Secure
Comput 12 (2015) 626–639.

[32] P. Johnson, R. Lagerström, M. Ekstedt, A meta lan-
guage for threat modeling and attack simulations,
in: 13th ARES Conference, 2018, pp. 1–8.

[33] S. Hacks, M. Kaczmarek-Heß, S. de Kinderen,
D. Töpel, A multi-level cyber-security reference
model in support of vulnerability analysis, in: In-
ternational Conference on Enterprise Design, Oper-
ations, and Computing, Springer, 2022, pp. 19–35.

[34] S. Hacks, S. Katsikeas, Towards an ecosystem of
domain specific languages for threat modeling, in:
International Conference on Advanced Information
Systems Engineering, Springer, 2021, pp. 3–18.

[35] S. Katsikeas, S. Hacks, P. Johnson, M. Ekstedt,
R. Lagerström, J. Jacobsson, M. Wällstedt, P. Elias-
son, An attack simulation language for the it do-
main, in: International Workshop on Graphical
Models for Security, Springer, 2020, pp. 67–86.

[36] S. Hacks, S. Katsikeas, E. Ling, R. Lagerström, M. Ek-
stedt, powerlang: a probabilistic attack simulation
language for the power domain, Energy Informatics
3 (2020) 1–17.

[37] S. Hacks, S. Katsikeas, E. Rencelj Ling, W. Xiong,
J. Pfeiffer, A. Wortmann, Towards a systematic
method for developing meta attack language in-
stances, in: International Conference on Business
Process Modeling, Development and Support, Inter-
national Conference on Evaluation and Modeling
Methods for Systems Analysis and Development,
Springer, 2022, pp. 139–154.

41

http://maenad.eu/index.htm
http://maenad.eu/index.htm
http://dx.doi.org/10.1145/2556938

