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Abstract

Accompanying rapid industrialization, humans are suffering from serious air pollution problems. The demand for air quality
prediction is becoming more and more important to the government’s policy-making and people’s daily life. In this paper,
We propose GreenEyes — a deep neural network model, which consists of a WaveNet-based backbone block for learning
representations of sequences and an LSTM with a Temporal Attention module for capturing the hidden interactions between
features of multi-channel inputs. To evaluate the effectiveness of our proposed method, we carry out several experiments
including an ablation study on our collected and preprocessed air quality data near HKUST. The experimental results show
our model can effectively predict the air quality level of the next timestamp given any segment of the air quality data from the
data set. We have also released our standalone dataset at this URL. The model and code for this paper are publicly available at

this URL.
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1. Introduction

With the development of the global economy and indus-
trialization, people’s living standards have improved, in
the meanwhile, environmental problems such as air pol-
lution have become a big concern. As World Health Or-
ganization (WHO) stated [1], air pollution is the world’s
largest environmental health risk, which will incur many
diseases including but not limited to respiratory infec-
tions, heart disease, COPD, stroke, and lung cancer.
Among all kinds of pollution, air pollution has the largest
impact on premature deaths annually [2]. Hence, as peo-
ple’s awareness of health increases, more and more smart
devices such as smart bands have been developed and
equipped, which can report air quality status. Moreover,
a smart indoor air purifier can automatically purify the
air when the resident is not at home.

The air pollution problem is widely discussed in the
field of Artificial Intelligence of Things (AIoT) and Sens-
ing Networks. Some IoT systems with variant functions
are designed to monitor air quality for different applica-
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tion scenarios [3, 4, 5]. For instance, Ray et al. [6] built a
smart air-borne PM2.5 density monitoring system based
on the cloud platform. However, these systems simply
execute quality detection tasks without considering fu-
ture air quality to let the purifier intelligently control its
power level for energy-saving purposes. To bridge this
gap, we propose the GreenEyes framework to predict the
trend with previous air pollution levels. The feedback
control system can be illustrated as Figure 1 shows.

Sensing feedbacks
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Figure 1: GreenEyes: AloT deployment.

In this work, we firstly investigate the problem of pre-
processing noisy PM2.5 sequence data and creating an
appropriate supervising target sequence. We implement
the GreenEyes model to predict the future air quality and
evaluate it on each channel of PM2.5 data. Besides, we
train our model with all channels’ data together. Other
works either use different kinds of data [7], or use sen-
sors of the same model but place them at different places
[6]. The former methodology is Multi-sensor Fusion [8],
it is widely used in the intelligent and autonomous sys-
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tems [9, 10, 11, 12]. However, our approach of experiment
proves that multi-sensors (of the same model, at the same
place) will make the model perform better in predicting
target data.

The main characteristics of this paper are summarized
as follows:

» We treat WaveNet’s residual layers as a feature
block. This idea comes from the basic structures
such as convolution-activation-pooling in com-
puter vision. Such a design can increase reception
filed and learn better representations.

« We innovatively stack several WaveNet blocks to
build the model’s main body. As the basic mecha-
nism of deep learning networks is to build models
brick by brick, the same module with different
parameters is usually used in the same model. We
borrow this idea and make it possible to param-
eterize our model. The model’s optimal hyper-
parameters such as depth and filters can also be
fine-tuned easily.

+ We put Attention [13] and LSTM [14] at the end-
point as output layers. Ablation experiments
demonstrate its necessity because this module
can capture the hidden interations between fea-
tures of different sequences (channels).

2. Datasets

AQI (Air Quality Index) is widely used for measuring
the current pollution status of the air. IAQIs (Individual
Air Quality Index) are calculated according to pollutants
such as ozone, nitrogen dioxide, sulphur dioxide, and
others, before final AQI is concluded. In our work, the
IAQI of PMs> 5 is considered.

TAQI level data calculated from raw air quality data
of sensors cannot be used directly because of high-
frequency noise. As Figure 3 presents, in some intervals
of the time axis, the IAQI level fluctuates very fast. This is
because the air quality data is exactly fluctuating around
the threshold line. In real AloT applications, we don’t
need this fluctuation. Image the following module is a fan
switch that takes the model’s output to determine and we
want this output to be relatively stable. In order to clean
the data fluctuation while keeping the trend features, we
innovatively brought out a method of human manually
labeling. It creates an appropriated target label function
that the model can learn. Also, based on the labeling
tricks, the problem that the predictions on the IAQI level
will fluctuate near the thresholds is much reduced.

2.1. Data Collection

We placed our 4 sensors in an office room located inside
the Academic Building of the HKUST. The room is inside

the academic building and has no windows, it provides
a stable experimental environment for temperature and
humidity. The sampling rate of the sensor is 1 Hz. We
simultaneously collected around 220k data points for
each sensor in a continuous period starting from 20:28
on 25th November 2019. This period is about 2 days and
a half or 61 hours.

2.2. 1AQI Calculation

The final AQI depends on each pollutant’s TAQI, which
is calculated by Equation 1

_ Cp—BPL,
[AQL = BPy; — BPp,
)
and finally, AQI is calculated by Equation 2

AQI = max{TAQL,IAQI>, [AQI3, ..., TAQI,}.
()

In this paper, we only concern and discuss on the IAQI
regarding PMo 5.

Above equations about IAQI and AQI are universal for
multi kinds of air pollution standards. Different thresh-
olds are used when mapping air pollutants data into IAQI
in different standards. Table 1 lists PM> 5 and PMio
IAQI thresholds in China’s and USA’s standards respec-
tively. In this paper, we use the USA standard.

Table 1
Concentration thresholds of IAQI w.r.t. pollutant categories,
USA

USA USA China China
1AQI PMs 5 PM;o PMas 5 PMjio
(ng/m3) | (ug/m?®) | (ng/m?) | (ug/m?)
0 0 0 0 0
50 121 55 35 50
100 35.5 155 75 150
150 55.5 255 115 250
200 150.5 355 150 350
300 250.5 425 250 420
400 N/A N/A 350 500
500 500.4 604 500 600

Figure 2 shows the IAQI curves corresponding to
P M 5, with thresholds lines.

2.3. Data Polynomialization

The task of our model is to predict the IAQI level when
inputting a segment of air pollutant concentration data.
However, the origin IAQI level lines cannot be directly
used because 1. in deep learning, a step function is very
hard to learn especially on the rising and falling edges;

(TAQIti—TAQIL,)+TAQIL,,
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Figure 2: All PM> 5 data with IAQI thresholds.
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Figure 3: Sensor 0’s PM> 5 origin and labeled IAQ] level.

2. in some areas the IAQI level fluctuates extremely fre-
quently, which makes the learning even harder, as shown
in Figure 3.

We’re inspired by B. Rouet-Leduc’s work [15] on earth-
quake predicting, where the earthquake events are rep-
resented as failures. The target function is designed as
a series of descending ramps. Mathematically, these de-
scending ramps form a polygonal function and count
down the time to next earthquake. The problem is turned
into fitting the time counting down curve with the acous-
tic data input.

A polygonal function, also named piece-wise linear
function f(x), is a continuous function mathematically
defined on an interval [a, b] € R such that [a, b] can be di-
vided into a set of intervals on each of which the function
is a linear function, that is, there exists a subdivision

a=20 <21 < ...<Tp=0">0 (3)
such that f(z) is linear on each interval [z, _1, zn].

Polygonal functions can be used to generate approxi-
mations to known curves, planes, etc. Also, for unknown
data, polygonal functions can also be learned by some al-
gorithms such as decision tree, to fit the data. In our work
of predicting, polygonal functions help us to eliminate
the hesitation area, and build the target data.

2.4. Data Polygonalization: Human
Labeling based on Decisions

We firstly label by hand the level step downup points, and
map them into risingfalling lines. This method transfer
discrete decision points into continuous target data series
which have the same dimension as the time indices and
corresponding P M> 5 data. This kind of method make
us get the polygonal target data as B. Rouet-Leduc, et al.
[15] did. Figure 3 shows our labeling results.

Finally, the labeled target data is turned into a polyg-
onal function. Dash lines in Figure 4 shows the results.
These triangular lines will be label data for our supervised
learning fitting problem.

The level polygonal lines w.r.t. their manually labeled
level curves can be written as equations with form below

Ll(t) = kl *xt+ bi, where t S [ti,tH—l], (4)

where k; is the slope of the curve, ¢; and ¢;1 are start
and end time point for every interval of the polygonal
line. When k; > 0, the trend of the IAQI level is raising,
and vice versa. The absolute value of k; is the approxi-
mate and potential changing speed of IAQI level. Thus,
every polygonal line can be divided into several segments
within time interval ¢; to ¢;41, and every segment esti-
mates the 1-order approximate trend w.r.t. original IAQI
level within corresponding time interval. For the i-th
segment, k; is

ki = M (5)

tig1 —

where l; 1 and [; are the original IAQI levels at end and
start time ;41 and ¢;.

Our experiments will take these polygonalized IAQI
level lines as the supervising data. The fitting problem
can be described as: given a IAQI sequence of windows
size, predict the IAQI level of the next time frame after
this time window.

3. Methodology

Recently, a series of neural networks related to the auto-
regression model has been proposed and applied in re-
garding problems. DeepMind’s WaveNet [16] is one of
the famous and foundation work in between those [17],
[18] tackle with sequence representation and generating.
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Figure 4: Sensor 0’s labeled PM> 5 IAQI level and its polygonal line.
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Figure 5: GreenEyes sequence to point fitting model.

For WaveNet’s application scenario, the joint probability
of the target sequence x = {z1, x2, ..., zr} is factorized
as a product of conditional probabilities as the below
Equation 6. Given an input X = {1, z2, ..., z7—1} and
with this conditional probabilities, we can obtain the dis-
tribution of the value zr, and make generation samples.

T
p(x) = [ placler, oz, oo zem1)

t=1

(6)

Auto-regression models can not only be used in data
generation, but also in time series prediction. In our
work, every sample x; and y: at any time step ¢ is condi-
tioned on the samples at all previous timestamps, making
it a multivariate auto-regression task. To limit the input
length, we only consider the conditional probabilities
between x; and a sequence ;—1—window_size:t—1 With
length window_size. Different with other multivariate
auto-regression tasks where sequences on all the tem-
poral axis are modeled, we haven’t used the sequence
Yt—1—window_size:t—1 to predict y, instead, we predict y
Only with @y 1—window_size:t—1-

Different from B. Rouet-Leduc’s work[15], in which
random forest is used to predict seismic precursors, we
use WaveNet as our GreenEyes model’s main part. Air
pollution data has the same structure as audio data. It is
pretty suitable to utilize WaveNet as air pollution data
can be modeled in the same way. Also, WaveNet’s dilated
causal convolutions and residual and skip connections
are suitable for air pollution data.

We used the original WaveNet’s core part as a WaveNet
Block as we believe this blockstyle configuration is more

modularized, for we could change these blocks’ hyper
parameters more easily. Each WaveNet Block, as the
same with WaveNet, contains several dilated convolution
layers, called WaveNet Layer. Different dilation rates are
also set on them, following DeepMind’s original work.

The designing of neural networks for deep learning has
always followed principles such as modularization, and
expandability. Well-known networks, such as VGG [19]
and ResNet [20], all have these features. VGG has two
model types VGG16, and VGG19, with different model
depth. And ResNet has models ResNet-18, ResNet-34,
ResNet-50, etc. The cutting-edge model, Transformer
[21], also obeys these designs which makes it possible
to build multi variant models for various sizes and ap-
plication scenarios. Our model is designed for parame-
terization, too. Following our constructions, finally we
set 8 WaveNet layers for the first block; and 5 layers for
the second, 3 layers for the third. All blocks share the
same kernel size of 3, and filters of 16. This set of hyper
parameters are chosen by empiric and the computational
capability of a 1080 Ti GPU. There might be more optimal
parameters to search in future works.

As for the Attention layer, we set up two kinds of
Attention mechanism - Dot-product attention layer, a.k.a.
Luong-style attention [22], as Equation 8 shows. We
use the input for all value vector, key vector, and query
input. Another mechanism is made by ourselves, called
Temporal Attention.

scores = QK T
Attention(Q, K, V) = softmax(QK ")V

™)
®



In our Attention layer, we still use the Luong’s multi-
plicative style attention 9 to gain score, but we simply
it with a FC network. Moreover, we don’t use softmax
function to compute the attention weight. Rather, we use
the function as Equation 11 shows.

scores(htT7 h,) = h; Wh, 9)
scores = WV + b (10)
Attention(V') = exp(tanh(scores))V (11)

The reason that we replace the softmax with a tanh
function followed by an exponential function, is to better
adapt our model to the temporal data set. Our data set
have many temporal and periodic features to learn. Tanh
function is very common in sequential models, and it is
also a component in every WaveNet layer.

4. Experiments

4.1. Experimental Settings

As we sampled PM>; 5 measurements from 4 sensors,
Sensor 0 to Sensor 3, so we have a 4-channels PMs 5
IAQI data set. Each channel’s data can be taken as an
individual data set. The stride is set as {10, 5, 2}, respec-
tively. Besides, we fuse data from all channels to create a
new data set named PM2.5 4.

Adam[23] optimizer with an initial learning rate 0.0001
is applied in the experiments, which is multiplied by 0.1
after 20 epochs, where the total training epoch is 100. We
use mean squared error (MSE) and mean absolute error
(MAE) as the evaluation metrics.

4.2. Training and Validation
4.2.1. Why did We Redesign the Attention Layer?

At first, we utilized the dot-product attention layer pro-
vided by TensorFlow official. Table 2 lists all the experi-
ments’ final best metrics during training.

After we train the model with Temporal Attention,
we discovery that the results on official Attention show
limitations and defects. As Table 3 shows, in most exper-
iments, Temporal Attention outperforms official Atten-
tion. When we plot the validation curve, some principles
can be figured out, specifically, Figure 6 illustrates the
validation MSE’s curves with stride = 10, and Figure
7 illustrates the validation MSE’s curves when apply-
ing Temporal Attention. We can conclude that when
applying official Attention, the model cannot converge
consistently with different data sets. Figure 6 shows
that model fails to converge when it learns on P M> 5(0).
Meanwhile, applying Temporal Attention, the model can
obtain a better MSE.

Data Stride Minimum Minimum
train MSE | validation MSE
10 0.0969 0.1221
P My 5(0) 5 0.0071 0.0221
2 0.0049 0.0148
10 0.0148 0.0226
PM>.5(1) 5 0.0062 0.0137
2 0.0006 0.0039
10 0.0087 0.0137
PM>5 5(2) 5 0.0080 0.0153
2 0.0027 0.0154
10 0.0123 0.0209
PMs> 5(3) 5 0.0058 0.0110
2 0.0023 0.0037
10 0.0182 0.0266
PMa 5(All) 5 0.0039 0.0053
2 0.0010 0.0005

Table 2
Best metrics during training when applying official Attention.
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Figure 6: Validation MSE curves when applying official At-
tention (stride = 10).
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Figure 7: Validation MSE curves when applying Temporal
Attention (stride = 10).
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Figure 8: Evaluation of the GreenEyes model (P M2 5(3), stride=5).
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Figure 9: Evaluation of the GreenEyes model (P M2 5(3), stride=10).

4.2.2. Best Metrics during Training

Table 3 shows the experimental best metrics during train-
ing with the proposed Temporal Attention. It is obvious
that in most cases, our Attention outperforms the of-
ficial Attention. We also define a coefficient ratio =

min(train MSE) to si I th liza-
Tin(validation 175 to simply measure the generaliza
tion capability of the model.

. Minimum Minimum .
Data Stride train MSE | validation MSE ratio
10 0.0223 0.0234 0.96
P M, 5(0) 5 0.0034 0.0114 0.30
2 0.0006 0.0035 0.16
10 0.0486 0.0510 0.95

PM, 5(1) 5 0.0058 0.0142 0.4
0.0006 0.0036 0.17
10 0.0171 0.0187 0.92
PM>.5(2) 5 0.0024 0.0092 0.27
0.0012 0.0066 0.19
10 0.0509 0.0468 1.09
PM, 5(3) 5 0.0074 0.0167 0.44
0.0010 0.0068 0.15
10 0.0068 0.0103 0.66
P M, 5(All) 5 0.0014 0.0022 0.67
2 0.0007 0.0009 0.77

Table 3
Best metrics during training when applying Temporal Atten-
tion.

4.3. Model Evaluation

Figure 8 shows that our model fits the labeled IAQI level
lines well, except that its predictions differ from the
ground truth a little on some parts of the lines, espe-
cially on the turning corners. Figure 9 illustrates the
same evaluation performance, which presents that the
model may not need much data to learn as to set stride
to 2. To quantify the testing results of our model with
different parameters, we test it on the whole P M5 5 se-
quence by setting stride as 1. Table 4 lists the statistics

of our tests.

Data Stride MSE MAE

10 0.0266 | 0.13

PMs> 5(0) 5 0.0144 0.11
2 0.0037 | 0.05

10 0.0517 | 0.18

PMs 5(1) 5 0.0113 | 0.10
2 0.0036 | 0.05

10 0.0188 | 0.11

PM>.5(2) 5 0.0092 | 0.09
2 0.0069 | 0.07

10 0.0501 0.16

PMs> 5(3) 5 0.0108 0.09
2 0.0070 | 0.07

10 0.0118 | 0.09

P My 5(All) 5 0.0026 | 0.04
2 0.0010 | 0.02

Table 4

Test MSE and MAE under different stride parameter.

4.4. Ablation Study

In order to validate the effectiveness of the modules, we
conduct an ablation study on our GreenEyes model. We
remove the bidirectional LSTM module and the mutli-
head attention module, respectively, and get two model
variance, w/o Attention and w/o LSTM. We plot the
model’s (w/o LSTM) training and validation curves as
Figure and Figure show respectively.

It is easily concluded that, without the LSTM layer, the
model runs into the overfit status. Although it still fits
well on the train set, it is rambling on the validation set.

In order to validate the Attention layer’s function, we
re-run the GreenEyes model with Temporal Attention
on PM3 5(0) to P M2 5(3), and then cut off this Atten-
tion layer and run the model again on the same data sets.
Table 5 shows the test MSE and MAE results of both con-
figuration. It turns out that the model w/o Attention can
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Figure 11: Model’s (w/o LSTM) validating plots (stride=10).

perform better or is equivalent to the model applied with
the Attention layer. However, by plotting the training
curves again, we found that the model with the Temporal
Attention layer can obtain smaller loss during training.

Data Stride Our Attention w/o Attention
MSE MAE MSE MAE
10 0.0267 0.1438 | 0.0173 | 0.1189
P M- 5(0) 5 0.0119 0.1011 0.0092 | 0.0795
2 0.0055 | 0.0661 | 0.0078 | 0.0721
10 0.0256 | 0.1383 | 0.0262 | 0.1292
PM; 5(1) 5 0.0151 0.1093 | 0.0097 | 0.0769
2 0.0026 | 0.0423 | 0.0015 | 0.0305
10 0.0409 0.1548 | 0.0174 | 0.1170
PM; 5(2) 5 0.0116 | 0.0978 | 0.0053 | 0.0624
2 0.0057 0.0577 | 0.0007 | 0.0202
10 0.0213 | 0.1338 | 0.0446 | 0.1726
PM,; .5(3) 5 0.0064 | 0.0659 | 0.0083 | 0.0759
2 0.0044 | 0.0534 | 0.0018 | 0.0305

Table 5
Test MSE and MAE for model with and w/o Attention.

4.5. Hyper-parameter Discussion

Being inspired by the SOTA ideas of predicting the tar-
get sequence with a short sequence by using an auto-
regression model such as Autoformer [24], we approach
to decrease the model’s input size, i.e., the data’s window
size. We set the window size to 3600 (which means one
hour on the timeline), and train our model again. Figure

12 shows our results. Empirically, the model gains well
performance as long as it reduces the training loss under
0.01. Hence, except for the result on P M5 5(3) when the
window size is set to 3600, the model still needs optimiza-
tion if we want a shorter window size. However, it is
worth trying as the number of model parameters also
decreases obviously as the input size is reduced. A light
model saves computational costs and boosts inference.

B window_size=7200 stride=10 M window_size=3600 stride=10

window_size=7200 stride=5 ® window_size=3600 stride=5

001 I
0 I I

PM2.50 PM251 PM2.5 2 PM2.5 3

Figure 12: Window size 7200 vs 3600.

5. Conclusion

The WaveNet model designed for audio data processing is
generalizable and suitable for fitting problem. Our work
successfully put it into usage for IAQI level fitting and
prediction. It shows that our GreenEyes model based on
WaveNet has strong data fitting capability for extreme
long data sequences. When given a smaller stride, fed
with more data, the model can learn better. It is also
found that, when trained with more channels of sensor
data, the model can perform well. This can be regard as
sensor data augmentation. Our innovative method that
human manually label the IAQI level is useful. It creates
an appropriated target label function that the model can
learn and solve the threshold fluctuation problem.

It is also promising that our GreenEyes AloT deploy-
ment design can be put into practice. Actually we've
developed an iOS app to retrieve the air quality data. Mo-
bile framework such as Tensorflow Lite [25] has been
developed. A mobile phone is hopefully to be installed
with our GreenEyes model and monitor the IAQI data in
realtime and predict the air trend.

Due to a lack of air quality data, we only did the data
fitting task. We will perform the data predicting task in
the future if enough data is gathered.



6. Related Works

6.1. Statistical & Machine Learning
Approaches

Except for ARIMA, ETS models mentioned in our last
chapter, traditional methods such as Kalman filter [26]
are also very simple and practical for time series and
forecasting problems. Random forests [15], XGBoost,
and SVM [27] etc are useful machine learning methods
too. About method choosing, the most suitable method
is highly interrelated with the data’s properties and the
application scenario.

In common, the essential of both traditional ap-
proaches and ML-based approaches is mining data and ex-
tracting features. Different from other feature engineer-
ing tasks, sliding windows are widely used for processing
the data. Metrics such as the minimum, the maximum,
the mean, and the variance of the data in the window are
common features.

6.2. Deep Learning Approaches

LSTM-based deep learning methods have been developed
recently to extract temporal patterns. Lai et al. proposed
LSTNet [28] that encodes short-term local information
into low dimensional vectors using 1D convolutional
neural networks and decodes the vectors through an RNN.
Shih et al. proposed TPA-LSTM [29] which processes the
inputs by an RNN and employs a convolutional neural
network to calculate the attention score across multiple
steps.

The architecture of CNN is designed for 2D data like
images. Meanwhile, recently a special variant of CNN
called temporal convolutional networks (TCNs) [30] has
been proposed that makes CNN capable for time series
processing. Yan et al. [31] released their research work
about using TCN for weather forecasting in 2020 and
showed that TCN is better than the LSTM network in
this application.

WaveNet related methods, including our GreenEyes
model, tackle with a single sequence of time series data
and show good fitting and forecasting performance con-
cerning the prediction accuracy and data throughput
capacity. Meanwhile, same with the same recent time as
this thesis was being developed, new methods and ap-
proaches regarding time series forecasting have also been
proposed. In recent years, graph neural networks (GNNs)
have shown high capability in handling relational depen-
dencies. Wu et al. [32] proposed a general graph neural
network framework designed specifically for multivari-
ate time series data. Their method is useful for extracts
relations among variables belonging to multi sequences.

As Transformer [21] becomes great popular these
years, another model based on Transforms has also been

brought out. Lim et al. [33] from Google introduced the
Temporal Fusion Transformer (TFT) as a novel attention-
based architecture which combines high-performance
multi-horizon forecasting with interpretable insights into
temporal dynamics. They created gate-based networks,
GRN and GLU, as new approaches for better feature se-
lection modules.
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