
Robustness of Controlling and Observing Edge Dynamics in 
Complex Networks 1 
 
Zhi Tian1, Shaopeng Pang1*, Peng Ji1*, Weigang Ma2 
 
1School of Information and Automation Engineering Qilu University of Technology (Shandong Academy of 
Sciences) Ji Nan, China 
2Jinan Rail Transit Group 1ST Operation Co.,Ltd. Ji Nan, China 
 

Abstract 
The dynamic processes on the edges of complex networks are closely related to various real-
world situations. In recent years, more and more scholars have devoted themselves to the study 
of the edge dynamics in complex networks and achieved fruitful results. The robustness of 
controlling the edge dynamics in complex networks has been extensively studied. However, 
there is no relevant work to study the robustness of observability. In this paper, we develop a 
framework based on the edge classification to study the robustness of controlling and observing 
the edge dynamics in complex networks. We apply the framework to model networks and give 
a theoretical formulation of the edge classification. By comparing with the robustness that only 
considers the structural controllability, we find that this framework enables us to have a more 
comprehensive analysis method for the edge failure problem in the edge dynamics of complex 
networks. 
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1. INTRODUCTION  

In recent years, the node dynamics of complex networks [1-10] has attracted the attention of many 
scholars and made a lot of significant progress. Lin [11] proposed the structural controllability, which 
bypasses the need to measure system parameters, and studied network controllability based on the graph 
topology. Liu et al. [12] developed the structural controllability theory and proposed the minimum input 
theory based on the maximum matching to characterize the structural controllability. Due to the duality 
principle [13-14], many attributes of observability can be borrowed from controllability. The theoretical 
framework in [15] provides a new perspective for us to study the observability of complex networks. 
Nepusz et al. [16] extended the applicability of structural controllability to the edge dynamics of directed 
networks. Then Pang et al. [17] gave a general framework for the controllability of edge dynamics for 
arbitrary complex networks. 

In this paper, we develop a framework based on the edge classification to study the robustness of 
controlling and observing the edge dynamics in complex networks. This framework enables us to 
quantify the robustness by the edge classification. We study the effect of network topology on the 
robustness based on the simulation of model networks. In addition, we give the theoretical formulation 
of edge classification of model network. 

2. EDGE DYNAMICS 

The directed graph containing 𝑁 nodes and 𝑀 edges is denoted as 𝐺(𝑉, 𝐸). The edge dynamics of 
complex network is described by the switch dynamics, where the state vector corresponds to the edge 
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set, and each state corresponds to an edge. For any node in the network, its outgoing edge state is 
influenced by the incoming edge state, its own damping and external inputs, so we have: 

 𝑦ሶ௩ା = 𝑆௩𝑦௩ି − 𝜏௩⨂𝑦௩ା + 𝜎௩𝑢௩,                                                               (1) 

where 𝑦௩ା and 𝑦௩ି  are the outgoing and incoming edge state vectors of node 𝑣, respectively. 𝑆௩ is the 
switching matrix with the number of rows and columns equal to the out-degree 𝑘௩ା and in-degree 𝑘௩ି  of 
the node, respectively. 𝜏௩  is the damping term acting on the outgoing edge state, and ⨂ denotes the 
multiplication of the corresponding position elements of the two vectors. When 𝜎௩ = 1, the outgoing 
edge state is affected by the external input 𝑢௩. At this time, node 𝑣 is said to be the driver node. The node 
in the switch dynamics is like a switch device that receives the signal from the incoming edge and then 
processes and forwards it to the outgoing edge, and the processing and forwarding process is represented 
by the switching matrix in the node. Equation (1) can be rewritten as a linear time-invariant system as 
follows: 

 𝑥ሶ = (𝑊 − 𝑇)𝑥 + 𝐻𝑢,                                                                       (2) 

where 𝑊 is the state matrix, which is the transpose matrix of the adjacency matrix of the line graph 𝐿(𝐺) from the directed graph 𝐺, 𝑤௜௝ ≠ 0 if and only if the end node of edge 𝑗 is the start node of edge 𝑖, 
i.e., edge 𝑗 points to edge 𝑖. The nodes in the line graph 𝐿(𝐺) correspond to the edges in the original 
graph 𝐺, and the edges in the line graph 𝐿(𝐺) correspond to the pointing relationships between edges in 
the original graph 𝐺 . 𝑇 is the damping matrix, which is a diagonal matrix with the damping terms 
corresponding to each edge on its diagonal elements. 𝐻 is the input matrix, which is a diagonal matrix 
whose 𝑖-th element is 𝜎௩ if and only if node 𝑣 is the starting node of edge 𝑖. It is worth noting that 𝑇 has 
no effect on the controllability of the edge dynamics in complex network and can be ignored in the 
discernment of controllability. 

In order to study the problems related to the controllability and observability of the edge dynamics in 
complex networks, we give the definitions of three node classifications and the related concepts of 
connected components. 

• Divergent node. A node is said to be a divergent node if its out-degree is greater than its in-degree 
(𝑘௩ା > 𝑘௩ି ). In particular, a node is said to be weakly divergent if its out-degree is greater than its 
in-degree by one (𝑘௩ା = 𝑘௩ି + 1). 

• Convergent node. A node is said to be convergent if its in-degree is greater than its out-degree 
(𝑘௩ି > 𝑘௩ା). In particular, a node is said to be weakly convergent if its in-degree is greater than its 
out-degree by one (𝑘௩ି = 𝑘௩ା + 1). 

• Balanced node. A node is said to be a balanced node if its out-degree is equal to its in-degree 
(𝑘௩ା = 𝑘௩ି ). 

• Connected components. The connected components can be divided into three categories. 1) 
Balanced components. Any node in the balanced component is the balanced node. 2) Unbalanced 
components. The unbalanced component contains one or more unbalanced nodes (𝑘௩ା ≠ 𝑘௩ି ). 3) 
Isolated nodes. Nodes where the number of both outgoing and incoming edges are zero. 

The number and location of driver nodes required for controlling the edge dynamics in complex 
network are determined by the local structure of the nodes. When the edge dynamics of complex network 
is controllable, the divergent node is the driver node, and any one node in each balanced component is 
the driver node. The driver node needs to control its 𝑘௩ା − 𝑘௩ି  outgoing edges, and the driver node in 
each balanced component needs to control any one of its outgoing edges. The controlled outgoing edge 
is called the driven edge. From the principle of duality, it is known that when the edge dynamic is 
observable, the convergent node in the network is the sensor node, and any one node in the balanced 
component is the sensor node. The convergent node needs to observe its 𝑘௩ି − 𝑘௩ା incoming edges, and 
the sensor node in the balanced component needs to observe any one of its incoming edges. The observed 
incoming edges are called the observed edges. 
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3. ROBUSTNESS  

We study the robustness based on the edge classification. Each edge is classified by the change in the 
number of driver nodes and sensor nodes when the edge is removed. Specifically, the number of driver 
nodes and sensor nodes are denoted by 𝑁ୈ and 𝑁୓, respectively. After an edge is removed, the number 
of driver nodes and sensor nodes in the remainder network is denoted by 𝑁ୈᇱ  and 𝑁୓ᇱ , respectively. Edges 
can be classified into three categories: critical, redundant, and ordinary. The removal of a critical edge 
increases the number of driver nodes or sensor nodes, i.e., 𝑁ୈᇱ  > 𝑁ୈ or 𝑁୓ᇱ  > 𝑁୓. Conversely, the removal 
of a redundant edge decreases the number of driver nodes or sensor nodes, i.e., 𝑁ୈᇱ  < 𝑁ୈ or 𝑁୓ᇱ  < 𝑁୓. 
The rest edges are ordinary since removing them does not affect the number of driver nodes or sensor 
nodes. 

As an edge is removed, the in-degree of the target node (the termination node of this edge) and the 
out-degree of the source node (the starting node of this edge) decrease. Therefore, we can give an edge 
classification method based on the local structure of network. 

• Critical edge. For an edge, if its source node is non-weakly divergent and its target node is 
balanced, the number of driver nodes increases after removing this edge, if its source node is 
balanced and its target node is non-weakly convergent, the number of sensor nodes increases after 
removing this edge. Therefore, the number of driver nodes or sensor nodes increases after 
removing a critical edge. It is worth noting that when both the source node and target node are 
balanced, removing the connecting edge between them will increase the number of driver nodes 
and sensor nodes at the same time.  

• Redundant edge. For an edge, if its source node is weakly divergent and its target node is non-
balanced, the number of driver nodes decreases after removing this edge, if its source node is 
non-balanced and its target node is weakly convergent, the number of sensor nodes decreases 
after removing this edge. Therefore, the number of driver nodes or sensor nodes decreases after 
removing a redundant edge. It is worth noting that when the source node is weakly divergent and 
the target node is weakly convergent, removing the edge between them will decrease the number 
of driver nodes and sensor nodes at the same time.  

• Ordinary edges. Edges other than those mentioned above are ordinary edges. 
An example of the edge dynamics in complex network is shown in the Fig. 1. The nodes 𝑥ଵ and 𝑥ହ 

are driver nodes, which need to receive external input signals. Similarly, the node 𝑥ସ is the sensor node, 
which needs to send observation signal to the outside. The nodes 𝑥ଶ  and 𝑥ଷ  are balanced nodes. 
According to our classification principle, the edge between 𝑥ଷ and 𝑥ସ is the critical edge. When this edge 
is removed, 𝑥ଷ becomes the sensor node and 𝑥ସ stays the same, leading to the number of sensor nodes 
in the network increases. The node 𝑥ସ is the convergent node and 𝑥ହ is the divergent node. According to 
our classification principle, the edge between 𝑥ସ  and 𝑥ହ  is the redundant edge. When this edge is 
removed, 𝑥ହ becomes the isolated node and 𝑥ସ stays the same, leading to the number of driver nodes in 
the network decreases. The edge between nodes 𝑥ଵ and 𝑥ଶ is an ordinary edge. 

In the following, we will apply the edge classification to model networks and derive the theoretical 
values. We will study the distribution of the edge classification in Erd𝑜ሷ s–R 𝑒́ nyi (ER) networks, 
exponential (EX) networks and scale-free (SF) networks. We compare edge classification based on the 
structural controllability (traditional perspective) and based on the structural controllability and 
observability (new perspective) proposed in this paper in model networks.  
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Fig. 1. Edge classification. The network is controlled and observed by two input nodes and one 
output node respectively, i.e., 𝑢ଵ, 𝑢ଶ and 𝑦ଵ. When removing a critical edge (𝑥ଶ → 𝑥ଷ, 𝑥ଷ → 𝑥ସ), the 
number of driver nodes or sensor nodes increases. When removing a redundant edge (𝑥ହ → 𝑥ସ), the 
number of driver nodes or sensor nodes decreases. Edge (𝑥ଵ → 𝑥ଶ) other than those mentioned above 
is ordinary edge. 

 
We classify the edges in the network into critical edges, redundant edges and ordinary edges. As 

shown in Fig. 2, the trends of the percentages of the three edge classifications with average degree are 
extremely similar. The percentage of critical edges 𝑚େ  increases and then decreases as the average 
degree 〈𝑘〉 increases; the percentage of ordinary edges 𝑚୓ increases as the average degree 〈𝑘〉 increases; 
the percentage of redundant edges 𝑚ୖ gradually decreases as the average degree 〈𝑘〉 increases. When 
the average degree is small, the number of edges in the network is small, and the vast majority of these 
edges are redundant edges, which means that the number of driver nodes or sensor nodes in the network 
will decrease after removing an edge. As shown in Fig. 2(a), we give a comparison of the edge 
classification between traditional perspective and new perspective in ER networks. Obviously, the 
proportion of critical edges and redundant edges in the new perspective classification method is higher 
than that in the traditional classification method, and the proportion of critical edges in the new method 
is nearly twice that in the traditional method. As shown in Fig. 2(b), there are very similar results in EX 
networks. In Fig. 2(c) and (d), we study the application of two classification perspective in SF with 𝛾 =2.2 and 𝛾 = 3, respectively. It can be clearly found that the trend of the proportion of the three kinds of 
edges in the network is the same as that of the ER and EX networks. Furthermore, the proportions of the 
critical edge and the redundant edge when 𝛾 = 2.2 are significantly lower than that of the two kinds of 
edges when 𝛾 = 3. This means that different 𝛾 values will have a greater impact on the percentages of 
three edges. 

4. THEORETICAL ANALYSIS 

The analytical results of the robustness depend on the degree distribution. The in- and out-degrees of 
model networks follow the same distribution, i.e., 𝑝(𝑖)୧୬ = 𝑝(𝑖)୭୳୲ = 𝑝(𝑖) . We give a general 
theoretical formulation of three edge classifications based on the structural controllability and 
observability. 
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Fig. 2. The edge classification in model networks. Comparison of edge classification from traditional 
(marked in square) and new perspectives (marked in circle) and their varies with the average degree 〈𝑘〉 in (a) the ER networks, (b) EX networks and SF networks with (c) 𝛾 = 2.2 and (d) 𝛾 = 3. ER, EX and 
SF networks are generated based on the static model [18,19,20] with 𝑁 = 5000. All data points and 
error bars are obtained by averaging over 10 independent realizations. 

𝑚େ = 2 ேெ ∑ 𝑝(𝑖)ଶ𝑖ஶ௜ୀଵ ቀ1 − ேெ ∑ 𝑝(𝑖)𝑝(𝑖 + 1)(𝑖 + 1)ஶ௜ୀ଴ ቁ − ቀேெ ∑ 𝑝(𝑖)ଶ𝑖ஶ௜ୀଵ ቁଶ
,                            (3) 

𝑚ୖ = 2 ቀ1 − ேெ ∑ 𝑝(𝑖)ଶ𝑖ஶ௜ୀଵ ቁ ேெ ∑ 𝑝(𝑖)𝑝(𝑖 + 1)(𝑖 + 1) −ஶ௜ୀ଴ ቀேெ ∑ 𝑝(𝑖)𝑝(𝑖 + 1)(𝑖 + 1)ஶ௜ୀ଴ ቁଶ
,           (4) 

 𝑚୓ = 1 − 𝑚େ − 𝑚ୖ.                                                                       (5) 

For ER networks, the average degree 〈𝑘〉 = 〈𝑘ା〉 = 〈𝑘ି〉 = 𝑀/𝑁, where 𝑁 and 𝑀 are the number of 
nodes and edges in the network, 〈𝑘ା〉and 〈𝑘ି〉  are the average out-degree and average in-degree, 
respectively. Both the out- and in-degree of the ER networks follow the Poisson distribution, i.e., 

  𝑝(𝑖) = 〈௞〉೔௘ష〈ೖ〉௜! .                                                                               (6) 

According to the principle of classification of different edges, we obtain the expressions for the 
percentages of the three edges of the ER networks. 𝑚େ୉ୖ = 2𝐼ଵ(2〈𝑘〉)𝑒ିଶ〈௞〉൫1 − 𝐼଴(2〈𝑘〉)𝑒ିଶ〈௞〉൯ − ൫𝐼ଵ(2〈𝑘〉)𝑒ିଶ〈௞〉൯ଶ,                             (7) 

where 𝐼ఈ(𝑥)  is the modified Bessel function of first kind, 𝐼଴(2〈𝑘〉) = ∑ 〈௞〉మ೔௜!௜!ஶ௜ୀ଴ , 𝐼ଵ(2〈𝑘〉) =∑ 〈௞〉మ೔శభ௜!(௜ାଵ)!ஶ௜ୀ଴ . 

𝑚୉ୖୖ = 2𝐼଴(2〈𝑘〉)𝑒ିଶ〈௞〉൫1 − 𝐼ଵ(2〈𝑘〉)𝑒ିଶ〈௞〉൯ − ൫𝐼଴(2〈𝑘〉)𝑒ିଶ〈௞〉൯ଶ,                         (8) 

 𝑚୓୉ୖ = 1 − 𝑚େ୉ୖ − 𝑚୉ୖୖ.                                                             (9) 

Both the out- and in-degree of the EX networks follow the exponential distribution, i.e., 𝑝(𝑖) = 𝐶𝑒ି௜ ఑⁄ ,                                                                     (10) 

where 𝐶 = 1 − 𝑒ିଵ ఑⁄  and 𝜅 = 1 ln ((1 + 〈𝑘〉)/〈𝑘〉)⁄ .  
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According to the principle of classification of different edges, we obtain the expressions for the 
percentages of the three edges of the EX networks. 

 𝑚େ୉ଡ଼ = ଶ〈௞〉(ଶ〈௞〉ାଵ)మ ቀ1 − 〈௞〉ାଵ(ଶ〈௞〉ାଵ)మቁ − ቀ 〈௞〉(ଶ〈௞〉ାଵ)మቁଶ
,                                              (11) 

 𝑚୉ୖଡ଼ = 2 ቀ1 − 〈௞〉(ଶ〈௞〉ାଵ)మቁ 〈௞〉ାଵ(ଶ〈௞〉ାଵ)మ − ቀ 〈௞〉ାଵ(ଶ〈௞〉ାଵ)మቁଶ
,                                                   (12) 

 𝑚୓୉ଡ଼ = 1 − 𝑚େ୉ଡ଼ − 𝑚୉ୖଡ଼.                                                                  (13) 

Both the out- and in-degree of the SF networks follow the power law distribution, i.e., 

 𝑝(𝑖) = ሾ〈௞〉(ଵି௔)ሿభ ೌൗ௔ ୻൫௜ିଵ ௔⁄ ,〈௞〉(ଵି௔)൯୻(௜ାଵ) ,                                                          (14) 

where Γ(𝑠, 𝑥) is an incomplete Gamma function, Γ(𝑛) = (𝑛 − 1)! is a Gamma function, and the 
parameters 𝑎 = 1 (𝛾 − 1)⁄ . 

According to the principle of classification of different edges, we obtain the expressions for the 
percentages of the three kinds of edges of the SF networks. 

𝑚ୌ୊ = ଶ〈௞〉 𝛿ଶ ∑ 𝑖Γ௜ଶஶ௜ୀଵ ቀ1 − ଵ〈௞〉 𝛿ଶ ∑ (𝑖 + 1)Γ௜Γ௜ାଵஶ௜ୀ଴ ቁ − ቀ ଵ〈௞〉 𝛿ଶ ∑ 𝑖Γ௜ଶஶ௜ୀଵ ቁଶ
,                 (15) 

𝑚ୗୖ୊ = 2 ቀ1 − ଵ〈௞〉 𝛿ଶ ∑ 𝑖Γ௜ଶஶ௜ୀଵ ቁ ଵ〈௞〉 𝛿ଶ ∑ (𝑖 + 1)Γ௜Γ௜ାଵ −ஶ௜ୀ଴ ቀ ଵ〈௞〉 𝛿ଶ ∑ (𝑖 + 1)Γ௜Γ௜ାଵஶ௜ୀ଴ ቁଶ
,               (16) 

 𝑚୓ୗ୊ = 1 − 𝑚ୌ୊ − 𝑚ୗୖ୊,                                                              (17) 

where 𝛿 = ሾ〈௞〉(ଵି௔)ሿభ ೌൗ௔  and Γ௜ = ୻൫௜ିଵ ௔⁄ ,〈௞〉(ଵି௔)൯୻(௜ାଵ) . 

5. CONCLUSION 

For the study of the robustness of edge dynamics in complex networks, a traditional edge 
classification based on the structural controllability has been proposed in [16]. We innovatively offer a 
new edge classification from the structural controllability and observability perspective and develop a 
framework for studying the robustness. The general theoretical formulation of the edge classification in 
the edge dynamics of complex networks is derived. We apply the edge classification to the model 
networks, and find that the percentage of critical edges in the new classification is approximately twice 
as large as in the traditional classification. In future work, we will apply the new edge classification 
method to the real networks and give the corresponding theoretical formulation. In addition, the 
robustness of edges in switch networks will be our new research direction. 
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