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Abstract 
The permutation-based block compressed sensing (CS) scheme is a new CS-based image 
compression method, in which permutation strategies are used prior to sampling with purpose 
of balancing the sparsity levels among the blocks. Although it has been shown to be an 
efficient method to improve sampling efficiency, there remain several fundamental questions 
on both the theoretical and practical side of this scheme. This paper primarily concerns about 
one of these theoretical issues revolving around the error performance of block CS (BCS). In 
this paper, we analyze the error performance bound of BCS and a new error performance 
bound is established. It is revealed that better recovery quality can be achieved if the 
permutated 2D signal has smaller maximum block sparsity level. 
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1.  INTRODUCTION 
Compressed sensing (CS) has received a lot of attention recently [1], [2], which is capable of 

efficiently capturing and recovering a signal through a few of linear measurements. Recently, image 
coding by using CS has become a hot topic in image processing field [3-10]. In order to use CS to 
encode 2D images, block CS (BCS) is developed for fast implementation [11-18], where the image is 
sampled block-by-block. However, the compression performance of traditional BCS scheme is poor. 

To solve this problem, permutation-based BCS [11-18] schemes are proposed. In permutation-based 
BCS schemes, the wavelet coefficient matrix is scrambled by using some permutation strategies and 
then the permutated wavelet coefficient matrix is sampled by using BCS. A good permutation scheme 
can balance the nonzero elements among the blocks, thereby improving sampling efficiency. In 
practice, a lot of permutation strategies have been proposed in existing literatures [11-18].  

Although the permutation-based BCS scheme has been shown to be an efficient method to improve 
sampling efficiency in practice applications, there remain several fundamental questions on both the 
theoretical and practical side of this scheme. This paper primarily concerns about one of these 
theoretical issues revolving around the error performance bound of block-based CS. In this paper, we 
analyze the error performance bound of block-based CS. It is revealed that better reconstruction 
performance can be achieved if the permutated 2D signal has smaller maximum block sparsity level. 
As far as we know, a similar theoretical work has been studied in [15]. But the theoretical result of [15] 
just proves that the CS reconstruction error is bound by the best k -term approximation error. In this 
paper, our further research shows that the best k -term approximation error can be bounded by an 
explicit function of k . Then, a new error performance of BCS for 2D signals is established. 

2. PRELIMINARIES 

2.1. Compressed sensing 
The set of all K -sparse vectors can be denoted by 

1
0{ | }N

K R K× = ∈ ≤x x .                           (1) 
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where 0⋅  denoted 0l -norm. 
For a K -sparse signal x , the measurement vector can be obtained by 

=y Φx .                                          (2) 

where M NR M N×∈ （ ）Φ is a measurement matrix and 1MR ×∈y  is the measurement vector of x . 
According to CS theory, x  can be recovered from y if M NR ×∈Φ  satisfies restricted isometry 

property (RIP) [1, 2]. x  can be recovered by solving 

1
ˆ arg min s. t . ==x x y Φx .                         (3) 

2.2. Block compressed sensing 
For an image N NR ×∈D , it can be represented by  

T=X ΨDΨ ,                                      (4) 

where N NR ×∈Ψ  is a wavelet basis and N NR ×∈X  is the wavelet coefficient matrix.  
In block-based CS scheme, X  is split into a lot of blocks with dimension of n n× . It can be 

represented by 
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where iX  is i -th block of X  and L N n= . 
Let n n

i R ×∈x  be the vectorized signal of iX , then we can be obtain the measurement vector by 

i B i=y Φ x ,                                       (6) 

where m n
B R ×∈Φ  is a measurement matrix.  

Let 0
=i iK x , then, the block sparsity level vector of X  can be denoted by [ ]1 2, ,..., LK K K=K . Let 

maxK
∞

= K  be the maximum block sparsity level. If BΦ  satisfies RIP with order maxK , we can 
reconstruct all blocks of X , and then reconstruct the original image D . 

3. A NEW ERROR PERFORMANCE 

3.1. Error performance bound of CS for 1D signals 
For a signal nR∈s , the best k -term approximation is defined by 

1 1
( ) : min

k
k ∈

= −
z

s s zσ .                                 (7) 

For compressible signals, the CS reconstruction via solving (3) is nearly as good as that using the 
best k -term approximation of s . 

Lemma 1 [19]: Suppose that BΦ  is a measurement matrix obeying RIP with order 2k , and 

2 2 1k ≤ −δ . Then, for a signal s , the solution ŝ  to (3) obeys 

1
02

( )ˆ kc
k

− ≤
ss s σ

.                             (8) 

for some constant 0c . 
Obviously, the above lemma can also be generalized to 2D signals, a representative result can be 

found in [15]. Lemma 1 and its generalized result for 2D signals show the fact that the CS 
reconstruction error via solving (3) is bound by the best k -term approximation error. But, what is the 
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bound for the best k -term approximation error? Whether the best k -term approximation error can be 
bound by an explicit function of k ? Since if this kind of boundary exists, the CS reconstruction error 
for 2D signals can be explicitly bound by a function of the maximum block sparsity level. In next 
section, this kind of boundary will be established firstly, and then a new error performance of BCS for 
2D signals is proposed. 

3.2. A new error performance bound for 2D signals 
In this section, we carefully research the reconstruction error bound of BCS for 2D signals. Before 

we give the main theorem of this paper, we provide two lemmas that will be used in the proof. 
Lemma 2.  Suppose that s∈ nR  is a k -sparse signal, and k  is a positive integer, then we have 

1 1 1

1( ) : min
k

k k k
k

σ
∈

= − ≤ − ⋅
z

s s z s .                (9) 

Proof: In order to prove Lemma 2, we will require the following lemma. 
Lemma 2.1. Suppose that nR∈u  is a signal whose entries are arranged in amplitude descending 

order, i.e., (1) (2) ( )n≥ ≥ ≥u u u . When 2l ≥ , we have 

1 ( )
1

n

i l

n i
n l =

≥
− + u u .                              (10) 

Proof of Lemma 2.1: When =2l , the above inequality can be rewritten as 

1
2

( )
( 1)

n

i

n i
n =

≥
− u u .                              (11) 

Obviously, the inequality (11) is equivalent to 

1
2

( 1) ( ) 0
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=
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i i
n i i

= =

= − − ≥ u u u u ,   (13) 

which gives inequality (10) with 2l = . 
Now, we generalize inequality (10) to 2l ≥ , 

1
2 3

( ) ( )
1 2

( ) ,
1
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which complete the proof.  
Proof of Lemma 2: Firstly, we prove inequality (9) in the case of k k≤ . 
We define the support set of s  as supp( )F = s , i.e., the set of i  for which 0i ≠s . Let k

F R∈s  be a 
signal vector which only reserve the entries of s  in the support set. Let k

F R′ ∈s  be a signal vector 
obtained by rearranging Fs  in amplitude descending order, i.e., (1) (2) ( )F F F k′ ′ ′≥ ≥ ≥s s s . Then, we have 

1 1 1F F′= =s s s .                             (15) 
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where the first equality holds because 1 1( ) ( ) ( ) 0 F
i F i F i F i F

i i i
∈ ∉ ∈ ∉

= + = + =   s s s s s and the second 

equality uses the fact that F′s  is just a signal vector obtained by rearranging the entries order of Fs . 
Let ′s  be the best k -term approximation of s , then we have 

1 1 1 1
1

( ) = ( )
k

F Fk
i k

k kk ki
k k= +

−−′′ ′= − ≤ =s s s s s sσ ,      (16) 

where the inequality uses the result of Lemma 2.1. 
Now we consider the case of k k> . We have 

1 1 1

1( ) : min 0
k

k k k
k∈

= − = ≤ − ⋅
z

s s z sσ ,            (17) 

which gives (9) with k k> . 
Lemma 3.  Suppose that s∈ nR  is a k -sparse signal, then we have 

2 2

1 2k≤s s .                                     (18) 

Proof: Firstly, we consider arbitrary signal vector 1 2[ , ,..., ] n
nv v v R= ∈v . For any signal v , we have 

2

1
1 1

n n

i j
i j= =

= ⋅v v v  

22
2

2
1 1 2

n n
i j

i j
n

= =

+
≤ =

v v
v ,               (19) 

where the equality condition holds if and only if 1 2 n= = =v v v . 

Of course, sparse signal s∈ nR  also satisfies (19). However, we can derive a tighter bound for sparse 
signal by taking the sparse characteristic of s  into consideration. Let k

F R∈s  be a signal vector which 
only reserves the nonzero entries of s , as used in Lemma 3. 

According to (19), we have 
2 2

1 2F Fk≤s s .                                  (20) 

Combining (15) with (20), we obtain 
2 2

1 2k≤s s .                                     (21) 

which complete the proof.  
Leveraging the above lemmas, we can establish the main result of this paper. 
Theorem 1. Suppose that BΦ  is a measurement matrix obeying RIP with order 2K , 

2 2 1K ≤ −δ and max min max min2K K K K K≤ +（ ）, where minK  is the minimum block sparsity level. Assume 

that each block of 
TT T T 1

1 2, ,..., N
L R × = ∈ x x x x  is sampled by BΦ  via (6), where 1n

i R ×∈x  is i -th block of 
x . Let ˆix  be the reconstruction signal of ix  via solving (3), then for x , the CS recovery error 

2 2
ˆ= −x x xμ obeys 

maxK Kc
K

μ −
≤ ,                                   (22) 

where 
TT T T 1

1 2ˆ ˆ ˆ ˆ, ,..., N
L R × = ∈ x x x x  is the reconstruction signal of x  and c  is a finite constant. 
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Proof: According Lemma 1 and Lemma 2, we have 

1
2 1

( )ˆ iiK
i i i i

i

K K
c c

K K K

−
− ≤ ≤

x
x x x

σ
.             (23) 

where ic  is a finite constant and maxi ic c= . 
We bound the square of reconstruction error term by 
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where the first inequality uses the result of (23), the second inequality uses the inequality 
max min max min2K K K K K≤ +（ ）, the third inequality uses the result of Lemma 3, the fourth inequality uses 

the inequality maxiK K≤  and the last inequality use the fact maxK K≤ . 
Taking the square-root on both sides of (24) gives the inequality (22). 
In conclusion, Theorem 1 shows that the reconstruction error bound of BCS depends on the 

maximum block sparsity level of the sparse signal. In the best case, when maxK K= , which means that 
the nonzero elements of the 2D signal is distributed among the blocks evenly, the 2D sparse signal can 
be recovered perfectly by solving (3). 

The main application of Theorem 1 is the permutation-based BCS scheme for CS-based image 
compression applications. According to Theorem 1, better recovery quality can be achieved if the 
signal has smaller maximum block sparsity level. Therefore, we can improve sampling efficiency by 
using permutation strategies prior to sampling. In practice, a lot of permutation strategies [11-18] have 
been proposed. The simulation results of [11-18] have shown that the reconstructed-images quality can 
be improved significantly if we can reduce the maximum block sparsity level by using permutation 
strategies prior to sampling. The successful application of permutation-based BCS scheme in CS-based 
image compression field can be regarded as a favorable evidence for Theorem 1. 

4. CONCLUSIONS 
In this paper, we analyze the error performance bound of BCS. It is revealed that better 

reconstruction performance can be achieved if the 2D signal has smaller maximum block sparsity level. 
We also show its potential applications in image compression field. 
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