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Abstract
Trajectory data combines the complexities of time series, spatial data, and (sometimes irrational) movement behavior. As data
availability and computing power have increased, so has the popularity of deep learning from trajectory data. This paper aims
to provide an overview of deep neural networks designed to learn from trajectory data, focusing on recent work published
between 2020 and 2022. We take a data-centric approach and distinguish between deep learning models trained using dense
trajectories (quasi-continuous tracking data), sparse trajectories (such as check-in data), and aggregated trajectories (crowd
information).
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1. Introduction
Deep learning has become a popular approach for devel-
oping data-driven prediction, classification, and anomaly
detection solutions. Work on deep learning from trajec-
tory data is spread out over many domains, including but
not limited to computer science, geography, geographic
information science, urban planning, and ecology. Con-
sequently, it covers many use cases and corresponding
trajectory dataset types.

Trajectory datasets can be categorized according to the
level of detail: from dense trajectories (quasi-continuous
tracking data of individual movement) to sparse trajec-
tories (such as check-in data of individuals), and finally,
aggregated trajectories (crowd-level information, typi-
cally aggregated to edges/nodes in a mobility graph, to
a grid, or to a set of points of interest)[1, 2, 3]. In many
cases, the titles and abstracts of papers are not sufficient
to determine which type of trajectory data was used to
train the deep learning model. While many papers start
with dense trajectories, most convert them into sparse
trajectories [4, 5, 6, 7, 8, 9, 10] or even aggregate them
to crowd-level [11, 12, 13]. Common approaches to turn-
ing dense trajectories into sparse trajectories include:
converting them into a sequence of stop locations [4, 7]
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or a sequence of traversed regions (grid cells) [6, 8], or
converting them to trajectory images [5, 9, 10].

In a related review of location encoding methods for
GeoAI [14], the authors stress the analogy between NLP
word-to-sentence relations and location-to-trajectory re-
lations. This analogy has led to Word2Vec-inspired ap-
proaches encoding location into a location embedding
using, for example, Location2Vec [15], Place2Vec [16],
or POI2Vec [17]. Another recent review [18] is dedi-
cated to deep learning for traffic flow prediction models,
which are primarily trained on aggregated trajectory data.
However, to the best of our knowledge, there is no review
paper that provides an overview of the different neural
network architectures used to learn from trajectory data.

The goal of this work is to provide a first overview
of the current state of neural networks / deep learning
trained with trajectory data, structured by 1. Use case
category (travel time/crowd flow/location predictions,
location/trajectory classifications, anomaly detection),
2. Neural network architecture (CNN, RNN, LSTM, GNN,
…), and 3. Trajectory data granularity (dense, sparse, ag-
gregated) and representation. Therefore, this review does
not include classic ML approaches and does not provide
an exhaustive historical analysis of the field. Due to
the page limit, this paper does not fit an exhaustive list
of all relevant works published in recent years. How-
ever, we provide at least one paper for each use case
and network combination we identified. We specifically
reviewed publications at recent events, including SIGSpa-
tial 20221 [6, 7, 19, 8, 20, 12, 21, 22], Sussex-Huawei Lo-
comotion (SHL) Challenge 20212 at the ACM interna-

1https://sigspatial2022.sigspatial.org/accepted-papers/
2http://www.shl-dataset.org/activity-recognition-challenge-2021/
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Figure 1: Overview of use cases and neural networks for trajectory data included in this review.

tional joint conference on pervasive and ubiquitous com-
puting (UbiComp) [23], Traffic4cast challenge 20213 at
NeurIPS [24], and Big Movement Data Analytics work-
shop BMDA 20214 at EDBT [11, 25, 26].

Even though we focus explicitly on deep learning, it
is worth noting that deep learning may not always be
the best approach [27]. In particular, the SHL Challenge
summary [23] shows that regular machine learning mod-
els outperform deep learning models on all three metrics:
F1 score, train time, and test time.

This review does not attempt to compare the per-
formance of different deep-learning approaches. Even
though there are some commonly used open datasets,
such as the Porto taxi data5, the T-Drive taxi dataset6 and
GeoLife dataset7, and the Gowalla check-in data8, cross-
paper comparisons outside of dedicated data challenges
are notoriously difficult. For example, “Despite the Porto
dataset’s original use as a standardized benchmark for
open competition, design choices in subsequent work
make cross-paper comparison difficult. Firstly, different
papers often augment the dataset with their metadata not
present in the original release, whichmay give somemod-
els an advantage over others independent of architecture
or training design.” [20]

Due to the large range of domains working on tra-
jectory data analysis, the terminology used in different

3https://www.iarai.ac.at/traffic4cast/2021-competition/
4https://www.datastories.org/bmda21/BMDA21Accepted.html
5https://www.kaggle.com/c/pkdd-15-predict-taxi-service-trajectory-i/

data
6https://www.microsoft.com/en-us/research/publication/

t-drive-trajectory-data-sample/
7https://www.microsoft.com/en-us/research/publication/

geolife-gps-trajectory-dataset-user-guide/
8http://snap.stanford.edu/data/loc-Gowalla.html

publications is not necessarily consistent. We, therefore,
define the most important terms and abbreviations in a
glossary at the end of this paper.

2. Representing Trajectory Data
For Deep Learning Use Cases

This review is structured around eight use case categories
of deep learning from trajectory data, as shown in Fig-
ure 1. The following subsections describe the use cases,
neural network designs used to address them, and trajec-
tory data used to train these networks. Figure 2 provides
an overview of the diversity of identified trajectory rep-
resentations. More details on the trajectory datasets and
the data engineering steps applied to the trajectory data
before they are used as input to train the neural networks
are summarized in Tables 1-3. Some works (e.g. [28, 29])
use additional data sources in combination with trajec-
tory data to train their models. These additional data
sources have been omitted from our review in favor of
clarity and conciseness.

2.1. Location classification
This use case category covers the classification of loca-
tions using patterns derived from movement data. The
classification of regionally dominant movement patterns
may be of interest in and of itself [9] or help with the
classification of POIs (e.g. ports [4]) or the classification
of trip destinations [19].

To detect regionally dominant movement patterns,
Yang et al. [9] use direction information and density maps
to generate directional flow images. They convert the
trajectories into images where each pixel contains the

https://www.iarai.ac.at/traffic4cast/2021-competition/
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Yang et al. (2018)

Chen et al. (2020)

Yang et al. (2022)

CNN

Temporal graphs

Altan et al. (2022)

Derrow-Pinion  et al. (2021)


Lippert et al. (2022)
(T)GNN

Decomposed Space-
Activity Matrix Lyu et al. (2022) Memory network

Raw trajectories Wang et al. (2018)

Buijse et al. (2021) GEO-Conv CRNN

Time series on street
network edges / POIs

Buroni et al. (2021) LSTM

Generalized trajectories Mehri et al. (2021)

Liatsikou et al. (2021) LSTM

Discretized trajectories Fan et al. (2022) GRU

Traffic movies Lu (2021)

Wang et al. (2022) CNN

Li et al. (2021) GCN+LSTM

Gao et al. (2022) GCN+GRU

Zhang et al. (2020) GAN

Carroll et al. (2022)

Musleh et al. (2022) Transformers

Nguyen et al. (2022) RNN

Singh et al. (2022) RNN
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Trajectory data representation

Location (sequence)
embeddings

Feng et al. (2018)

Gao et al. (2019) GRU+attention

Li et al. (2020) SAN

Natural language
sentences Xue et al. (2022) Transformers

Liao et al. (2018) RNN

NN design

Resampled sequences of
space & time deltas Tritsarolis et al. (2021) RNN

Hong et al. (2022) Transformers

Tenzer et al. (2022) Hypernetworks
(LSTMs)

Resampled trajectories

Liatsikou et al. (2021) LSTM-based
autoencoder

Rao et al. (2020) LSTM+GAN

Zhang et al. (2022) VAE-like deep
generative models


Simini et al. (2021) MLPOD matrices

Figure 2: Overview of trajectory data representations used
to train neural networks

directional flows. They use a CNN to classify the input
image patterns and detect the dominant regional move-
ments.

An approach that makes more use of temporal informa-
tion is presented by Altan et al. [4]. They use a temporal
GNN (TGNN) to distinguish gateway ports from actual
ports using AIS vessel movement data. After extracting
the ports (nodes) from the raw AIS messages using DB-
SCAN, they extract trips between consecutive ports and
build a graph for each time step to generate the time-
ordered daily graph sequence for the TGNN.

Lyu et al. [19] train a plug-in memory network to pre-
dict trip purposes based on destination locations. Their
model is trained using activity, origin, and destination
matrices derived from OD data using a non-negative
Tucker decomposition scheme.

2.2. Arrival time prediction
This use case category covers the prediction of travel
times or arrival times, such as arrival time prediction in
train networks [30] and street networks [31, 32].

Since travel time often depends on historical travel
times at a given time of day, recurrent mechanisms are
commonly used [31, 32, 30]. For example, Derrow-Pinion
et al. [31] train GNNs on aggregated trajectories to pro-
vide travel time predictions in Google Maps. The GNN
graph consists of segment and supersegment-level em-
bedding vectors. Nodes store street segment-level data
(average real-time and historical segment travel speeds
and times, segment length, and road class), while edges
store supersegment-level data (real-time supersegment
travel times).

In contrast, Wang et al. [32] introduces the GEO-
convolutional network layer (GEO-Conv, also used by
Buijse et la. [30]), which is trained on dense trajectories
stating that “directly mapping the GPS coordinates into
grid cells is not accurate enough to represent the original
spatial information in the data”. The proposed GEO-Conv
layer takes dense trajectories as input and applies a non-
linear mapping of each trajectory (latitude and longitude)
point, followed by a GEO-Conv step with multiple ker-
nels. The resulting feature map of local paths is appended
with a final column of distances of the local paths.

2.3. Traffic volume prediction
This use case category covers traffic or crowd predictions
of volumes or flows, e.g., predicting traffic volume on
street segments [11, 18], human activity at specific POIs
[28] and metropolitan areas [33, 24], or predicting animal
movement dynamics [34].

Aggregated trajectory data in the form of trafficmovies
is provided in the Traffic4Cast 2021 competition which
challenged participants to predict traffic under conditions
of temporal domain shift (Covid-19 pandemic) and spatial
shift (transfer to entirely new cities). Lu [24] won this
challenge using CNN (U-Net) and multi-task learning.
Their multi-task learning approach randomly samples
from all available cities and trains the U-Net model to
jointly predict the future traffic states for different cities.
Wang et al. [12] follow this traffic movie approach as well
by aggregating individual-level trajectories into a grid
with inflow referring to the total number of incoming
traffic entering this region from other regions during a
given time interval and outflow representing the total



number of traffic leaving the region. Zhang et al. [13]
also follow the traffic movie approach, creating temporal
grids of average traffic speed and taxi inflow per cell.

Li et al. [33] build a graph for their GCN by aggregat-
ing CDR data and representing spatial statistical units as
nodes and their relationship (physical distance, physical
movement, phone calls) as edges. Similarly, Lippert et
al. [34] build temporal graphs from bird migration data
where nodes represent radar locations, and edges repre-
sent the flows between the Voronoi tessellation cells of
the radar locations.

Finally, Buroni et al. [11] provide a tutorial using vehi-
cle counts derived fromGPS tracks to build and train a Di-
rect LSTM encoder-decoder model. The model is trained
to predict counts of vehicles per network edge per time
step for the Belgian motorway network. Similarly, Gao
et al. [28] use their GPS tracks to count vehicles per POI
per time step (hourly) to train a GCN+GRU model that
predicts these visit counts. And Xue et al. [21] propose a
translator calledmobility prompting which converts daily
POI visit counts into natural language sentences so they
can use (and fine-tune) pre-trained NLP models such as
Bert, RoBERTa, GPT-2, and XLNet to predict these visit
counts.

2.4. Trajectory prediction/imputation
This use case category covers the prediction of trajecto-
ries in artificial [35], urban [6], and maritime environ-
ments [36, 26], as well as imputation of trajectories [8].

Mehri et al. [36] generalize AIS trajectories using
context-aware piecewise linear segmentation before feed-
ing them into their LSTM three vertices at a time. This
enables their model to perform short-term trajectory pre-
dictions with high spatial detail. Tritsarolis et al. [26], on
the other hand, represent trajectories by their composi-
tion of differences in space Δ𝑥, Δ𝑦, and time Δ𝑡 for the
input of their RNN-based models to predict the vessel’s
position at time Δ𝑡 + 1.

Fan et al. [6] discretize mobile phone GPS trajectories
using the H3 hexagonal grid and use the grid cell se-
quences to train their GRU. The resulting model is used
to predict cell sequences which are afterward used to
search for similar high-resolution trajectories, which are
returned as the final trajectory prediction.

Carroll et al. [35] use synthetic discrete movement se-
quences in a minimalistic grid world environment. Their
transformers are trained on trajectories as sequences of
states, actions, and return-to-go tokens to predict tra-
jectories. Another work using transformers to impute
trajectories is Musleh et al. [8]. They propose TrajBERT,
a model trained using H3-discretized (tokenized) GPS
tracks. They “down-sample the trajectories by dropping
three-quarters of the points of each trajectory and then
run TrajBERT to fill the gaps by imputing the missing

points”.

2.5. (Sub)trajectory classification
This use case category considers the classification of com-
plete trajectories [10] or sub-trajectories [5, 23] in order
to learn more about different vessel and human move-
ment patterns.

By splitting trajectories into sub-trajectories, more
fine-grained analyses are possible. Typical applications
include the detection of movement types, such as ship
maneuvers [5] or the detection of transportation and
locomotion modes of smartphone users [23]. Chen et
al. [5] generate colour-coded trajectory images from ship
AIS data, where each pixel is assigned one of three col-
ors according to the movement type (static, normal, ma-
neuvering). These trajectory images are used to train a
CNN-based shipmaneuver classifier. To identify different
movement modes (i.e. still, walk, run, bike, car, bus, train,
and subway) from smartphone data, the SHL Challenge
winner uses an AdaNet algorithm, a Tensorflow-based
framework for learning NN models and ensembling mod-
els to obtain even better models [46, 23].

An example of the classification of complete trajecto-
ries is the recognition of ship types introduced by Yang
et al. [10]. It relies on the same technique as [5] for trans-
forming the raw AIS trajectory data into colour-coded
trajectory images. The resulting images show character-
istic trajectory patterns, which can be used to identify
the ship vessel type with a CNN classifier.

2.6. Next location / final destination
prediction

This use case category covers the prediction of the next
locations or final destinations of trips [38, 37, 7, 39, 40,
41, 21, 20]. Besides GPS tracks, a commonly used data
source in this category are social media check-ins (e.g.,
from Foursquare). The task then becomes to predict the
next check-in location (e.g., a POI).

Attention mechanisms have proven to be a popular
approach for next location prediction. Gao et al. [37]
train VANext, a semi-supervised network trajectory con-
volutional network, on check-in data. They convert each
individual user’s trajectory (check-in/POI sequence) into

9https://www.kaggle.com/datasets/giobbu/belgium-obu
11https://coast.noaa.gov/htdata/CMSP/AISDataHandler/2017/

index.html
12https://zenodo.org/record/4498410
13https://sites.google.com/site/yangdingqi/home/

foursquare-dataset?pli=1
14http://www.start.umd.edu/gtd/
15https://github.com/bigdata-ufsc/petry-2020-marc/tree/master/

data/foursquare_nyc
16https://drive.google.com/file/d/

1rLJz5E0igbrmAnmnDmazdBl97UuQ0sch/view?usp=sharing
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Table 1
Trajectory datasets and data engineering; public datasets are printed in bold

Ref NN de-
sign

Trajectory data Data engineering

Location classification
Yang et
al. (2018)
[9]

CNN Synthetic data (manually drawn trajectories,
rotated in a data augmentation step)

Trajectories are converted to directional
flow images (DFI) (resolution: 10×10)

Altan et
al. (2022)
[4]

TGNN Ship AIS tracks in Halifax, Canada, covering
15 ports, 10 vessels, for 4 months (total: 513k
AIS records)

Trajectories are converted to temporal
(daily) graphs of ports (nodes with associ-
ated port visit frequencies, waiting times, and
speed statistics) and trips between consecu-
tive ports (edges)

Lyu et
al. (2022)
[19]

Memory OD data from Tokyo Metro travel survey in-
cluding travel mode, time, and purpose

ODs are converted into a Space-ActivityMa-
trix which is then decomposed into an activ-
ity, an origin, and a destination matrix

Arrival time prediction
Wang et
al. (2018)
[32]

CRNN Taxi GPS tracks in Chengdu and Beijing with
a density of 2.6 to 5.5 GPS records per km

Trajectories are fed into a GEO-Conv layer

Buijse et
la. (2021)
[30]

CRNN+GRU Train GPS tracks in the Netherlands covering
350k train trips

Trajectories are fed into a GEO-Conv layer

Derrow-
Pinion et
al. (2021)
[31]

GNN Google Maps road segments with travel
times/speeds

Road network graph edges are subdivided
into shorter segments (modeled as GNN
graph nodes) with associated aggregated
travel time/speed information; segments are
combined into supersegments (GNN graph
edges)

Traffic volume prediction
Lu (2021)
[24]

CNN
(U-Net)

Traffic movies for 10 cities in 2019+2020 with
8 dynamic channels encoding traffic speed
and volume per direction and 9 static chan-
nels encoding the properties of the roadmaps

The multi-task learning randomly samples
from all available city traffic movies (reso-
lution: 495×436)

Wang et
al. (2022)
[12]

CNN Taxi trajectories from TaxiBJ in Beijing for 17
months and bike trajectories from BikeNYC
in New York City for 6 months

Trajectories are converted to flow/traf-
fic movies (32×32 for TaxiBJ & 16×8 for
BikeNYC) with two dynamic channels encod-
ing inflows and outflows

Li et al.
(2021)
[33]

GCN+LSTM Sparse CDR trajectories in Senegal of 100,000
individuals for one year

Trajectories are converted into a movement
graph with edges representing the number
of transitions from one cell phone tower node
to the next

Buroni
et al.
(2021)
[11]

LSTM Lorry GPS tracks9 in Belgium with 30s re-
porting interval, anonymous IDs (reset daily),
timestamp, latitude, longitude, speed, and di-
rection

Trajectories are matched to street network
to count vehicles per network edge per
time step

Gao et
al. (2022)
[28]

GCN+GRU Taxi GPS tracks in Xi’an, China covering 7.7k
taxis for 3 months with a sampling interval
of 5–30 s

Trajectories are used to count vehicles per
POI (n=100) per time step (hourly)

Lippert
et al.
(2022)
[34]

Recurrent
GNN

Bird migration data in the form of simulated
trajectories and measurements from the Eu-
ropean weather radar network

Trajectories are converted temporal graphs
with to flows (edges) between Voronoi tessel-
lation cells of radar locations (nodes).

Xue et
al. (2022)
[21]

Trans-
formers

SafeGraph daily POI visit counts in NYC, Dal-
las and Miami

Historical visitation data are translated into
natural language sentences to fine-tune pre-
trained NLP models

Zhang et
al. (2020)
[13]

GAN Taxi GPS tracks in Shenzhen, China for 6
months

Trajectories are converted to traffic movies
(resolution: 40×50, hourly) with average traf-
fic speed and taxi inflow



Table 2
Trajectory datasets and data engineering; public datasets are printed in bold – continued

Ref NN de-
sign

Trajectory data Data engineering

Trajectory prediction/imputation
Mehri et
al. (2021)
[36]

LSTM AIS data from NOAA10 for the US East
Coast, containing 58.5mio messages from
10.7k vessels over 2 months

Trajectory is generalized using context-aware
piecewise linear segmentation. The LSTM is
trained on three vertices at a time

Tritsaro-
lis et al.
(2021)
[26]

RNN Ship AIS tracks in Piraeus11 containing
138k records from 246 fishing vessels and Ge-
oLife7

Trajectories are resampled to regular
1 minute intervals and converted into
sequences of differences in space Δ𝑥, Δ𝑦, and
time Δ𝑡 to predict the vessel’s position in the
next future step

Fan et
al. (2022)
[6]

GRU Mobile phone GPS tracks in the Kanto area of
Tokyo covering 220k users with a minimum
reporting period of 5 minutes for 2 months

Trajectories are discretized using the H3
hexagonal grid

Carroll
et al.
(2022)
[35]

Trans-
formers

Synthetic data in a minimalistic grid world
environment

Transformers are trained on trajectories as
sequences of states, actions, and return-to-go
tokens

Musleh
et al.
(2022)
[8]

Trans-
formers

GPS tracks in San Francisco from the GIS-
CUP’17 dataset with 5M records

Trajectories are discretized using the H3
hexagonal grid (tokenization) followed by the
creation of spatial embeddings

(Sub)trajectory classification
Chen et
al. (2020)
[5]

CNN Ship AIS tracks in Tianjin, China covering
23k trips

Trajectories are converted into trajectory
images with pixels coloured according to
movement type (static, maneuvering, normal)

Yang et
al. (2022)
[10]

CNN Ship AIS tracks in Northern America of
the U.S. National Oceanic and Atmospheric
Administration’s Office of Coastal Manage-
ment with 259k records after pre-processing

Trajectories are converted into trajectory
images with the same method as described
in [5].

Wang et
al. (2021)
[23]

(C)RNN,
LSTM,
Trans-
formers,
AdaNet

SHL dataset12: asynchronously sampled ra-
dio data of smartphones with up to 2,812
hours of labeled data, e.g. GPS reception and
location, Wifi reception and GSM cell tower
scans

[SHL challenge summary paper] Mostly
hand-crafted feature engineering as input,
but also two teams using raw trajectory data

Next location / final destination prediction
Gao et
al. (2019)
[37]

GRU &
CNN

Foursquare check-ins in New York and Singa-
pore and Gowalla data in Houston and Cali-
fornia with an average of 229k records of 3k
users

Location (<id, lon, lat>) sequences are con-
verted into sequences embeddings using a
causal embedding method

Feng et
al. (2018)
[38]

Attention-
GRU

Foursquare check-ins13 with 294k records
covering 15k users, other mobile application
location records (search & check-ins) with
15mio records covering 5k users, and CDR
with 491k records covering 1k users

Location sequences are converted into em-
beddings using two independent attention
mechanisms which are then fed into Deep-
Move’s GRUs and a historical attention mod-
ule

Li et al.
(2020)
[39]

SAN Foursquare check-ins, Tweets, Yelp and
NYC data

Location sequences are converted into em-
beddings

Liao et
al. (2018)
[40]

RNN Foursquare check-ins in NYC and Tokyo
with an average of 400k records of 1.7k users

Location sequences and activity/location
graphs are converted into embeddings for
MCARNN

Liu et al.
(2016)
[41]

RNN Gowalla check-ins8 and Global Terrorism
Database (GTD) incidents14

Location sequences are converted into time-
specific and distance-specific transition ma-
trices for ST-RNN

Hong et
al. (2022)
[7]

Trans-
formers

Mobile phone GPS tracks in Switzerland from
the Green Class (GC) study covering 139 par-
ticipants for a year and from the yumuv study
covering 498 participants for 3 months

Location sequences are generated from GPS
tracks by first filtering stay locations with a
stay duration >25min and then spatially ag-
gregating stays into locations. These location
sequences are converted into location, time,
day, and mode embeddings which are fed
into the transformers

Tenzer et
al. (2022)
[20]

Hyper
network
(LSTMs)

Porto taxi tracks5 covering 1.7mio trips by
442 taxis in Porto, Portugal for 12 months

Sequences of trajectory points are converted
to sequences of spatial embeddings via a
geospatial encoding mechanism



Table 3
Trajectory datasets and data engineering; public datasets are printed in bold – continued

Ref NN de-
sign

Trajectory data Data engineering

Anomaly detection
Liat-
sikou et
al. (2021)
[25]

LSTM-
based AE

Porto taxi tracks5 Trajectories are down-sampled to 60s and rep-
resented as a sequence of vectors (lat, lon)
and clipped to the first nine points to fit the
autoencoder requirements

Nguyen
et al.
(2022)
[42]

Proba-
bilistic
RNN

Ship AIS tracks from a single receiver in
Ushant, France

Trajectories are down-sampled to 600s and
converted to a four hot vectors (lat, lon,
SOG, COG) with the resolutions of 0.01° for
lat/lon, 1 knot for SOG, and 5° for COG.

Singh et
al. (2022)
[43]

RNN re-
gression
model

Ship AIS tracks in the Baltic sea region and
near Bremerhaven, Germany for two months
(including a comparison between satellite-
based and coastal AIS)

Trajectories are resampled and interpolated
at the 60s and converted into a graph with
nodes representing turning points for the ves-
sel trajectories and edges representing the
sea lanes traveled by vessels

Synthetic data generation
Rao et
al. (2020)
[44]

LSTM-
GAN

Foursquare check-ins15 in NYC covering
193 users with 3k trajectories and 67k records

Trajectories are processed by a trajectory en-
coding model covering trajectory point en-
codings (location, temporal and categorical
attributes) and trajectory padding (to ensure
that all trajectories have the same length)

Zhang et
al. (2022)
[22]

VAE-like
deep gen-
erative
models

Porto taxi tracks5; T-Drive6 data consisting
of 10.3k taxis for one week; and Gowalla
check-ins8

A coordinate encoding MLP converts two-
dimensional points into a high-dimensional
representation. Then, a Bidirectional LSTM
is used to encode all representations with
forward and backward information for a time
step

Simini et
al. (2021)
[45]

MLP England & Italy commuting flows, NY State
flows16 including origin & destination geo-
graphic unit and estimated population flows
between two geographic units

Input to the model is of the origin & destina-
tion location as well as the distance between
origin and destination. The output of the
model is the probability to observe a trip be-
tween two locations.

sequence embeddings using a causal embedding method
(similar to a high-order Markov Process). The result-
ing embeddings are the input for their GRU to learn
the trajectory patterns. They further apply attention
to the embeddings for predicting the user’s next POI.
Feng et al. [38] tailor two attention mechanisms to gen-
erate independent latent vectors from large and sparse
trajectories. These embeddings are then fed into their
DeepMove GRUs and a historical attention module. The
learned attention weights can intuitively explain the
prediction based on the user’s history of movement be-
havior. Li et al. [39] introduce a spatio-temporal self-
attention network (STSAN ). They generate trajectory
embeddings by concatenating the temporal (activity se-
quence), spatial (distance matrix of locations), and loca-
tion attentions (location sequence and their categories).
They feed these embeddings through a softmax layer and
predict the user’s next POI. They use a federated learn-
ing setting to tackle the heterogeneity problem. Liao et
al. [40] generate embeddings from location sequences

as well as graph embeddings from location-location and
activity-location graphs and train their MCARNN multi-
task context-aware recurrent neural network to solve
both activity and location prediction tasks.

Other works use neural networks for dimensionality
reduction and for creating embeddings. Liu et al. [41] in-
corporate time and distance-specific transition matrices
as temporal and spatial embeddings generated by RNNs.
Hong et al. [7] reduce the dimensions of trajectories using
a multilayered embedding approach for transformers to
predict next location and travel mode. Tenzer et al. [20]
generate two geospatial and temporal embeddings by
1. combining the random picking and the nearest neigh-
bor to create sequences of spatial embeddings and 2. us-
ing a sinusoidal embedding to convert the timesteps to
temporal vectors. They train a hyper network to learn
to change its weights in response to these embeddings.



2.7. Anomaly detection
This use case category covers anomalous trajectory de-
tection. Since the definition of anomalies is often context-
dependent, ground truth labeled data is rare. Therefore,
anomaly detection approaches often resort to trying to
identify trajectories that are different compared to previ-
ously observed trajectories based on some spatial, spa-
tiotemporal, or other metrics. Alternatively, researchers
resort to using synthetically generated anomalies [25].

Liatsikou et al. [25] developed an LSTM-based network
for the automatic detection of movement anomalies, such
as the detection of synthetic anomalies in taxi trajectories.
Since the autoencoder requires inputs of a certain fixed
length, all trajectories are clipped to nine points (and
shorter ones discarded).

The GeoTrackNet [42] is a model for maritime trajec-
tory anomaly detection, which consists of a probabilistic
RNN-based (Recurrent Neural Network) representation
of AIS tracks and a contrario detection [47]. Detected
anomalies were evaluated by AIS experts.

Singh et al. [43] present an anomaly detection system
based on RNN regression models to detect anomalous
trajectories, on-off switching, and unusual turns. Again,
a quantitative accuracy analysis is not feasible due to the
lack of ground truth data.

2.8. Synthetic data generation
This category covers the generation of synthetic move-
ment data, such as synthetic trajectories [22, 44] and
synthetic flows [45].

Rao et al. [44] focus on GeoAI-trajectory privacy pro-
tection. For this, they develop an end-to-end deep LSTM-
TrajGANmodel to generate privacy-preserving synthetic
trajectory data for data sharing and publication.

Simini et al. [45] developed an MLP model (denoted
Deep Gravity) to generate mobility flow probabilities.
They evaluated Deep Gravity on mobility flows in Eng-
land, Italy, and New York State and achieved a good
performance even for regions with no data available for
training.

Zhang et al. [22] propose an end-to-end trajectory gen-
eration model for generating synthetic trajectories. The
design of the model is VAE-like encoders (e.g., Global-
semantics encoder: MLPs & Bidirectional LSTM) and
decoders (e.g., a prior generator based on variational re-
current structure generates noise at time 𝑡 by considering
the noise at the previous time step).

3. Conclusion and outlook
In this work, we reviewed deep learning-based research
focussing on mobility data. In most cases, even if trajec-
tory data is used in the process, it is not ingested directly

for training the neural networks. Instead, data engineer-
ing steps are applied that convert trajectories into more
compact representations of individual trajectories (sparse
trajectories) or aggregations of multiple trajectories. This
aggregated trajectory data is commonly presented as time
series of vectors, graphs, or images (movies).

On the deep learning side, we expect the popularity of
GNNs to increase. For example, the Traffic4cast challenge
(in its 4th year, 2022) is moving from (image/video-based)
traffic forecasting to graph-based representations. Addi-
tionally, AutoML methods (e.g., AdaNet used by the SHL
Challenge winner [23]) will allow users with limited DL
expertise to build competitive DL models.

As far as data engineering and development is con-
cerned, we expect further uptake of trajectory analysis
libraries, such as Trackintel17 (e.g., used by [7]), Moving-
Pandas18 (e.g., used by [36]) and scikit-mobility19 (e.g.,
used by [45]) since these libraries implement many com-
mon trajectory generalization, aggregation, and analysis
methods and aim at a long(er) term availability. This is an
important next step, as the implementations summarized
in Figure 2.8 have not been substantially updated/main-
tained since being published. This does not only reduce
the likelihood of reuse but also will lead to security issues
down the road.

Future research should address the issues of model
transferability, benchmark availability, and model ex-
plainability. Current work rarely addresses the issue
of model transferability. Since most existing global ML
models “cannot perform well locally, or be transferred to
study similar problems in other regions”[48], transferabil-
ity should be considered when evaluating or comparing
models. Additionally, developed models, even for the
same application and trajectory type, are difficult to eval-
uate (e.g., due to the lack of ground truth for anomaly de-
tection) and to compare due to different datasets and ap-
plied metrics. Therefore, more open datasets are needed.
Finally, to better understand the why and how of using
neural networks for a specific application, explainability
should play a more crucial role in model development.
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Glossary
• AE – Autoencoder

• AIS – Automatic Identification System

• CDR – Call Detail Records

• CNN – Convolutional Neural Network

• COG – Course over ground

• DNN – Deep Neural Network

• DL – Deep Learning

• GAN – Generative Adversarial Network

• GeoAI – Geospatial Artificial Intelligence

• GIS – Geographic Information Science

• GNN – Graph Neural Network

• GPS – Global Positioning System, often used synonymously
for all GNSS (incl. Galileo, GLONASS, and Beidou)

• LSTM – Long Short-Term Memory

• MLP – Multilayer Perceptron

• NLP – Natural Language Processing

• OBU – On-board Unit

• OD – Origin-Destination

• POI – Point of Interest

• RNN – Recurrent Neural Network

• SAE – Stacked Autoencoder

• SAN – Self-Attention Network

• SOG – Speed over ground

• VAE – Variational AutoEncoder
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