From Method Fragmentsto Method Services

Rébecca Deneckere, Adrian lacovelli, Elena Kornyah€arine Souveyet

CRI, University Paris 1 — Panthéon Sorbonne, 90dau€olbiac,
75013 Paris, France
{denecker,adrian.iacovelli,kornyshova,souveyet}@uparis1.fr

Abstract. In Method Engineering (ME) science, the key issige the
consideration of information system development hoés as fragments.
Numerous ME approaches have produced several tilgfimiof method parts.
Different in nature, these fragments have nevesi®el some common
disadvantages: lack of implementation tools, insigifit standardization effort,
and so on. On the whole, the observed drawbacksekied to the shortage of
usage orientation. We have proceeded to an in-daptiysis of existing
method fragments within a comparison framework fdeo to identify their
drawbacks. We suggest overcoming them by an impnewé of the “method
service” concept. In this paper, the method sericalefined through the
service paradigm applied to a specific method fragim- chunk. A discussion
on the possibility to develop a unique represemmatdf method fragment
completes our contribution.

Keywords: Method Engineering, Method Fragment, Method Service

1 Introduction

Method engineering (ME) science deals with infoipratsystems (IS) development
methods. One of the ME fundamentals for optimizimgusing, and ensuring
flexibility and adaptability of these methods igithdecomposition into modular parts
[1].

There are various representations of building kdodkis purpose is discussed in
the literature [2, 3, 4] and gives an overview ofefdifferent building blocks:
fragments [5], chunks [6], components [7], OPF imagts [8], and method services
[9]. We will use the term "Fragment" in this work a generic term for all kinds of
building blocks. Historically, the term fragment svéhe first one to appear, long
before component, chunk, and so on. Brinkkempeinédgsfa method fragment as “a
coherent piece of an IS development method” [5S]eréfore, we consider this
definition as the simpler one and that all otheesessentially its extensions, which is
the reason why we have chosen this term. The giseriof fragments is strongly
linked to the approaches that suggest them. Feréaison, we consider the fragment
definitions as joint notions of ME approaches.

Despite their diversity, different method fragmehnéve some common drawbacks.
To identify them, we elaborate a comparison franméwBrom the application of our
comparison framework on the five selected fragmemtsdeduce that a sufficient tool

Proceedings of EMMSAD 2008 81

support is not provided for them and for their (isteractivity with users). Moreover,
the interoperability of the proposed proprietarjusons is not handled. In addition,
the complexity of data exchanged is not completelgressed.

In order to overcome these drawbacks, we sugggsboiing Rolland’s proposal
[10] about applying the service-based approach ®© meds. This concerns the
adaptation of Service Oriented Architecture (SOA]l][to method fragment by
developing a Method Oriented Architecture (MOA).this manner, we improve the
concept of "method service".

Our method service contains two parts: descriptar implementation parts. The
descriptor part combines a semantic descriptor (based on the #agudefinition of
the method chunks approach) and an operational rigesc describing the
implementation part that operates the process of the fragment. Teahigsues of
method services are addressed with the applicaifowidely used standards of
service-based approaches.

Thus, this study joins the ME field with the propb®f a framework used for
comparing different representations of method lngdblocks, for identifying their
drawbacks, and suggesting a solution to solve them.

This paper is organised as follows. Our comparfsamework is described in the
next section and it is applied on three selectethatefragments in the third section.
Following the concluding remarks of this comparistire concept of the method
service is developed in section 4. A discussionuaf@ounique concept of method
fragments is addressed in section 5 and sectiomngludes this work with our
contribution and research perspectives.

2 Comparison Framework

We have elaborated a framework to compare diffem@thod fragments. The idea to
consider a central concept (here the method frapmerfour different points of view
is largely inspired from [12], a work dealing wiélvolution scenarios. To elaborate
our comparison framework, we have proceeded to relysis of issues that are
crucial for a "good" IS development method andih&t same time, not-solved by
existing method Fragments. As a result, our framewoontains 15 attributes
organized into 4 views (cf. Fig. 1) developed ie fbllowing subsections.

\ Which aspects are

Usage suggested for

What is the fragment using?

method fragment
contribution?
- Method
Objective Process
L Fragment)
:lf How is the method
What is the presentation fragment conceived

and the structure of the Subject and used ?
method fragments? \ /

Fig. 1. Method fragments’ comparison framework.

82 Proceedings of EMMSAD 2008

2.1 Objective View

This view captures why we should use a specifichogtfragment and what are the
benefits retrieved from its practical application.

A point to consider is the fragmentteroperability with other fragments. The
interoperability has been discussed since the begimf ME science [5]. However,
the majority of fragments are conceived to be oyperable only with the fragments
stored in the same method base (“internal” interaipiéty). In the real world project,
the situation is widespread when the interopetgbii required with other elements
(external to method base) on the same or on diffetevelopment platforms (external
interoperability within or not the same environment

Staying within the fragments’ environment, benefits retrieved from the degree
of interactions with the method engineer. Timeractivity is decomposed into three
possible levels. ME approaches should either peoadully automated or assisted
(semi-automated) process for construction, reusk camposition of fragments. At
least, the ME approach application can be manual.

2.2 UsageView

This view deals with different aspects that descthe fragment usage.

Seligmann gives a definition of a method as “a wddythinking, a way of
modelling, a way of working and a way of supportifif3]. However, even if a lot of
fragments are considered as complete method, tifegnare not adapted to satisfy all
these requirements. We investigate this questiautih thecovered way.

The methods fragments application needs to be stgzpby a tool. [5] defines a
tool as "possibly automated means to support & drtievelopment process”. We
distinguish different ways of fragment implemeraati first, the implementation of
process and product parts of the method fragmehtsetond, the implementation of
fragments’ storage, retrieval, and constructiorerkif all ME approaches investigate
storing methods fragments in the “method base”method repository” [5, 6, 14],
this information is relevant as all the other inmémntation parts are founded on this
one. Hence, outool/implementation attribute takes the following values: product
storage and manipulation, process operating, v@lriand construction.

2.3 Subject View

This view answers the « What » question. This mahat we will develop facets
concerning the internal structure and formalisatibthe fragment.

An observation of the literature guided us to definree possibléevels in which
we may consider fragments: intentional, structurgkrational levels. The intentional
level allows defining the context of use and/orseeof fragments. The structural level
determines the fragment structure and the kind tofctural links between the
fragment elements: specialization, composition afdrences. The operational level
deals with operating part of fragment (allowing itsplementation during
development project).

Proceedings of EMMSAD 2008 83

The method fragment could be also characterizedh watlation to its main
elements. Depending on the dominant element, [d&itifies three keyerspectives
for fragments description: process focussed, probetissed, and producer focussed.

Another important aspect of the fragment is tteeursion. The concept of
granularity is used in several approaches to alltives possibility to compose a
fragment with others fragments. For instance, grfrant may be an entire method
that can be decomposed in other less complex fratgnfehich, in turn, may also be
decomposed in other more simple fragments).

A fragment may also be defined at differabttraction levels. We consider the
following levels: meta-meta-model, meta-model, mdtié].

[17] explores the notion of the fragmefotmalism that can be either conceptual
when fragments are expressed with descriptionsspedifications of methodology
parts, or technical when there is an implementatiooperational parts with tools.

2.4 ProcessView

The process view considers different ways of metfragments conception and
usage. The attributes of this view aim at descgliime main ME activities dealing
with fragments (method decomposition, fragmentciga, new method construction,
and so on).

First, the methods are decomposed into methodsn&ats which are stored in
method base (or repository). Thus, we define theetfddecomposition principle”
which deals with different ways to decompose meshiatb fragments. This principle
predefines the fragments description used for thgémtification during project
fulfilment.

Once the methods are decomposed and stored irm$iee they could be used in the
projects. On the first step, the engineer must finthe method base the fragments
that better match the project specificities. Ors thasis, we identify two facets:
retrieval/selection principle and matching withusiion. The retrieval/selection
principle defines steps to carry out for identifying an aygpiate fragment. In ME, all
approaches are situational, which means they tatkeaccount the specific project
situation by different manners. This aspect is @mared within thematching with
situation attribute.

The next step is to build a new method from thecel fragments. Based on [18],
we distinguish the following main manners to ussgfments foiconstructing a new
method according to project specificities: assembly, egien, and reduction. By
assembly, separate fragments are grouped withdegdhe studied specific project to
form a unique method [19]. By applying extensiobaaic method is transformed into
a new one by addition of new fragments [19]. Byuettbn, some fragments are
removed from the basic method in order to transfiitm match the engineer's needs
[7]. In the real world projects, with time and resce constraints, where is a need for
constructing methods dynamically depending on tiogept specificity and adapting it
during its realization if project characteristichaage. This property implies the
agility of methods. Recently, the agility was dissed with regards to methods of IS
development [20]. However, agility in ME approachesot widely spread and is

84 Proceedings of EMMSAD 2008

only suggested in recent works. To consider thisl lof construction, we introduce
the fourth value for the given attributagdile construction” having a Boolean value.

3 Framework Application

Several types of fragments have emerged in thetitee. The most known of these
different kind of representation are method fragtsiemethod chunks, component, OPF
fragment, and method services [2]. Before applgingcomparison framework to these
fragments (sub-section 3.2), we give their briefreiew in the following sub-section.

3.1 Overview of Existing M ethod Fragments

In order to succeed in creating good methodolotfies best suit given situations,
fragments representation and cataloguing are vappoitant activities. In particular,
they have to be represented in a uniform way ti@tides all the necessary information
that may influence their retrieval, integrationamsembling. The five above-mentioned
method fragments are presented in the Figure 2gaicttly described below.

Method fragments (cf. Figure 2.A) [5, 21] are standardised buildisigcks based
on a coherent part of method. A fragment is eithétroduct or a Process fragment
and is stored on a method base from which theybearetrieved to construct a new
method following assembly rules [17].

The latest description of method chunk [2] describes it as a way to capture more
of the situational aspects in ME and to approplyadepport the retrieval process. A
chunk [6] based metho@ims at associating the reusable components to thei
description in order to facilitate component resbaand extraction according to the
user's needs (cf. Figure 2.B).

For [2], method components developed in [7, 22, 23] allow to view methods as
constituted by exchangeable and reusable comporieath component consists of
descriptions for process (rules and recommendatiomgations (semantic, syntactic
and symbolic rules for documentation), and concégtd=igure 2.C). [23] introduces
the notion of method rationale which is the systi#ertaeatment of the arguments and
reasons behind a particular method [22].

In the OPEN Process Framewoi®RF) [8], the fragment is generated from an
element in a prescribed underpinning meta-model TAjs meta-model (cf. Figure
2.D) has been upgraded with the availability of thernational standard ISO/IEC
24744 [24].

SO2M (Service Oriented Meta-Method) [9] developsew kind of fragment
called offers a repository with a large variety méthod fragments, calleahethod
services together with, and a service composition procBaging composition, the
process guides developer’s choices; it selects adetkrvices and delivers a method
fragment that achieves a developer’s requiremedmt. SJO2M meta-model is based on
three main principles: service orientation, taskotogy for reuse of knowledge on
development problems and dynamic construction ahoe services for generating
tailored methods (cf. Figure 2.E).

Proceedings of EMMSAD 2008 85

linked to

Project
characteristics

—
[emua e K
e

l Interface ‘ l Descriptor ‘ l Body ‘

l Process Part ‘ l Product Part ‘
[CH
@ Related to l Product Part ‘ l Process Part ‘

*
Method

% | Component

OPF Fragment

111
AN

l Endeavour ‘ Language l Work Product ‘
Notation Actor Role
[| . Stage Producer
l Outcome ‘ l Prerequisite ‘
el L]
Method Sercice

Identification Part

Finality Process Initial Final Ressource Execution
@ Situation

_<>I

Situation Graph

Fig. 2. Meta models parts of the reviewed fragment types.

3.2 Comparative Analysiswithin Framework

The table (cf. Appendix) presents a comparativelyais of the five selected
fragments. This table is explained in this subisectttribute by attribute.

Interoperability. All fragments provide an internal interoperabilitye. with
fragments in the same method base. OPF fragme#jscih deal with an external
interoperability in the same environment by using object serialisation. Due to this
serialisation, it can not be applied on differelatiorms. Method services [9] grant a
fully external interoperability with a decentralisénteroperable service oriented
approach.

Interactivity with user. In most ME approaches, the creation, retrieval,
composition, and application of fragments is dorenuoally. Some efforts have been
done with method fragments and method servicesrtwige tools to assist the
different users. However, most of their aspectsstiiedone manually.

86 Proceedings of EMMSAD 2008

Covered way. All fragments help to construct methods that partigver
Seligmann definition of a method [13]. Indeed, eachstructed method answers to a
particular paradigm (‘way of thinking’) and has twdifferent parts, namely the
"product” (‘way of modelling’) and the "processWay of working’). However, not a
single one of them is able to meet all the toolnements (‘way of supporting’).

Toolsg/implementation. All considered ME approaches provide a tool foriatp
method fragments in a database. Method chunksadilse a more efficient retrieval
of stored knowledge with the Method Chunk Repogi{@5]. Two other approaches
go further in tool supporting. In addition to thedments selection and retrieving, the
first one (method fragments with a tool called Deegone) contains the product part
elements [5] and the second one (method servic&O@M approach) uses resource
descriptions and execution graphs for implementeagpurce part [9]. However, the
method service is viewed as a "black box" withony &xplanation on how it is
developed. The OPF fragment authors develop areimgted product part within an
"Eclipse" tool [26].

Level. The intentional level is present in all fragmemtscepted the method
fragment one. The chunk's intentional level corstaam interface (situational and
intentional aspects) and a descriptor (set of rigitéo locate the best engineering
situation) [27]. For method component, the intemdio level includes goal's
identification. The OPF fragment is selected by dal. The method service's
identification part defines the purpose of the mervthe finality (the problem that the
method service solves) and the argument (advantagésdrawbacks of using the
method service). All fragments have a structurakleThe operational part at the
level of meta-model is included only in method segv

Per spective. The method fragments are defined as either prgeadsor product
part [5, 17], whereas all the other fragments idelboth the interrelated parts in their
definition. The third perspective (producer) is a$ed in only two blocks:
component and OPF fragment [2]. In [5], roles ddpde are included as a property of
the method fragment.

Recursion. Even if nearly all ME approaches insist on thefedé@nt layers of
fragment granularity (a fragment may be either @hoe part or a complete method
[5,17]), only the method chunks can be describecbaspletely recursive. A chunk is
based on the decomposition of the method procestelnioto reusable guidelines
[28], which means that all chunks may be formalgcaimposed in other complete
chunks. The other types of fragments are not fdyrddfined to deal with process
decomposition.

Abstraction level. All fragments are defined at the level of meta-mled(cf.
Figure 1.). The method service includes a meta nmetalel level because this
approach suggests a ontology used for describilgiust model [9]. The OPF
fragment contains also an endeavour, which is stamte of model and corresponds
to a schema of development method [14].

Formalism. Chunks and components use conceptual formalismsn e OPF
fragments and method services support technicakeptation. The method fragment
contains both conceptual and technical representfil 7].

Decomposition Principle. The decomposition principle is quite different
following the fragment type. Method fragment useise& decomposition to link all
coherent method parts. Chunks are obtained bytioteal decomposition of methods

Proceedings of EMMSAD 2008 87

[19]. The OPF fragment is a "clabject”, which igesult of both instantiation and
inheritance [14]. Components are decomposed bysgdl The method service
approach does not specify this attribute value.

Retrieval/Selection Principle. The retrieval and selection of a method fragment
are made by different types of queries. Chunkssetected with the application of
similarity measures of their descriptors and irsteel. This helps to evaluate the
degree of matching between them and the requirenj@é8}. On the same way, the
method service selection is made by a comparisadheofequirements (expressed by
intentions) with the service intentional descrigtdoy ontologies, which allow
comparing the semantic similarity [9]. Differenti@®PF fragments, stored on a ‘work
product tool’, are selected with queries on thanleavour [14]. Method fragments are
selected by application of request on the goal.[21]

Matching with situation. Approaches don’t match the situation with the same
techniques. The method fragment definition consissncouraging a global analysis
of the project while basing itself on contingenciteria. Projects and situations are
characterized by means of factors associated Wwehnethods. The chunk approach
includes projects requirements expressedraguarements map [19], which is used to
test the similarity between requirements and egstfragments. In component
containing its "rational”, the matching is perfordngy goal analysis [7]. The Method
service approach uses an identification part tledinds the purpose of the service.
The matching is thus done by using goal, actorcgss, and product ontologies [9].

Construction technique. The method fragments are assembled for creatmea
method. The chunk approach uses assembly (allomirgapping between different
chunks) and extension. In addition to the assemgkdind extending, the component
approach suggests method reduction. The methoitsezonstruction is based on a
composition process that supports the aggregatfoeeovices in sequence or in
parallel [9]. In the OPF approach, a new methodcamstructed by dynamic
instantiation of fragments during the project. Henthe OPF approach suggests an
agile construction of methods.

3.3. Drawbacks of Existing M ethod Fragments

The framework analysis allows identifying the felimg main drawbacks of existing
method fragments. (i) The way of supporting metli@dyments is not sufficiently
managed by ME approaches to produce new methodtagthsupport. (i) The ME
approaches themselves are not enough automatey.lifietheir tool support to a
description language, a method fragment repositand retrieval facilities. (iii)
Moreover, the handle of abstraction levels in fragts is not complete in all ME
approaches. Fragments work at different abstradéieel and the whole complexity
of exchanged data is not addressed and causegriatices of exchanges between
them. (iv) Despite standardisation efforts of th& Mommunity, there is no unified
description language of a method fragment and aptenability issues between the
various fragments method databases are not handled.

88 Proceedings of EMMSAD 2008

4 Improvement of the Method Service Concept

Our proposal to solve these problems is to carrythenapproach proposed by C.
Rolland in [10], i.e. to consider the method fraginas a service.

4.1 Proposed Solution

To develop the concept of method service, we useStrvice Oriented Architecture
(SOA) [11] and the method chunk definition.

Indeed, the SOA applied to ME needs may solve ith@ation of existing ME
approaches. The adaptation of the SOA to the MEhe Method Oriented
Architecture (MOA) — defines a method services stgi where a list of available
method services is organised. This provides actesecentralised method service
providers for ME engineers and developers andaptnable method services.

Moreover, according to the MOA, each method serhias to be considered as a
standalone component, which should be retrieved smielcted dynamically. Each
granularity of method service can be then viewed executed as a method. To be
compliant to this requirement, we based our met®gices on the method chunk for
two reasons : (i) the intentionality (decompositamd retrieving). We decompose the
methods into method services according to an iieat principle. We use the
descriptor and interface of the method chunk ireotd describe our method services
intentional part. This part will be used for retiiegy and selecting method services
from the registry (ii) the recursion. Chunks useir@entional decomposition, which
means that they are using the composition principith a description of their
intention (objective the engineer will reach if bses it). To decompose a main
intention into simpler ones allows a decompositida method into chunks logically
related to each other and always described on #mesway. This recursive
description of the chunks will allow us to implemeyur services according to the
MOA principles of process composition.

Satisfying the MOA requirements, our implementatadnmethod services has to
deal with the identified drawbacks by applying atomparison framework. To
overcome them, a method service has to deal with keys technical issues [29]:
complexity, interoperability, composition, and irgetivity. These issues can be
addressed by the application of standards usedriicg-oriented approaches. Table
1. shows, for each issue, the suggested standaddbeir usage objectives.

The usage orientation is emphasised by this soluticeveral directions:

— Adoption of an open and distributed architecturelésign, to distribute, and to
execute method chunks.

— Enrichment of the semantic descriptor of method nkBu with their
corresponding software module, called method servic

- Adoption of standards widely used coming from webviees technologies to
implement method services.

Proceedings of EMMSAD 2008 89

Table. 1. Standards used for resolving the technical issues.

Issue Standard Objective
exchanged dajXMI — XML Metadata Interchange [30] external daialeange on all levels
complexity MOF — Meta Object Facility [16] modeling levels fiing
interopera- |SOAP — Simple Object Access Protocol [3djethod services communication
bility WSDL — Web Services Description method services descriptions

Language [32]
UDDI — Universal Description Discovery |service registry
and Integration [33]

XMI standardisation of exchanged products
MOF standardisation of exchanged products

composition | BPEL — Business Process Execution method services operational parts
Language [34] composition

interactive webhWSRP — Web Services for Remote Portletmethod services user interface handling
services [35]

4.2 Method Service Structure

The method service structure combineadescriptor part with its implementation part
as shown on Figure 3. The descriptor part aims @tughenting, retrieving,
composing, and invoking the related implementagiart. The tool support is realised
by the implementation part of a method service.hEg@nularity level ofmethod
service is executable and may be a composition of metkodces.

Method service

Peseriptor part bl I Implementation part
Method Service| XMI Product
Descriptor Message]
Uses
} Operation

1 BPEL Process

\ \ -
Semantic Implements Operational ’\ }

Descriptor Descriptor
WSDL .]
\ 1 Web Service
[[[\
Intention Paradigm Process Product

Fig. 3. Meta model of a method service fragment.

The semantic descriptor describes the chunk implemented by the methodcgervVhe
main purpose of this descriptor is to document oetkervices through four sub-
parts: Intention, Paradigm, Process and Produdhdnmethod chunk approach, the
retrieval and composition of fragments are don@abgntions. We propose to carry on
this principle to base the retrieving and the cosimn of method services on the
four sub-parts of the semantic descriptor.

The intention defines the intentions of the method service uskthe context in
which it can be reused. Thraradigm describes the fragment's way of thinking. The

90 Proceedings of EMMSAD 2008

process is the description of activities executed on inprdducts. Theroduct is the
meta-model description of input and output produotels of the method service.

The operationalisation of method services is perfad by an operational
descriptor and animplementation part. It implements the process described in the
semantic part by aveb service or a composition of web serviceBREL process)
exposed by a WSDL descriptor. The implemented vegbice is a tool providing the
way of supporting method services. The product dsign is implemented by meta-
models compliant to Meta Object Facility (MOF) stard and XMI schema standard.

The WSDL is the operational descriptor of a method servitecontains the
definitions of each performeaperation including their inputs, and outputs messages
(XMI product message).

4.3 Method Oriented Architecture

As indicated above, the MOA (proposed in [10]) isaalaptation of the SOA to ME.
Figure 4 shows the three actors and their intevastiin the MOA: themethod

provider, themethod registry, and thamethod client.
_ Method Service
Implementation Part

Method
Provider
Bind
Method
Retrieve Client

The method provider creates method services and publishes their g¢sigion the
method registry. Themethod client retrieves method services from the registry, using
retrieval facilities built upon semantic descrigtoOperational descriptors (WDSL)
are used by method clients to invoke itmplementation part of method services from
their provider.

This implementation of the fragment process isegittn atomic web service or a
composition of web services realised by a BPEL @ssc

The MOA usage can be sketched according to twaxases:

— developers using CASE tools to invoke remote metwtlices.

- method engineers using CAME tools to define newhawods with method
services composition facilities.

This MOA provides an open and decentralised actessiethod services for
method client tools built on a Software as a Ser¢®aaS) architecture [36].

Method Service | _ Method
Descriptor Part Registry

Fig. 4. Method Oriented Architecture.

4.4 Method Service Characterization according to the Framework

A method service reuses the method chunks chaistater Indeed, its semantic
descriptor is inspired by method chunk descripttowever, it includes also the way

Proceedings of EMMSAD 2008 91

of supporting by its operational descriptor and iftgplementation part. We have
defined our method service based on the compafiaomework:

Objective view {nteroperability = “external in different environments”;
Interactivity with user = “automated”}

Usage view Covered ways = “thinking, modeling, working, supportingTools /
implementation = “storage, manipulation, operating, retrievahstuction”}

Subject view {evel = “intentional, structural, operationalPerspective = “Process
focussed, Product focussedecursion = yes;Abstraction level = “meta-meta-model,
meta-model, model, schema&ormalism = “conceptual, technical’}

Process view Becomposition principle = “by intentions”; Retrieval/selection
principle = “request by paradigms, intentions, processesdumts”; Matching with
situation = “not specified”;Construction technique = “agile”}

We may observe with this definition that we havedrto overcome the drawbacks
identified in the section 3.3. First of all, thim@gment is a “real” method fragment as
it covers the four parts of Seligmann definitio3] by developing the full support of
the method service. The interoperability issuensueed by the adoption of widely
used standards, coming from the web service anch filee meta data exchange
technologies. Creation, retrieval, composition, apglication of method fragments
are automated in our MOA based approach. The iotitdecomposition principle
gives a recursive view and the fragment is viewsed aervice. Finally, our suggestion
allows an agile construction of situational methods

4.5 Basic Application of the M ethod Service approach

The following figures illustrate our approach witte description and application of a
method service calle®bjectify (Fig 5 and Fig. 6). This service implements the
process of making out an object out of a relatigngknown as objectification,
reification, or nesting) [37].

Fig. 5 shows the semantic descriptor of this meteedsice. The product part
shows the input and the output class diagram pargseas the process part shows the
operations which has to be executed on the inmdumt to reach the method service
intention and obtain the output product.

Intention
<A association with a double one or more multiplicity, Objectify the association>

Paradigm
Object Paradigm
Product Process
Input * Create Class AB
Lo * Create Association A-AB
Class A M Class B * Bind the Association Ends to Class A and Class AB and
create their respective Multiplicities
Output * Create Association B-AB
* Bind the Association Ends to Class B and Class AB and
create their respective Multiplicities
ClassA |[7—=| ClassAB [x 1| ClassB < Dolete Association AB

Fig. 5. Objectify Method Service Semantic Descriptor.

92 Proceedings of EMMSAD 2008

Fig. 6 shows a part of the method service impleaten. We focus on the invocation
of the web service implementation. There is othecgsses that have to be taken into
account to implement this approach, as the seanchretrieval of the descriptor
(WSDL), but we thought that this one will be enouglre to give a relevant example
to illustrate this work.

Input Class Diagram

ClassA M Class B
" ' Method Service
Transformation Process
XMIDocument Objects + Create Class AB,
<XMixmi.version ='1.2" ... public class Class{...} * Create Association A-AB
<UML:Classxmi.id = ‘01' name = 'Class A" ..."/> 1| | public class Association{...} * Bind the Association Ends to Class
<UML:Class xmiid = 02" ETT2 = Class B'.../> | WSS | piic class Objectify(Aand Class AB and create their
I:UMLSA?soclatllon xmi.id = ‘03" name = Class cA = new Class(«Class A»); ...} respective Multiplicities
ssociation AB’ ... p L
u * Create Association B-AB
Modified XMI Document Yi Modified Objects * Bind the Association Ends to Class
<XMixmiversion ='1.2" ... u public class Objectify{ B and Class AB and create their
<UML:Class xmi.id = ‘01' name ='Class A'...'/> H - sl
. i =02 = ' r xmiWriter.writeDocument(); respective Multiplicities
<UML:Class xmi.id = ‘02' name ='Class B'.../> « Delete Association AB
<UML:Class xmi.id = ‘03' name ='Class AB'.../> -}

leo

ClassA T % ClassAB |% 1 Class B

Output Class Diagram

Fig. 6. Objectify Method Service Application Example.

As mentioned above, in table 1, we choose to use 3tikhdard for data exchange.
Consequently, the input class diagram needs teesented using XMl to produce
a XMIDocument (step 1) which will be understandaiyea method service. This one
is the implementation of a method service process gnd has to be applied on the
XMIDocument. At this point, several implementati@olutions are possible. For
instance, the method service directly modify the IXkbde of the XMIDocument,
either by an algorithm application, a modificatiohthe DOM (Document Object
Model) tree [38] or by an XSLT transformation [39; it may be instantiated to
manipulate objects. In our illustration, we chotiss last solution because it induces
a more easy transformation (step 2) and instanti@eXMIDocument according to
the UML Meta Model (MOF compliant) [40]. Then, weanipulate the created
objects by a simple algorithm in order to perfofime thunk process part (step 3).
Once modified, the instance of the input XMIDocurnisrused to generate the output
XMIDocument (step 4) which represents the transéatrtlass diagram (step 5).

5 Discussion: Toward a Unique Concept of Fragment

Different method fragments and their correlatioapresent a main purpose of ME
science. An attempt to find a unique concept waden@uring the panel of the ME
conference [2]. In this section, we present oumpaoif view on this problem and

Proceedings of EMMSAD 2008 93

discuss the possibility to lead to a unique visafnfragment with regard to the
suggested definition of method service.

The creation of a unique concept will be confrortedeveral challenges to solve.
The definition of a method by [13] decomposes ahmetin four ways, which have to
be addressed by the unique concept of fragmenthéumnore, in a general way this
unique fragment will have to cover all the concepdsitained in actual fragments.
Afterwards, in a practical view, the four techniéasues enounced in section 4.1
(complexity, interoperability, composition, and erdctive web services) have to be
considered. Some advantages could be retrieved &oumique concept like the
standardisation of method fragments providing ateraperability of solutions,
encouraging the share and use of fragments.

Nevertheless, covering all aspects of method fragsnm a unique fragment is a
difficult task. Therefore, we propose to define soessential aspects required for a
unique fragment representation. For the fragmempgse, five aspects have to be
considered: intentionality, reusability, interopalidy, interactivity, and
implementation.

Our proposal of the method service improvement estdlrs most challenges of a
unique fragment concept. The four ways of a method technical issues are
considered, but the covering all existing methalyfnents aspects is not provided.
Therefore, intentionality and reusability objectiveare not yet completely
implemented. The implementation of our semanticcdp®r and its associate
platform will solve these two problems.

6 Conclusion

In this paper, our contribution is double: we defancomparison framework in order
to identify the drawbacks of existing method fragiseand propose an improvement
of the method service concept to solve them.

The suggested framework allows a comparison stredtin four views and the
following purposes: (i) to have an overview of ¢ixig method fragments, (ii) to
define drawbacks of existing method fragments, @ndo analyse the possibility to
converge on a unique fragment concept.

Based on this framework analysis, we propose tororg the method service
concept in order to:

— overcome the following drawbacks of existing methivpdgments with the
application of service-oriented approaches starsdairgsufficient consideration of
complexity, lacks of interoperability, and lacksinferactivity;

— encourage the usage of fragments with: the apitaf widely used standards,
the providing of a tool support, and the adoptiéradVOA providing an open and
distributed architecture.

The current implementation of our approach allowsthnd engineers to create
method services. For now, we do not integrate tireesponding user interface with
method services (back office services). These sesvinay be used to modify existing
methods or create new ones with BPEL processesmifation of our work is the
implementation of the composition principle as wan @wnly implement assembly

94 Proceedings of EMMSAD 2008

composition without overlapping. This principlesisery big technical issue on which
we are currently working.

Our future works include implementing the semaptct of method services and
defining a way for characterising the specific patjsituation. Our aim is to build
both the CASE tool based on SaaS for supporting n@thods (created by the
application of ME approaches) and the CAME tool foethod engineers for
composing method services using the semantic ¢srsi

References

1. Rolland, C.: L'ingénierie des méthodes : une @igitidégin French : Method Engineering:
A Guided Visit), e-Tl - la revue électronique deschnologies d'information, 1,
http://www.revue-eti.netdocument.php?id=726 (2005)

2. Agerfalk, P., Brinkkemper, S., Gonzales-Perez, Henderson-Sellers, B., Karlsson, F.,
Kelly, S., Ralyté, J.: Modularization Constructs iretidod Engineering: Towards Common
Ground?, Panel of ME 07, Springer, Geneva, Swipet| (2007)

3. Henderson-Sellers, B., Gonzalez-Perez, C., RalytéSituational Method Engineering:
Fragments or Chunks?, proceedings of CAISE'07 Foinorydheim, Norway, (2007)

4. Aharoni, A., Reinhartz-Berger, |.: Representatadnmethod Fragments, a comparative
study, in proceedings ME 07, Springer, Geneva,Z&nlind, (2007)

5. Brinkkemper, S.: Method Engineering: engineeraiginformation systems development
method and tools, Information and Software Techgypl88(7), (1996)

6. Rolland, C., Plihon, V., Ralyté, J.: Specifying tease context of scenario method chunks,
in the proceedings of the international confere@&SE’98, Pise, (1998)

7. Wistrand, K., Karlsson, F.: Method componentstiddale revealed, in proceedings of
CAISE 04, Springer-Verlag. Riga, Latvia, (2004)

8. Henderson-Sellers, B.: Process meta-modellingpndess construction: examples using
the OPF. Ann. Software Engineering, 14(1-4), (2002)

9. Guzélian, G., Cauvet, C.: SO2M : Towards a Ses@idented Approach for Method
Engineering, in: the 2007 World Congress in Comp8t&ence, Computer Engineering and
Applied Computing, in the proceedings of the intéoreal conference IKE'07, Las Vegas,
Nevada, USA, (2007)

10.Rolland, C.: Method Engineering : Achievemeneifis & Challenges, In the keynote
presentations of ME'07, (2007)

11.W3C: Web Services Architecture (WSA), http://wwiBc.org/TR/2004/NOTE-ws-arch-
20040211/, (2004)

12.Rolland, C., Ben Achour, C., Cauvet, C., Ralyte, utclife, A., Maiden, N.M., Jarke, M.,
Haumer, P., Pohl, K., Dubois, E. and Heymans, FPréposal for a Scenario Classification
Framework, Requirements Engineering Journal (1998)

13.Seligmann, P.S., Wijers, G .M., Sol, H.G.: Aisathg the structure of IS methodologies, an
alternative approach, Proceedings of the 1st Datmfiference on Information Systems,
Amersfoort, The Netherlands, (1989)

14.Gonzales-Perez, C.: Supporting Situational MeétBogineering with ISO/IEC 24744 and
the Work Product Tool Approach. Proceedings ofittbernational IFIP WG8.1 Conference
ME 07, Springer, Geneva, Switzerland, (2007)

15.Henderson-Sellers, B.: SPI — A role for MethatgiBeering, Proceedings of the 32nd
EUROMICRO, SEAA'06, (2006)

16.0Object Management Group (OMG): Meta Object Rgcil (MOF)v2.0,
http://www.omg.org/spec/MOF/2.0/, (2006)

Proceedings of EMMSAD 2008 95

17.Brinkkemper, S., Saeki, M., Harmsen, A.F.: A imoet engineering Language for the
description of systems development methods, inqadings of the conference CAISE 01.
Springer Verlag. Interlaken, Switzerland, (2001)

18.Nehan, Y.-R., Deneckére, R.: Component-based tiBitah Methods: A framework for
understanding SME, in IFIP, Volume 244, SituatioNdthod Engineering: Fundamentals
and Experiences, Switzerland, (2007)

19.Ralyté, J., Deneckere, R., Rolland, C.: Towardaeaeric Model for Situational Method
Engineering, in proceedings of the conference CAISESpringer Verlag, Velden, Austria,
(2003)

20.Abrahamsson, P., Salo, O., Ronkainen, J., Wardt Agile Software Development
Methods: Review and Analysis, VTT Publication 4768(2)

21.Harmsen, A.F., Brinkkemper, J.N., Oei, J.L.Hitu&ional Method Engineering for
information Systems Project Approaches Int. IFIP 8/G Conference in CRIS series:
"Methods and associated Tools for the Informatigrst@ns Life Cycle" (A-55), North
Holland (Pub.), (1994)

22.Agerfalk, P.J.: Information systems actabilitynderstanding Information Techology as a
Tool for Business Action and Communication. Doctaligkertation. Dept. of Computer and
Information Science, Link6ping University, (2003)

23.Karlsson, F.: Method Configuration: Method andmpaterized Tool Support. Doctoral
dissertation. Dept of Computer and Information Soéerinkdping University. (2005)

24.International Standards Organization / Inteama Electrotechnical Commission: Software
Engineering. Metamodel for development Methodolsgi8O/IEC 24744, Geneva, (2007)

25.Jeusfeld, M., Backlund, P., Ralyté, J.: Classifylimeroperability Problems for a Method
Chunk Repository. I-ESA’07, Funchal, Portugal (2007)

26.Firesmith, D.: Method Engineering Using OPFRGrdpean SEPG, Netherlands (2006)

27 Mirbel, 1. and Ralyte, J. -- Situational metherhineering : combining assembly-based and
roadmap-driven approaches -- Requirement Enginedaapal, 11(1), (2006)

28.Ralyte, J., Rolland, C.: An Approach for Method iRgeeering. Conference on The Entity-
Relationship Approach Yokohama, Japan (2001)

29.Souveyet, C., lacovelli, A.: Method as a SeritaS), Submitted to the conference
RCIS'08, (2008)

30.0Object Management Group (OMG): XML Metadata etohange (XMI) v2.1,
http://mww.omg.org/technology/documents/formal/xmm, (2005)

31.Gudgin, M., Hadley, M., Mendelsohn, N., Moreau]., Nielsen, H.F., Karmarkar, A.,
Lafon, Y.: SOAP V.1.2, in W3C Recommendations, hitywiv.w3.org/TR/soap/, (2007).

32.Christensen, E., Curbera, F., Meredith, G., Weamna, S.. Web Services Description
Language (WSDL) 1.1, in W3C Notes, http://www.w3/dig/wsdl, (2001)

33.0ASIS: uDDI Version 3.0.2, http://www.0asis-oparg/committees/uddi-
spec/doc/spec/v3/uddi-v3.0.2-20041019.htm, (2004)

34.0ASIS: Web Services Business Process Executioguage Version 2.0, http://docs.oasis-
open.org/wsbpel/2.0/wsbpel-v2.0.pdf, (2007)

35.0ASIS: Web Services for Remote Portlets Spetio 1.0, http://www.oasis-
open.org/committees/download.php/3343/0asis-200@04-specification-1.0.pdf (2003)

36.Papazoglou, M.P.: Service-Oriented Computing:c€pts, Characteristics and Directions,
in the Proceedings of the Fourth International @oerice on Web Information Systems
Engineering (WISE 2003), (2003).

37.Halpin, T. : Objectification, Proceedings o thenth International Workshop on Exploring
Modeling Methods in Systems Analysis and Design BEBAD’05), Porto, Portugal, 13-14
June (2005)

38.W3C: Document Object Model (DOM) : http://www.\w8/DOM/ (2005)

39.W3C: XSL Transformations (XSLT) : http://www.w8gdTR/xslt (1999)

40.Unified Modeling Language (UML) : http://www.uratg/

Proceedings of EMMSAD 2008

96

Appendix: Comparative Analysis of Five Selected Fragments

uonanpal

smddemao TUOTS TR IXR TOTSURIKR J[IEE UonImpaI anbrurpal
MO AJQUIISSE anse *AJQIUassE *AqUusSE AJQUUassE TWOTSTRTXA “AJqUISSE UOTPTUISTO)
sa18o1ou0 pnpoxd
pue “ssad01d 10108 dew| worEsSUREIRYD TOTIENIIS
I010® Te0s Ag pue 1eos Aq sjuatRImbar 133 (oxd I SUTYOIRA]
Te0s 2INSE2 aydouud uon
Aureruns onuewas | [eod Aq1sanbax Ag1sanbazx ALreyrs 1s2nbax -03[35/[RARLIRY]
TOTIBTIUEISTI apdund
patoads 10N ‘2OUBIIRTUT e08 Aq SUOTITRIUI Aq uonisodmwoda(| ssadoig
TEQTUY221 TE2TUY221 renadaouod remdasuod rerudaouod Teomm21 “Tenydaouod TIST[ETILIO]
[PPOW ‘[PPOT-E1AT| BIRTYIS ‘[2pOTl [Ppot Ppom Ppow [Ppou “[Ppott Pas]
PPOWFEIR-E1A T PPowWw-ElRW| [RPOU-ElRWI PpPo-BlA PPow-Ela T -EW ‘2 POTU-BIR - Bl UOTEBIEQY
ou ou ou s24 ou Tu=2jooq UOTSIMO=7
pasTo0g pasT0}
I=20mpoLg I=20mpoig
pesnoo] pnpolg PUE "DNpoLf| PUE “PNPoI| Pasno0] PNPold| Pasniol pnpolg pasmwo] 12onpoid ‘pasnao]
PUE 5520017 *ss2001d *$52001g PUE $520014 PUE 5520017 DOpol{ “PRsT0] $§2001g annpadsag
Teuone=do
Tempnus [Empnis [Empnis [EIMPIs Teuonez=do
TeUOTIIR Ul JLeslejsie=piing gLt su=hiing ‘TEUOTIHR UL [EINDTIS TEIMOTUIS “[EUOTU2IUL RaT| walqng
(FuorurEd2(])
TUOTPTLIISTIOD
(Aromsodax TeARIIIAX UOTPTIISTIOD
UOTTLIISTUOD HUNYD POTIaT) ‘uonemdiuew| easupl “Sunerdo ssaooid| uoneluRwRdWI
[eaauRI 28eI01s| pemwads 10)| penwads 10N |[BAlURI 2ERI0IS ‘afe101s‘wonendew “25e10s pnpoid J/s[eoL
funjIom funjom Sunjom SunjIom
Sunjrom ‘Burepom ‘Burepom ‘Burepom ‘Burepowm Suroddns
*Burapotn *Sun{umnyl *Bun{uryy *Bun{ury *Bun{uny; ‘Bunqunyy| “Sun{losm “Burppowl ‘SUn{uMyl| ABM PAIdA0)) afes)
pais1ssE JEnIETI JETIETT JETrETI PRIsISSE PeEWOME rﬁuumﬂm SE ".ﬁmd.E.mE xmu_...LuU.NMMHEH
T2 TIUOIIATR SIDUIUOIIATS TURIAIFIP
SMTITUOIIATS aures I [EUIR XA “JUR UIUOIIATIS
WRI2IMP Ul [EWRIXS | 311 Ul [BWR1X2 et TetI1ul [BW21UT| 2UIES 2] Ul [FURE2 ewRul| AMiqeradormu]| 2amalgg
adATag popay |1memBer] JJO | 1weunodmo) Juni) LSRR WETHOP SanjE 4 SANQLINY MATA

