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Abstract
Photovoltaic (PV) energy is rapidly growing and key to mitigating the energy crisis. However, distributed
PV generation, which amounts to half of the PV installed capacity, is typically unavailable to transmission
system operators (TSOs), making it increasingly difficult to balance the load and supply and avoid
grid congestions. To assess distributed PV generation, TSOs need precise knowledge regarding the
metadata of distributed PV installations. Many remote sensing-based approaches have been proposed
to map these installations in recent years. However, to use these methods in industrial processes,
assessing their accuracy over the mapping area, i.e., the area covered by the model during deployment,
is necessary. We define the downstream task accuracy (DTA) as the accuracy over the mapping area,
automatically computed using publicly available data sources and the model’s outputs and expressed
in an interpretable way for operators. We benchmark existing models for distributed PV mapping
and show how they perform in terms of DTA. We show that the accuracy computed on the test set
overestimates by about 30 percentage points the accuracy on the mapping area. Our approach paves the
way for safer integration of deep-learning-based pipelines for remote PV mapping. Code is available at
https://github.com/gabrielkasmi/dsfrance.
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1. Introduction

Integrating growing amounts of PV energy into the electric grid is challenging for transmission
system operators (TSOs). Like other renewable energy sources (RES), PV energy is weather-
dependent and highly decentralized. Therefore, to ensure its optimal integration on the grid,
accurate measurements of the production and accurate production forecasts are necessary.
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Otherwise, increased PV penetration could result in increased congestion, imbalances, and
supplementary reserve requests [1].

TSOs are responsible for the balance between the load and supply of electricity. They rely
on production measurements and forecasts for all energy sources to ensure this balance. In
the case of PV energy, only the production stemming from power plants is accessible to the
TSO through real-time measurements (when their installed capacity is larger than 1 𝑀𝑊𝑝) or
estimations that use regional PV models [2]. The remaining installations, often referred to as
distributed PV, are invisible to the system operator [3]. As distributed PV amounts to half the
PV installed capacity, TSOs must derive methods to estimate the production of these invisible
distributed PV installations.

A straightforward approach would be to expand regional PV models to distributed PV.
These models estimate the PV power generation over a given area, taking a limited set of PV
characteristics (installed capacity, tilt, and azimuth angles) and weather data [4, 2]. As there
is no centralized record of the characteristics of distributed PV installations [5], a popular
solution is to map the characteristics of distributed PV installations using earth observation data
and deep learning models. Characteristics usually include the localization, tilt, azimuth, and
installed capacity of the distributed PV installations [5]. Works such as [6, 7] or [8] leveraged
convolutional neural networks (CNNs) and high-resolution overhead imagery to map solar
installations over large areas; respectively the continental United States, the Netherlands and
the German state of North-Rhine Westphalia.

However, these mapping algorithms lack accountability since it is impossible to assess
their accuracy while in deployment[9]. This lack of accountability limits the practical use of
these registries, as deep neural networks are sensitive to domain shift [10], which can lead to
unpredictable performance drop under conditions that differ from those encountered in the
training dataset. Currently, there exists no way to automatically and systematically assess the
accuracy of PV mapping systems, although their sensitivity to domain shift is documented [11].
So far, the only attempts to assess the accuracy outside the training dataset have been to rely
on manual verification [7, 12].

Ourmain contribution is to propose an unsupervised and scalable way tomonitor the accuracy
of deep learning-based mapping pipelines over their whole mapping area. The mapping area
covers the domain beyond the test set on which the model is deployed. We call the accuracy
computed over the mapping area the downstream task accuracy (DTA). We express DTA in
an interpretable way for operators. To derive this measurement, we use the most detailed
available information on distributed PV installations and compare it to the outputs of our model.
We provide an unsupervised and interpretable way of assessing the accuracy of PV mapping
algorithms.

Additionally, we contribute to the ongoing effort to map distributed PV installations’ tilt,
localization, and installed capacity over more than 50,000 square kilometers in France, currently
the largest PV registry with this level of detail.



2. Related work

Scholars proposed numerous approaches over the last few years to map solar arrays on overhead
imagery. [13] provides a complete overview of the works in this field. Early works relied on
hand-crafted features and classification algorithms to identify PV panels on aerial images.
The advent of deep-learning [14] enabled large-scale mapping of PV panels using semantic
segmentation.

The DeepSolar project [6] was a significant milestone as a deep learning-based pipeline was
used to detect PV installations and estimate their surface area for the first time. The method
relies on a two-step pipeline: images are classified, and if an image contains an array, it is
passed to a segmentation model to identify the polygons corresponding to the PV installation.
With this method, the authors achieved a precision of 93.1% (recall: 88.5%) in residential and a
precision of 93.7% (recall: 90.5%) in nonresidential areas.

DeepSolar triggered efforts to construct CNN-based pipelines to map installations over large
areas [8, 7]. However, as pointed out by [9], pipelines developed over one territory cannot be
straightforwardly applied to another. Moreover, the data extracted with automatic pipelines
is not accountable enough to be used in official statistics. As a first step towards a better
assessment of the accuracy of deep learning-based PV pipelines over their mapping area, [7]
leveraged manual annotators to compute the precision and recall in places that were not in the
training dataset. However, this method is labor-intensive and cannot be scaled up.

[9] highlight two main research directions in PV detection. First, improving the reported
data’s accountability over the mapping area is necessary. To improve accountability, one needs
to assess the accuracy of the pipeline’s output in the mapping area. Second, one needs to
mitigate domain shift as it degrades the accuracy of deep-learning mapping algorithms. In this
work, we address the first question by introducing a scalable and unsupervised approach to
assess the accuracy of a remote PV mapping algorithm over its mapping area.

3. Data

3.1. Training data

We train our classification and segmentation models on a new dataset called BDAPPV (Base de
données d’apprentissage profond photovoltaïque). This dataset contains labeled thumbnails of PV
panels. These PV panels come from a PV database maintained by the non-profit association of
small owners of PV panels ”Asso BDPV” (Base de données photovoltaïque). Table 1 summarizes
the characteristics of our training dataset. Our training dataset is nearly balanced, and we
provide information on the PV systems’ metadata, such as the tilt, azimuth, installed capacity,
and other technical characteristics. A crowdsourcing campaign enabled us to gather this training
data, which we release in [15].

3.2. Geographical data for PV systems mapping

We feed our classification and segmentation models into the PV mapping pipeline described
in section 4.1. We then deployed this pipeline over a large deployment area of 9 French



Table 1
Training dataset characteristics. Column ”Total number of samples” indicates the number of samples in
the dataset (prior to augmentation), and column ”positive samples” indicates the number of samples
depicting a PV panel.

Dataset Total number of samples Positive samples (share in %)
Train 12127 5445 (44.90)
Validation 1732 755 (43.59)
Test 3466 1485 (42.84)
Total 17325 7685 (44.36)

départements, representing an area of more than 50 000 square kilometers. Our PV mapping
pipeline requires the following data inputs:

3.2.1. Orthoimagery

We do image classification and segmentation on RGB orthoimagery. These images are provided
by the Institut Géograhpique National (IGN) and are freely accessible online. This dataset is
called BD ORTHO. The ground sampling distance of these images is 20 cm/pixel. These images
cover all French départements. For our study, we downloaded the image bundles of 9 French
départements, located in the North, West, South, and East of France, covering approximately
10% of the French metropolitan territory. Images of a given départements are updated every
three years. In the worst case, we map the installations as they were three years ago. Since
we know the overall installed capacity for a département, and assuming that the installations’
characteristics are comparable over three years, the relatively low revisit rate is not problematic:
we construct a representative sample of the current installed capacity.

3.2.2. Topographic data

We use topographic data, also provided by the IGN, under an open license. This dataset is called
BD TOPO. This data contains the geographic footprints of all buildings registered in France.
This dataset’s main aim is to filter and merge detections made on the same rooftop.

3.2.3. Distributed PV characteristics

At the characteristics extraction stage of our PV registry pipeline (see figure 1), we use the
PV characteristics gathered in the BDPV database to calibrate the characteristics extraction
module of our pipeline. These characteristics include the tilt, azimuth, surface, and installed
capacity of PV installations. This database contains information on about 17000 installations
in France, less than 5% of the total estimated count of distributed PV installations. Moreover,
as self-reported, the installations’ geographical localization is not representative of the actual
geographical localization of the distributed PV installations in France.



3.3. Monitoring data

3.3.1. National installations registry

Our data source for accuracy assessment is the Registre national d’installations (RNI) [16]. The
French administration compiles the RNI every year. The RNI contains the total number of
distributed PV installations and the aggregated installed capacity for each city. It does not
contain the individual PV systems’ characteristics.

4. Methods

4.1. Automated registry pipeline

We build on [8] to construct an automated PV registry pipeline. This pipeline takes as input
orthoimages and topological data and outputs PV panels’ characteristics (surface, installed
capacity, tilt, and azimuth angles) and localization. Figure 1 summarizes our approach.

1. Arrays segmentation

2. Characteristics extraction and filtering

BD ORTHO®

Array ? 

Yes

No

Classification Segmentation Conversion

BD TOPO®

Characteristics extraction Filtering PV registry

BDPV data

Figure 1: Automated PV characteristics extraction pipeline

4.1.1. Classification and segmentation

We fine-tuned our classification (Inception-v3) and segmentation (DeepLab-v3) models on our
training dataset BDAPPV (see section 3.1). During inference, we classify all images and segment
only images on which a PV panel is detected. Segmentation masks are then converted into
polygons. We use the weights of [8] as initialization for our fine-tuned models. Training details
are provided in section 4.2.

4.1.2. Characteristics extraction

The output of the segmentation stage is a file with all PV installations’ polygons detected in a
given département. Based on this polygon, we extract the following characteristics: location,
projected surface area, tilt angle, surface area, and installed capacity. The computation of the
location and projected surface area are straightforward. Like previous works [8], we derive



the installed capacity from the surface area and the tilt angle using a linear fit. The regression
coefficient captures the efficiency of the PV panels.

We computed a look-up table based on the BDPV metadata database [15] to estimate the
tilt angle. The BDPV database spreads across France. This LUT enables us to impute a tilt
angle based on the PV polygon’s projected surface and localization. We defined four projected
surface clusters based on their statistical occurrence in the BDPV database. Then, for each
surface cluster (see fig. 2), we divide France into geographical squares, and for each square, we
compute the average tilt angle. Figure 2 depicts the look-up-table. We chose this approach as it
is intuitive, computationally very efficient, and does not require surface models as in [8]. Our
main aim is to capture the geographical variability of the tilt angle. As shown in figure 2, tilts
are steeper in the north and for small installations. Besides, we also capture the fact that tilt
angles are steeper for smaller installations [4].
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Figure 2: Look-up table (LUT) to infer the tilt angle of the PV installations based on its localization and
projected surface area. The LUT gives the average tilt over each square, computed based on the BDPV
dataset.

4.1.3. Post-processing

We use the BD TOPO to filter all polygons that are not on a building. We also filter installations
that are either too small (we set the threshold at 1.7 square meters, the typical area of a single
PV module) or too large. The upper threshold is 36 kWp as the RNI focuses on installations
with an installed capacity lower than 36 kWp.



4.2. Training procedure

4.2.1. Augmentations

During training, images are flipped vertically and rotated 90 degrees clockwise and counter-
clockwise. We avoid rotations that lead to having arrays pointing north (i.e., upwards). Input
images have a resolution of 400×400, so we randomly crop the images to generate input im-
ages with the correct resolution of 299×299 pixels. Finally, images are also normalized with
the standard ImageNet values (i.e., a mean of (0.485, 0.456, 0.406) and a standard deviation of
(0.229, 0.224, 0.225)). No augmentation, but the normalization is applied to the validation and
testing sets.

4.2.2. Classification branch

We retrain all the layers of the model. We train the model for 25 epochs. We pick the model
that achieved the lowest validation accuracy after the end of the training. We evaluate the final
performance after threshold fine-tuning on the testing dataset. We use the binary cross entropy
loss (BCE, without weighting) and Adam optimizer with a learning rate of 0.0001. We used a
batch size of 128.

4.2.3. Segmentation branch

The model is trained for 25 epochs. As for classification, we pick the model that achieved the
lowest validation accuracy after the end of the training. We also use BCE loss with a learning
rate of 0.0001 and Adam optimizer. The batch size is 64, spread across multiple GPUs.

4.3. Downstream task accuracy metrics

The RNI provides city-wise the total number of installations and the aggregated installed
capacity. To use it as a reference, we aggregate our detections city-wise. To the best of our
knowledge, this is the first work to introduce a systematic assessment of the accuracy in terms of
installed capacity over the whole deployment area. [6] assessed the accuracy of the estimation
of the surface of the PV panels on the test set only. [8] measured the accuracy of the installed
capacity estimation per installation but only in cities for which reference data is available.

4.3.1. Definition

The downstream task accuracy (DTA) is a set of metrics that measures the accuracy of amodel over
the whole mapping area, where no labeled data is available. We express de DTA in interpretable
terms for operators. In our case, we compute the DTA in terms of installed capacity using the
models’ outputs and the aggregated information of the RNI. The DTA requires no additional
human labor as we automatically compute it.

4.3.2. DTA metrics

Using the RNI dataset and the aggregations from our pipeline, we define three metrics to
ensure that the model estimates the installed capacity correctly. We denote 𝐶̂𝑖 our estimation



of the installed capacity based on the aggregation of our detections in city 𝑖, 𝐶𝑖 the reference
installed capacity from the RNI for city 𝑖. Similarly, 𝑘̂𝑖 denotes our estimation of the number of
installations in city 𝑖, and 𝑘𝑖 is the reference number of installations recorded in the RNI.

• The average percentage error (APE)
|𝐶𝑖 − 𝐶̂𝑖|

𝐶𝑖
and the mean APE (MAPE)

1
𝑛

𝑛
∑
𝑖=1

|𝐶𝑖 − 𝐶̂𝑖|
𝐶𝑖

computed over the whole département. The APE and MAPE are computed

for the installed capacity 𝐶𝑖 in city 𝑖,

• The detection ratio Δ ∶=
̂𝑘𝑖
𝑘𝑖
, based on [8] computed at the city level and averaged over

the départements. We compute this ratio for the number of installations 𝑘𝑖 in city 𝑖,

• The average installation percentage error (AIPE) −
𝐶𝑖/𝑘𝑖 − ̂𝐶𝑖/𝑘𝑖

𝐶𝑖/𝑘𝑖
which is the APE

computed for the average installation. By construction, a negative AIPE indicates that we
underestimate the installations’ size, and a positive AIPE indicates that we overestimate
them.

The MAPE ensures we do not overestimate or underestimate the overall installed capacity.
The detection ratio ensures that we detect the correct number of installations, and the AIPE,
which is a function of the installed capacity and the number of installations, ensures that, on
average, we correctly estimate the size of the installations.

5. Results

5.1. Accuracy on the test set

5.1.1. Classification and segmentation accuracies

Our fine-tuned model achieves competitive results compared to state-of-the-art models (see
table 2). For the classification branch, we reach an F1 score of 0.84. For the segmentation
branch, we reach an Intersection-over-Union (IoU) of 0.86. Our aim is not to establish a new
state-of-the-art (SOTA) for classification or segmentation but to see how current performance
translates in terms of accuracy over the mapping area.

5.1.2. Comparison to existing accuracy metrics

As mentioned in section 4.3, there is no counterpart to our DTA metrics in the existing literature.
However, [6] computed the area estimation’s mean relative error (MRE) and reported an error
of 3.0% in residential and 2.1% in nonresidential areas. Our model achieves 0.44% MRE on the
test set. See [6] for more details on the computation of the MRE.

[8] computed the installation-wise accuracy over the cities of Borken, Unna, and Dortmund,
Germany. They reported a mean average error (MAE) between 1.92 kWp and 24.84 kWp and a
mean average percentage error (MAPE) between 27% and 37%. Our model achieves an MAE
of 0.38 kWp and a MAPE of 11.59% when comparing the estimated installed capacity with the
reference recorded in the BDPV dataset.



Table 2
Classification and segmentation accuracy. The ground sampling distance (GSD) indicates how detailed
the image is. The lower the GSD, the more detailed the image. PV panels cannot be detected on images
that have a GSD greater than 30 cm/pixel ([9]).

Classification Segmentation
Work F1-score IoU GSD (cm/pixel)
[8] 0.87 0.74 10
[12] - 0.67 30
[17] 0.82 - 10
[18] 0.97 0.86 10
Ours 0.84 0.86 20

5.2. Downstream task accuracy on the mapping area

We deploy our model on nine French départements: Nord (north), Loire-Atlantique (west),
Hérault (south), and 6 out of 8 départements of the Rhône-Alpes region (southeast). This way, we
ensure sufficient geographical diversity in landscapes, population densities, and architectural
styles. The total area covered is 51858 square kilometers. It is currently the largest area mapped
with this level of detail, as [8] covered an area of roughly 34000 square kilometers.

We compute our DTA metrics over this mapping area using the RNI. To compute a baseline,
we consider the test set as one city and compute the associated mean and median APE, detection
ratio, and AIPE. We report the results in table 3.

5.2.1. Main results

As we can see in table 3, our model performs worse on the mapping area than on the test set.
The MAPE is about 30 percentage points higher on the mapping area than on the test set. This
result is consistent with existing literature, and our accuracy tracking metrics enable us to
quantify this decrease in accuracy. The MAPE is 47%, and the mean ratio is slightly above 1. In
detail, we can see that we tend to slightly overestimate (by 16%) the size of the installations
compared to the RNI. Performance for all metrics is relatively constant across all départements
but the Nord.

5.2.2. Effect of filtering on accuracy

As an example use case for the DTA, we discuss the effect of filtering using the topological data.
Filtering by buildings decreases the number of detections and especially of small detections. Its
effects on accuracy are ambiguous. On the one hand, it slightly biases the size of the installations
(the ratio decreases and the AIPE increases). On the other hand, it can dramatically improve the
detection accuracy in places where performance is low: in the départements Nord and Hérault,
we can see that the post-processing improves all evaluation metrics by a large margin.



Table 3
Downstream task accuracy across the mapping area. Values in parentheses correspond to the results
without filtering by buildings. The line ”Test” considers the training dataset as one city. 𝑘𝑖 and 𝐶𝑖 denote
the count of installations and the installed capacity, respectively. The hat indicates the estimation by
our pipeline.

Dép. MAPE med. APE mean Δ mean AIPE 𝑘𝑖 𝑘̂𝑖 𝐶𝑖 𝐶̂𝑖
[%] [%] [-] [%] [-] [-] [kWp] [kWp]

Test 17.61 - 0.92 -0.10 1485 1362 6473.8 5334,02
44 39.09 38.05 0.67 22.83 12683 6838 51955.17 34197.71

(33.20) (26.69) (0.91) (18.54) (9325) (45206.58)
69 31.99 28.91 0.83 12.18 8944 6508 36500.6 31361.59

(39.45) (23.29) (1.26) (10.33) (9808) (45433.94)
59 130.06 88.13 2.23 61.16 6453 9524 22083.8 52790.18

(224.22) (168.29) (3.22) (41.56) (15393) (73697.38)
34 26.80 17.78 1.01 6.82 9199 8408 35398.41 39897.16

(45.57) (30.05) (1.33) (4.29) (11445) (52841.79)
01 35.90 35.35 0.77 6.18 4940 3654 18433.19 14659.39

(38.77) ( 27.07) (1.13) (7.34) (5259) (21371.97)
38 33.41 31.15 0.81 9.18 10672 7835 39691.43 32391.11 

(31.29) (21.80) (1.07) (6.20) (10680) (42617.43)
42 29.12 23.81 1.00 15.42 6892 5831 28594.08 27916.48

(46.30) (28.66) (1.41) (11.06) (8384) (38222.44) 
26 30.46 23.51 0.92 3.74 5808 4933 28261.94 25833.96

(55.35) (25.80 ) (1.43) (6.15) (7121) (37645.72)
74 44.08 41.18 0.67 -4.61 7004 5287 32202.1 21760.4

(41.45) (28.53) (0.93) (-6.10) (6600) (25930.6)
Overall 47.45 32.81 1.03 16.33 72595 58818 293120.70 280807.91

(66.20) (30.66) (1.46) (12.03) (84015) (382967.83)

5.3. Generalization to other areas

The need for the French TSO for detailed information on distributed PV motivates this work.
However, this need is ubiquitous in many European countries and beyond [5, 3]. It is possible
to apply our accuracy assessment in these countries: for instance, the RNI can be substituted
by the Marktstammdatenregister (MaStR) for Germany [19] , the Stamdataregister for Denmark
[20].

Besides, high-resolution orthoimagery is increasingly available across European countries
due to the INSPIRE directive, which enforces open access to geographical information services
(GIS) data [21]. [8] used orthoimagery available over North Rhine Westphalia and [7] images
available for the Netherlands. Although this case study focuses on France, the data required for
replication is available throughout Europe.



6. Conclusion and future work

We built on existing literature to construct an automated pipeline for large-scale distributed
photovoltaic (PV) mapping and characterization. We mapped about 50000 square kilometers
over France, whose distributed PV installations are not well mapped, resulting in the largest
with this level of detail.

Crucially, we address the need for a more transparent and systematic assessment of the
accuracy beyond the test set through downstream task accuracy (DTA). DTA measures the
accuracy in terms of installed capacity over the whole mapping area, i.e., the area over which
the model is deployed. It is unsupervised and does not require additional human labor. DTA
allows quantifying the decrease in accuracy when we shift from the test set to the mapping
area. Such quantification paves the way for safer integration of deep learning-based pipelines
for remote PV mapping.

We benchmarked state-of-the-art detection mapping pipelines with our newly introduced
downstream task accuracy metrics. We showed that test set performance overestimates the
accuracy of such pipelines in estimating the installed capacity of distributed PV installations by
about 30 percentage points.

In future work, we will derive downstream task accuracy metrics for tilt and azimuth estima-
tion. We also intend to pursue the model’s deployment until eventually mapping the whole of
metropolitan France. Finally, we shall discuss the benefit of more advanced classification and
segmentation models on downstream task accuracy.
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