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Abstract
In the distributed streaming data processing scenario, most of the frameworks implement minimal
variations of the Publish-Subscribe pattern, where message passing happens directly between each
Publishers and the group of its Subscribers. This work introduces a novel pattern, named Journal, that
exploits a so called Editor for filtering or modifying the data stream in a principled manner. The Editor
can be integrated into the Publish-Subscribe pattern with two different schemata, and has been used
to implement multiple subsampling strategies, so to reduce the volume of the forwarded data, create
new communication channels and match the ingestion capacity of the consumers. An actual test using
Apache Kafka with a stream of simulated data has confirmed the viability of the Editor integration into
Pub-Sub. We evidence that with the Journal pattern the risk of saturation of a channel can be significantly
lowered and the latency of processing from clients can be notably reduced. We stress that the Journal
pattern is very general and can be extended to multiple other purposes.
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1. Introduction

Streams coming from sensors, IoT, from online transactions or monitoring systems, satellites or
high frequency trading are ubiquitous and relative data grow exponentially, actually representing
a significant portion of the Big Data phenomenon [1, 2, 3]. At the same time the resurgence
of Event Driven Applications in form of reactive programming, pushed by strict scalability
requirements and large scale infrastructures availability, has made event streams and streaming
frameworks more popular than ever before [4, 5, 6, 7].
While many frameworks exist to manage multiple sources of streaming data and multiple

clients, most of them are based on the Publish-Subscribe pattern, where a so-called broker
forwards the messages/data/events published on a channel/topic to all the clients that subscribed
to that channel/topic. The most common behaviour of such systems is to forward all published
messages/data/events on a channel to each subscriber/client, regardless of the ingestion capacity
of the client itself, often resulting in an unacceptable lag in the analysis, or in channel overload,
or in a subscriber crash, or in any combination of these, finally slowing down the entire system
[8].
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In the following first some classic patterns of communication and message-passing will be
described in general and compared, targeting data stream modeling, then a new pattern, named
Journal, will be proposed in two variations, both able to account for the ingestion capacity of the
clients [9]. While a specific strategy will be proposed through this pattern to solve the ingestion
problem, it turns out as a very general and reusable tool, open to many possible extensions.
The paper is organized as follows: in Section 2 background information is discussed and

in Section 3 the novel Journal pattern is introduced, its variations discussed and an example
application presented. Conclusions are drawn in Section 4.

2. Background

The idea of a pattern as a recurring and recognizable structure of the real worldwell anticipates its
discovery and application to software design and software architecture. While it has been found
profitable and fruitful in many concrete domains, like urban design [10], it must be stressed that
the mother of all patterns is just one — abstraction — and in this sense all discovered patterns are
nothing more than predefined solutions abstracted from specific instances of common problems.
While it is a matter of debate how general these solutions are or how limited is the number of
actually new problems that computer scientists continuously face up, it is not a surprise that
software design patterns emerged during the Object-Oriented Programming (OOP) wave of the
nineties, with its accent on reusability and modularity [11]. Depending on the scenario (the
chosen level of abstraction, the chosen paradigm and language, the data representation, the
specific set of constraints or even the hardware architecture with which a common problem is
tackled), some design patterns may become inapplicable or simply disappear because they end
up to be transparently embedded in the chosen tools. It must be stressed that a problem changes
changing its representation and the tools used to tackle it, so a pattern may not be suitable to be
applied on any instance of the problem that in theory it should solve; at the same time this is not
a proof of its inconsistency, rather of the great variability of problem instances, of the somewhat
inherently limited abstraction of the pattern itself, and of the probably underestimated number
of variations for the same problem that modeling choices generate.

A design pattern can be defined as a general modeling solution that abstracts from the specific
instance of a problem and can be used to model other instances of the same problem in different
contexts. A software design pattern can be defined as a general modeling solution to a problem
in a given software scenario (paradigm, language, level, data representation, hardware, etc.),
whose purpose is to use abstraction to recognize and model different instances of the same
problem in different scenarios and promote code reusability and “best practices”1 spread.
The formalization of this concept in the realm of OOP is due to the infamous Gang of Four

(GoF) book [12], which defined 23 patterns into three different categories: creational, behavioral
and structural. The book is still generating research and interest (please see [13] and references
therein for a survey).

1By the end patterns are design tools. Like any tools they can be used for the good and for the bad, the myth that
using a pattern is by itself a good practice should be dispelled.



2.1. Messaging Patterns

The one-way communication among different classes in the simplest case is Point to Point
(P2P) asynchronous and is manages by a shared queue of non-zero capacity, where the sender
is called producer and the receiver is called consumer. This schema generates the well known
bounded buffer (or producer/consumer) synchronization problem, where blocking primitives
act on both sides (on the producer and on the consumer), slowing down the producer when
the ingestion capacity of the consumer does not match or exceeds the volume of produced
data or when the consumer is not always active. Multiple producers and multiple consumers
retain and somewhat worsen this side effect. On the opposite side, choosing message passing
schemata that do not use a shared queue allows an efficient many-to-many communication
amongmore loosely coupled consumers, were producers are never blocked, increasing scalability
and efficiency. When considering the so-called Event-Driven Architecture (EDA from now on),
messages to be communicated are events (instead or raw data) and the message passing schema
is crucial for the proper functioning of the application, that basically only react asynchronously
to the propagated events. This schema is non blocking, highly decoupled and scalable, better
supporting demanding distributed and cloud-native applications.

In the following, the Observer, Broker, Mediator, Proxy and Pub/Sub patterns are compared,
due to their similarity, possible ambiguity, and relevance for messaging and data stream pro-
cessing.

• TheObserver defines a one-to-many dependency between an observable class and different
observers classes. The observable keeps the list of of all its observers and sends a push
notification to all of themwhenever its state changes. It includes a subscriptionmechanism
into the observable object, such that each observer can subscribe or unsubscribe to the
stream of events coming from that object.

• First of all, the term “broker” has a generic meaning that should not be confused with the
pattern here described, that refers specifically to the EDA topology and the propagation of
messages/events. A Broker can be seen as a chain of Observers, where the first Observed
object generates the event, propagates the event to its subscribers, and each of them starts
its own processing and eventually propagates the event to its relative subscribers. There
is no control of the order of execution of the various operations triggered by the event.

• The Mediator is grounded on the idea of decoupling different objects that have to com-
municate with each other, redirecting messages and hence both coordinating actions and
hiding the senders from the receivers. Compared to the Broker, when used in EDA, it
allows to control the sequence of consequences of an event. Compared to the Observer,
the observable object — i.e. the one that generates the message/event — is not aware of
its observers, nor should it manage their subscriptions.

• Proxy again is a term with a generic meaning that should not be confused with the pattern
here described, that refers specifically to the GoF book [12]: it is a structural design
pattern that provides a placeholder for another object, in order to provide transparently
meta functionalities (like caching, logging, access control, checking preconditions, etc.)
to the target object. The target object an its proxy share the same interface, so it is
transparent for the client. It is not to be confused with the generic idea of a proxy that
should be modeled through a Mediator.



• The Publish-Subscribe (or simply Pub-Sub) is a messaging pattern suitable for many-to-
many communication in large-scale systems [14], in which multiple Publishers communi-
cate with multiple Subscribers though a set of predefined channels (or topics in Apache
Kafka terminology), much like a subscription to a physical journal in the real world.
Messages are grouped in channels/topics and made persistent on a separate broker. Please
note, this has nothing to share with the broker pattern described above.

Concerning the last pattern, Publish/Subscribe, it allows three different types of subscription:

• Pull-based: the Subscriber decides when to receive the data, performing a continuous
polling cycle on the source. In this specific case, propagation is said to be demand-driven,
that is driven by the demand for a new value.

• Push-based: in contrast, when the source publishes new data, it pushes them to each
Subscriber. In this case, propagation is also called data-driven, meaning that when new
data become available they will automatically be forwarded to the Subscribers.

• Push-Pull: it is an hybrid approach in which the Subscriber receives a push notification
and, consequently, it will decide whether or not to accept the data (please see Fig. 2.1).

Figure 1: The Publish-Subscribe pattern where publisher push and subscribers pull the messages.

2.2. Data production and ingestion rates

The data production rate ̄𝑝 of a software component 𝒞𝑖 can be defined as the volume of data (in
bytes) that in average this component produces in the unit of time. For a given time interval Δ𝑡,
the average volume of produced data is given by the following formula:

̄𝑃𝑖 = ̄𝑝Δ𝑡 (1)

On the other side the ingestion capacity ̄𝑐 of a software component 𝒞𝑗 can be defined as the
volume of data (in bytes) that in average this component is capable to process in the unit of



time. For a given time interval Δ𝑡 the average volume of ingested data is given by the following
formula:

̄𝐶𝑗 = ̄𝑐Δ𝑡 (2)

Given a software system 𝒮 with 𝑛 producers and 𝑚 consumers on the same channel two
observations must be made: first the volume of incoming data may be extremely variable over
time and in general is a function of time 𝑡, that is ̄𝑃𝑖 = 𝑓 (𝑡); second the ingestion capacity is
affected by the chosen communication schema, and does not change continuously with time
unless the application is deployed over an elastic cloud.

If reads by the consumer are blocking, to have a responsive system a necessary condition is:

𝑛
∑
𝑖

̄𝑃𝑖 ≪
𝑚
∑
𝑗

̄𝐶𝑗 (3)

The strong constraint being due to the need of sizing a system on the peaks of load. This is not
a sufficient condition in case the components are serialized (think to the bounded buffer above),
so in the worst case 𝑛

∑
𝑖

̄𝑃𝑖 ≪ min
𝑗

( ̄𝐶𝑗) (4)

that results in the ingestion capacity being the true bottleneck of the system. If (3) or (4) do
not hold, Producers end up accumulating queues of data to be transferred that will never be
processed.

Using asynchronous and parallel reads without blocking acknowledges speed notably thing
up, to the point where the ingestion capacity affects only the lag of processing of the clients,
not the rate of production or the volume of data in the channel. At this point the bottleneck
becomes the processing latency of the consumers, that for any ̄𝐶𝑗 < ∑𝑛

𝑖 ̄𝑃𝑖 goes to infinity. In
case quasi-real-time answers from all the consumers are required, again equation (4) holds.

3. The Journal pattern

To have low latency and highly responsive large scale applications it is crucial to guarantee high
throughput and to avoid unnecessary waits or bottlenecks in data processings [15]. Usually
these are the result of some anti-patterns (aka “bad practices”), where unnecessary serialization,
synchronous processing, or lock contention make the whole system wait for its slowest compo-
nent to complete a given operations before continuing, and/or wrongly sized components have
been deployed. As pointed out in the previous section, the ingestion capacity of data consumers
is one of the crucial issues to be addressed. In this Section the Journal pattern is described. It is
as an extension of Publish-Subscribe that involves a new component called Editor for filtering or
modify directly the data stream. Two different integration strategies will be addressed hereafter.

3.1. The Editor

Much like a journal in the real world does not connect directly its readers to its writers, but
filters and alters the published content, both to guarantee its quality and to adapt it to its



readership, a component called Editor dedicated to filtering or altering the produced data can
be added to the communication schema of a software system.
In case of a data stream, the editor may be responsible for:

• reducing the volume of the data, using any sort of filtering, and/or compression, and/or
deduplication;

• Enriching the data, hence increasing their volume, using upsampling, interpolation, data
matching or metadata annotations;

• manipulating the data keeping their volume, for example sorting, shuffling or grouping
them;

• removing unquestionable outliers;
• enforcing or casting the data into a common schema.

For example a filter may be used to remove a bias with a differential subsampling of the incoming
stream on the base of the class of the instances before they reach a classifier or in alert systems
only the peak value of an alert function in a given time window may be retained and forwarded,
instead of all its values. More, depending on the approximation requirements and the regularity
of the stream, only the average value within a given time window (fixed or variable in size)
may suffice for the subsequent elaborations. Combining filtering and compression can easily
reduce the volume of data by orders of magnitude relieving the data consumers from the risk of
saturating their ingestion capacity, without significantly affecting the elaboration outcomes
and dramatically decreasing their latency. On the other side, if the volume is not an issue the
Editor can also enrich the data with the purpose of increasing precision or reusability.
In case of an event stream, the editor may be responsible for:

• removing duplicate events on the same channel that would produce multiple calls for the
same function, or removing duplicate events among different channels if they end up
with the same call. Both operations will reduce the volume of data and increase efficiency,
even if the second scenario violates the principle of isolation of channels.

• removing obsolete or conflicting events, that is events that fire methods that override or
mutually exclude each other, prioritizing the most recent;

• combining multiple simpler events that perform parts of a complex action into a single
more complex event that calls a more complex function;

• adding meta functions like logging, caching or access control, much like the proxy pattern
described above;

• monitoring for events anomaly, security breaches, component failures.

In this case subsampling is not a viable solution because messages represent events, not mea-
surements, and cannot be skipped unless they are duplicated, obsolete, conflicting or anomalous.
In both previous cases, it must be stressed that the shorter the messages are, the better the

system works. Any attempt to pass a BLOB as a message would produce an endless queue, huge
waiting times and make the editor powerless.



3.2. Publish-Edit-Subscribe

There are at least two different ways in which the Editor can be integrated into the Pub-Sub
pattern, none of which corresponds exactly to the patters described in section 2.1: these will be
called the type 1 (open) and the type 2 (closed) variations.

Please note that there can be a many-to-many relation between channels and editors: multiple
editors can act on the same channel, each implementing a different strategy to filter or alter
the same stream, or an editor can subscribe to multiple channels, implementing a strategy to
combine or match data from the different streams.

Type 1: the (semi) open journal

Here the Editor acts as a publisher from one side and as a subscriber from the other side: it
reads all the messages on a channel (as a regular subscriber), filters or modifies these messages,
and then publishes the filtered or modified messages on a dedicated channel built on purpose,
as a regular publisher.

The original publishers continue to publish on the original channel (that can be made private),
while the subscribers have access both to the original channels (if these are not private) or to
the edited channels. All channels continue to live in parallel, and the subscription method can
be parameterized in a way that automatically finds the appropriate channel for each specific
subscriber (for example matching its ingestion capacity) or that it hides the channels that should
be used only by the editor. This solution produces a proliferation of channels and a certain
amount of overhead, but is able to remove the bottlenecks on the data ingestion discussed in the
previous section, among other things. The editors are nor proxies, nor mediators, nor observers,
nor brokers, as they have the responsibility of monitoring and modifying the stream and are
not limited to redirecting it. Please see figure 3.2.

Type 2: the closed journal

Here the Editor acts as a Broker between the publishers and the channels, hence messages are
filtered or modified before being published on their channel and subscribers are not aware of
the editing process. While this solution has to maintain a different service, it does not produces
channel proliferation, as the edited channels match the original ones. The editor receives the
messages from the data sources, modifies them and forwards the modified messages on the
target channel, as if it was itself the sole publisher. Please see figure 3.2.

3.3. Experiment

Hereafter an experiment is presented in which the Journal pattern of type 1 has been integrated
into the Apache Kafka Pub-Sub framework and used to implement a data stream subsampler,
able to match the ingestion capacity of the Subscribers and hence reducing their processing
latency.



Figure 2: The Journal pattern type 1.

Figure 3: The Journal pattern type 2.

Apache Kafka

For sure there is a plethora of different implementations for the Publish/Subscribe pattern, but
when looking for high scalability in a distributed environment, the Apache Kafka is with no
doubts on the top-5 of the list. In the Kafka lingo the channels are called topics and the so-called
“broker” 2 is the persistent queue of messages to be read, with a configurable retention policy.
Kafka is pull-based, so it is not the broker that pushes the data to the Subscribers of a topic when
they become available, rather the Subscribers continuously request the data from the broker
through an infinite polling cycle querying the broker, who maintains a reading offset for each
of them and returns all the records that they have not yet read. Once all subscribers have read a

2Nothing or very little to share with the Broker pattern described in section 2.1.



message and the configurable retention time has expired, messages are permanently deleted.
Kafka is designed for massive parallelism and optimized for a distributed environment, so

any topic can be split into multiple partitions, each of which is an ordered persistent queue
of some of the messages in the topic, with a configurable replication factor. Much like range
partitioning in traditional RDBMS is used to split the records from the same table among
different physical files according to a chosen criterium (hashing the primary key, for example),
kafka partitions are physical queues allocated in different servers/brokers that act as persistent
slots that receive the messages matching the chosen criterium (hashing a key, round robin, or
with a custom partitioner). Partitions can be read in parallel by consumers, hence they allow
the implementation of a load-balancing strategy and their proper use increases throughput
(especially if serialization of reads or transactional confirmation of delivery are not mandatory).

Figure 4: Offset representation.

As can be seen from figure 3.3, each of the Subscriber reading from the same partition of
a given topic maintains its position based on the offset it has read. Thanks to the offset, the
position of the next record to be processed by the Subscriber is determined.
The basic specification states that the record consumption occurs from the last committed

offset (either the beginning or a specific offset) in a partition and proceeds with processing the
records sequentially. However, this could be a significant limitation when the rate of messages
produced by all Publishers in a topic/partition far exceeds the ingestion capacity of a Subscriber,
as the processing of data by Subscribers can be delayed indefinitely and they end up being stuck,
with a continuous accumulation of data to be processed. The resulting loss of information,
failure to update data or delays in receiving answers in many applications are unacceptable.

A topic subsampler

As it has been clarified, one of the bottlenecks for a responsive application is the data ingestion
capacity of the Subscribers, that in Kafka are pull-based and hence do not block the Publishers,
but can saturate the persistent reading queue and delay indefinitely their processing outcome.
As a mere demonstration of a possible application of the Journal pattern, a topic subsampler
has been implemented.
When the stream of messages is composed of measurement data, for example data coming

from a network of sensors, sampling theory gives an array of well grounded methods that allow
to fulfill two apparently conflicting requirements: to reduce significantly the volume of the data
and to keep the precision of the derived outcome [16]. Among the many subsampling strategies



that can be implemented, not necessarily static and not necessarily probabilistic, the simplest
is systematic subsampling, that picks the elements with a reduced frequency 1/𝑘 with respect
to the original signal, where 𝑘 depends on the application (a probabilistic alternative in case a
representative subsample of predefined size is required would be reservoir sampling). Thinking
to the typical frequency of a sensor (it depends on the application, it can go from 1Hz to 108Hz),
in most common cases for example for measuring the temperature of a room a frequency of
1Hz or lower would suffice, so subsampling the raw data stream can reduce the volume of data
by orders of magnitude (another option is averaging, o selecting the peak value if the system is
built to trigger an alarm).

In the performed experiment, Producers were built to read a toy dataset and generate multiple
regular streams of random data, Topics were created in advance (some for the full stream of
data and others for the subsampled streams) with a nominal peak throughput, finally multiple
Editors where created with different nominal subsampling frequency, but the same strategy
(systematic subsampling). The subsampling rate hard coded in the Editors was chosen to match
the ingestions rate of the less eager Subscribers and named accordingly. The subscribe() method
of the Subscribers/consumers were overloaded with a parameter representing their ingestion
capacity and string pattern matching was used to choose the suitable Topic for each Subscriber.
Empirical tests on the behavior of the partial average value have shown that the implementation
works well, is responsive and represents an acceptable approximation of the original stream
(please see figure 3.3). Depending on the specific use case, any strategy described in section 3.1
can be implemented through the Editor, without substantial modifications.

4. Conclusions

Data stream processing on large scale distributed systems needs to exhibit low latency and high
throughput, regardless of the number of involved components. Most of the implementations of
the Publish-Subscribe messaging schema are suitable for this purpose and can be configured to
have very permissive message forwarding policies. Nonetheless, the ingestion capacity of the
subscribers is an insurmountable hindrance to system responsiveness and should be addressed
working directly on the data stream.

In this paper a new design pattern called Journal has been proposed as an extension of the
Publish-Subscribe. It involves a new component called Editor whose purpose is to filter or
modify directly the data stream, much like an actual editor of the real world does with an actual
journal. Two different integration strategies have been proposed, one where the Editor is both
a publisher and a subscriber and another where the editor is a broker.

To prove the viability and usefulness of the proposed pattern an actual test has been performed
using Apache Kafka and implementing a filtering strategy through subsampling on a stream
of simulated data. In this way the risk of saturation of a channel can be dramatically lowered
and the latency of processing from clients can be notably reduced, matching their ingestion
capacity. The proposed pattern is very general and can be extended to multiple other purposes.



Figure 5: Comparison of the true average computed on all the samples of the stream (orange line) with
the average computed on 1/3 of the samples (yellow line) and on 1/30 of the samples (green line). Toy
data.
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