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Abstract

Gradient boosting decision trees (GBDTs) are widely applied on tabular data in real-world ML systems. Quantifying uncer-
tainty in GBDT models is thus essential for decision making and for avoiding costly mistakes to ensure an interpretable
and safe deployment of tree-based models. Recently, Bayesian ensemble of GBDT models is used to measure uncertainty by
leveraging an algorithm called stochastic gradient Langevin boosting (SGLB), which combines GB with stochastic gradient
MCMC (SG-MCMC). Although theoretically sound, SGLB gets trapped easily on a particular mode of the Bayesian poste-
rior, just like other forms of SG-MCMCs. Therefore, a single SGLB model can often fail to produce uncertainty estimates of
high-fidelity. To address this problem, we present Cyclical SGLB (cSGLB) which incorporates a Cyclical Gradient schedule
in the SGLB algorithm. The cyclical gradient mechanism promotes new mode discovery and helps explore high multimodal
posterior distributions. As a result, cSGLB can efficiently quantify uncertainty in GB with only a single model. In addition, we
present another cSGLB variant with data bootstrapping to further encourage diversity among posterior samples. We conduct
extensive experiments to demonstrate the efficiency and effectiveness of our algorithm, and show that it outperforms the
state-of-the-art SGLB on uncertainty quantification, especially when uncertainty is used for detecting out-of-domain (OOD)

data or distributional shifts.
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1. Introduction

With the rapid growth of data and computing power,
machine learning (ML) has been gaining a lot of new
applications in areas not imagined before. The more
ubiquitous ML systems become, it is inevitable to see
applications in very sensitive and high-risk fields. This
expands to a numerous areas like criminal recidivism
[1], medical follow-ups [2] and autonomous-systems [3].
While these systems might be very broad, they share a
common need, and that is to have a certain degree of con-
fidence on ML predictions. A proven successful way to
build confidence in critical systems is uncertainty estima-
tion. Research has shown that humans are more likely to
agree with a system if they get access to the correspond-
ing uncertainty, and this holds true regardless of shape
and variance as the approach itself is model and task ag-
nostic [4]. Since the most common data type in real-world
ML applications is tabular [5], our work in this paper fo-
cuses specifically on uncertainty quantification for the
state-of-the-art gradient boosting decision trees (GBDTs)
[6, 7], which are known to outperform deep learning (DL)
methods on tabular data, both in accuracy and tuning
requirements [5]. Measuring uncertainty effectively and
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efficiently on GBDT predictions can therefore not only
improve model interpretability in production but also
ensure a safer deployment of ML systems, especially for
high-risk applications.

Uncertainty quantification (UQ) has been widely stud-
ied for neural networks under the Bayesian framework
[8], however, it is relatively under-explored for tree-based
models. Although calibrated probability estimation trees
[9, 10] can be used for UQ, they have not been studied
from a Bayesian perspective. Recently, Bayesian ensem-
ble methods were extended to measure uncertainty in
GBDTs by leveraging a new algorithm called stochastic
gradient Langevin boosting (SGLB) [11]. Specifically, two
SGLB-based approaches were introduced for UQ [12]: (1)
SGLB ensemble, which trains multiple SGLB models in
parallel, and (2) SGLB virtual ensemble, which constructs
a virtual ensemble using only a single SGLB model where
each member in the ensemble is a "truncated" sub-model
[12]. Although both approaches are theoretically sound,
there is clearly a trade-off between quality and efficiency
in practice. SGLB (real) ensemble is believed to be ac-
curate as it can characterize the Bayesian posterior well
by running independent models in parallel. However,
it is almost infeasible to deploy such an ensemble in
real-world production due to its high computational and
maintenance costs. SGLB virtual ensemble greatly im-
proves the efficiency, however, it often gets stuck on a
single mode of the Bayesian posterior and can produce
downgraded uncertainty estimates [13, 14]. To better
balance between quality and efficiency and to facilitate


mailto:tianta@amazon.com
mailto:carlohue@amazon.com
mailto:qqzhao@amazon.com
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

10

Gradient Scaler Value

800 1000

400 600
Iteration/Number of tree

Figure 1: lllustration of proposed cyclical schedule on gradi-
ent scales for SGLB algorithm.

the usage of uncertainty-enabled ML systems, an impor-
tant question remains: how can we make a single SGLB
explore effectively different modes of a posterior given a
limited computational budget?

In this paper, we address the question above by com-
bining SGLB virtual ensemble with advanced sampling
techniques from Bayesian DL [14, 13, 15, 16]. Inspired by
the ideas in [13], we propose to use a scaler (or scaling
factor) on gradients that follows a cyclical schedule dur-
ing the course of SGLB training. The cyclical schedule is
illustrated in Figure 1, and consequently, we name the re-
sulting algorithm Cyclical SGLB (cSGLB). Similar to [13],
each cycle in ¢cSGLB contains two stages: (1) Exploration:
when the scaler is large, we treat this stage as a warm
restart from the previous cycle, enabling the model/sam-
pler to follow the gradients closely and to escape from
the current local mode. (2) Sampling: when the gradient
scaler is small, the scale of injected Gaussian noise in the
SGLB procedure becomes relatively large, encouraging
the sampler to fully characterize one local mode. We
collect one sample (or truncated sub-model) to build the
virtual ensemble at the end of each cycle. The cyclical
gradient schedule therefore helps cSGLB effectively ex-
plore different modes of a posterior while maintaining the
same level of efficiency of a virtual ensemble. Moreover,
inspired by a recent study [16] showing that "diversified"
posterior may provide a tighter generalization bound, we
present another simple approach to encourage diversity
in samples obtained from running cSGLB via data boot-
strapping. We name this variant Cyclical Bootstrapped
SGLB (cbSGLB).

We extensively experiment with our proposed algo-
rithms and compare the performance against SGLB en-
semble and the original SGLB virtual ensemble. Partic-
ularly, we show that our cyclical gradient schedule can
help explore effectively multimodal distributions, cSGLB
is capable of producing uncertainty estimates that are
better aligned with SGLB real ensemble, and cSGLB/cbS-
GLB outperforms the SGLB baseline with a large margin
on out-of-domain (OOD) data detection, indicating a su-

perior performance in detecting distributional/domain
shifts in real-world tabular data streams.

2. Related Work

Bayesian ML and approximate Bayesian inference pro-
vide a principled representation of uncertainty. One pop-
ular family of approaches to inference in Bayesian ML
are stochastic gradient Markov Chain Monte Carlo (SG-
MCMC) methods [17, 18, 19, 20, 13], which are used to
effectively sample models (or model parameters) from
the Bayesian posterior. Uncertainty then comes naturally
by measuring the "discrepancy” in predictions from the
sampled models which are regarded as posterior samples.
Recently, stochastic gradient Langevin boosting (SGLB)
[11] was proposed by combining gradient boosting with
SG-MCMC. As its name suggests, the Markov chain gen-
erated by SGLB obeys a special form of the stochastic
gradient Langevin dynamics (SGLD) [11, 17], which im-
plies that SGLB is able to generate samples from the true
Bayesian posterior asymptotically. Leveraging this prop-
erty, Malinin et al. [12] proposed to use (1) SGLB ensem-
ble or (2) SGLB virtual ensemble to measure uncertainty
in GBDTs. Essentially, SGLB ensemble corresponds to
running multiple SG-MCMC:s in parallel and each chain
(or SGLB) is initialized independently with a different ran-
dom seed. Since SGLB allows us to sample from the true
posterior, the ensemble with multiple samples gives a
high-fidelity approximation to the Bayesian posterior. In
contrast, SGLB virtual ensemble only trains a single SGLB
model and it uses multiple truncated sub-models to form
a (virtual) ensemble. The key idea is essentially extracting
multiple samples from a single-chain SG-MCMC instead
of running multiple chains in parallel.

In theory, SGLB or single-chain SG-MCMC converges
asymptotically to the target distribution and should be-
have similarly to the multi-chain SGLB ensemble in the
limit, but it can suffer from a bounded estimation error in
limited time [21]. Moreover, it is often believed that the
posterior is highly multimodal in the parametric space
of modern ML models [13], since there are potentially
many different sets of parameters that can describe the
training data equally well. The real ensemble can explore
different modes of the posterior by running in parallel
independent chains, providing a complete picture of the
distribution as the number of chains increases. However,
a single-chain SG-MCMC often gets stuck easily on a
single mode of the posterior [13, 14], failing to cover the
full spectrum of the distribution.

In this paper, we extend the ideas behind Cyclical SG-
MCMC (¢SG-MCMC) in DL [13] to sampling from a tree-
based SGLB model, which promotes new mode discovery
during training. Different from ¢cSG-MCMC that puts
a cyclical schedule on step size, we propose to use a



cyclical schedule on gradient scale. We also point out and
justify the difference and our design choice in Appendix
A. In addition, we propose a simple strategy to further
encourage diversity in samples obtained from a single
chain by data bootstrapping. At the beginning of each
cycle (see Fig.1), we construct a bootstrapped dataset
that is a random subset of the training, and use that
bootstrapped data consistently during the exploration
stage to update the GBDT model. The "bias" induced by
data bootstrapping also amounts to posterior tempering
[14, 15, 22, 23, 13].

3. Preliminaries

3.1. General Setup

Given a set of NN training data points sampled
from an unknown distribution D on X Xx ), ie,
(z1,%1),--., (xN,yn) ~ D denoted as Dy, and a loss
function L(z,y) : Z2 X Y — R where Z denotes the
space of predictions, our goal is to minimize the empiri-
calloss £(f|Dn) == & Efil L(f(x;),y:)) over func-
tions f belonging to some family F C {f : X — Z}.
In this paper, we only consider F corresponding to ad-
ditive ensemble of decision trees H := {h°(z,0°) :
X x R™ — R,s € S}, where S is an index set and
h*® has parameters 6°. Decision trees are built by parti-
tioning recursively the feature space into disjoint regions
(called leaves). Each region is assigned a value that is used
to estimate the response of y in the corresponding feature
subspace. Let’s denote these regions by R;’s, then we
have h(z,0) = 3, 0;1{x € R;}, where 1{-} denotes
indicator function. Therefore, given the tree structure,
decision tree h® is a linear function of its parameters 6°.
It is often assumed that the set .S is finite because the
training data is finite [11, 12], e.g., there exists only a
finite number of ways to partition the training data. Ow-
ing to the linear dependence of 2* on 6° and the finite
assumption of .S, we can represent any ensemble of mod-
els from A as a linear model fo(z) = ¢(z)*© for some
feature map ¢(x) : X — R™ and © € R™ denotes the
parameters of the entire ensemble [11]. Hence, in the sub-
sequent discussion, we will simply denote the parameters
of the GBDT model obtained at iteration 7 as (:)T, and
additionally define a linear mapping Hs : R™s — R

that converts ° to predictions (h®(z;,6°))~ ;.

3.2. SGLB

SGLB combines stochastic gradient boosting (SGB) [7]
with stochastic gradient Langevin dynamics (SGLD) [17].
Following notations used in the original paper [11], we
characterize the SGB procedure by a tuple B := {H, p},
where H again is the set of base learners and p(s|g) is a
distribution over indices s € S conditioned on a gradient

vector g € R™. Simply put, p(s|g) defines a distribution
over tree structures.

As with other GBDT algorithms, SGLB constructs an
ensemble of decision trees iteratively. At each iteration
T, we compute unbiased gradient estimates g, such that
Elg,] = (2L(fo_(v:),5:))Y € RY using the cur-
rent model fg _, and sample independently two normal
vectors ¢, ¢’ ~ N(On, In), where On, In denote zero
vector and identity matrix in R”, respectively. Then, a
base learner (or tree structure) s, is picked by drawing
%C'), where e > Ois a
learning rate (or step size) and 5 > 0 is a parameter often
referred as inverse diffusion temperature. Next, we esti-

mate the parameters 6;" (at tree leaves) of the sampled
base learner by solving the following optimization:

one sample from p(s|g, +

minimize ||§°7 (|3 s.t

2N (1)
6" € argmin || — g, + /== — Hs, 0|3,
HER™sT B

which returns the minimum norm solution that fits
best to the perturbed "noisy" version of negative gra-
dients. The optimization above has a closed form so-

P (g, + %C), where &, :=

(HI H, )"HI, * denotes pseudo-inverse. For deci-
sion trees, ®_g essentially corresponds to averaging the
gradient estimates g in each leaf node of the tree. Lastly,
SGLB algorithm updates the ensemble model by

fé ()= (1 - Ve)f(;),.(') + ehST('vaiT)a @)

where 7 is a regularization parameter that "shrinks" the
currently built model when updating the ensemble. At
a high-level, SGLB is a stochastic GB algorithm with
Gaussian noise injected into gradient estimates, which
encourages the algorithm to explore a larger area in the
functional space to find a better fit for the given data.
The independence between noise ¢ (used for parameter
learning) and ¢’ (used for tree sampling), and the model
shrinking by « in Eqn.(2) are technical details needed for
establishing theoretical results and rigorous analysis of
SGLB [11]. All the procedures of SGLB are also present
in our proposed c¢SGLB in Algo. 1 (with our additional
modifications highlighted in blue).

One can show that the parameters of SGLB é)T at each
iteration form a Markov chain that weakly converges to
the following stationary distribution:

p2(©) o exp(~BL(ODN) — B7|TO)[3),

lution as ;7 =

T+1

®)

where I' = T7 > 0 is a regularization matrix which
depends on a particular tree construction algorithm or the
choice of tuple B := {H, p(s|g)} [11]. Note that since
the GBDT model is linear and can be fully determined
by parameters O, we simply use notation £(f|Dn) and
L(0|Dy) interchangeably.



3.3. Posterior Sampling

We consider here a standard Bayesian learning frame-
work [8] that treats parameters © as random variables
and places a prior p(©) over ©. In addition, we consider
the GBDT model fe as a probabilistic model and explic-
itly denote the model by P(y|z; ©) with parameters ©.
This is valid naturally for classification as GBDT models
by construction return a distribution over class labels. For
regression, one can leverage NGBoost algorithm [24] to
return the mean and variance of a Gaussian distribution
over the target y for a given input z.

For the purpose of uncertainty estimation, we aim to
estimate or obtain an approximation to the Bayesian pos-
terior p(0|Dy). To that end, we can choose 8 = N
and v = ﬁ and use the negative log-likelihood as
the loss function £(0|Dn) = Ep, [—log p(y|z, )] =
- N log p(yi|xi, ©). Then, the limiting distribu-
tion of SGLB can be explicitly expressed as:

p(0) o exp (log p(Dx 1) — 5 ITO3)
x p(Dn|©)p(O),

which is proportional to the true posterior p(©|Dx) un-
der Gaussian prior p(©) = N (0,,,T) [11].

Now, consider a Bayesian ensemble of probabilistic
models { P(y|z; ")} X | where each model is trained
independently by running SGLB. Since each O™ js guar-
anteed to be sampled from p(©|Dy) by Eqn.(4), the en-
semble {©™ 1K | with K samples yields a "discrete”
approximation to the posterior p(©|Dy). This is ex-
actly the idea behind SGLB ensemble [12], which learns
K independent SGLB models in parallel with different
random seeds. Although the approximation improves
as K increases, the computational cost also increases
linearly with K. To alleviate the computational bur-
den, SGLB virtual ensemble [12] builds a Bayesian vir-
tual ensemble by sampling multiple times from a single-
chain SGLB model. Because samples from the same
chain are highly correlated, SGLB virtual ensemble pro-
poses to sample one member ©®) every C' > 1 iter-
ations. More specifically, the parameters are sampled

| T A

by {8(M}, 5,20 = {Ocuiizy k=1 ek
ie., appending one member to the ensemble every C' it-
erations while constructing one SGLB model using 7
iterations of gradient boosting. Notice that no sampling
is performed during the first half of iterations (7 < 7 /2)
since Eqn.(4) holds only asymptotically. For large C' and
K, the virtual ensemble should behave similarly to the
SGLB real ensemble in the limit theoretically.

©)

3.4. Uncertainty Estimation

Once the Bayesian
{Plylz;0") 1, 0% ~

(virtual) ensemble
p(©|Dn) is learned,

predictions can be made by taking an average over
the ensemble, often known as predictive posterior or
Bayesian model average (BMA):

p(ylz, Dx) = Epoipy [Plylz; ©)] ~ % T4, Plylz; 0P).

®)
The entropy of the predictive posterior estimates total un-
certainty (TU) in predictions, which can be further decom-
posed into two distinct types of uncertainty: knowledge
uncertainty and data uncertainty.' (a) Knowledge uncer-
tainty (KU) arises due to the lack of knowledge about the
data generation process (or the unknown distribution
D). KU is expected to be large in regions (in the feature
space) where we do not have sufficient training data. (b)
Data uncertainty (DU) arises due to the inherent stochas-
ticity within the data generation process, and it is high
in regions with class overlaps. In applications like active
learning [25], reinforcement learning (RL) [26], and OOD
detection, it is desirable to measure KU separately from
DU (or TU), and the following equation can be used in
practice to compute and connect them via mutual infor-
mation [27]:

I(y; ©lz, Dn)
N————
Knowledge Uncertainty
= H(p(ylz, Dn)) — Epo)py) [H(P(y]2; ©))]
—_———

Total Uncertainty

Expected Data Uncertainty

~H (L KP ;0 ! KIHIP ;0
~ (EkZ:l (Wl ))7?; (Pale;0™)),

(6)
where I[(A; B) denotes the mutual information between
random variables A and B, and H(-) denotes entropy. The
difference between TU and DU measures the disagree-
ment among members in the ensemble and estimates the
knowledge uncertainty.”

4. Cyclical Stochastic Gradient
Langevin Boosting (cSGLB)

4.1. Promoting Mode Discovery via
Cyclical Gradient Scheduling

Instead of building a cumbersome true ensemble of SGLB
models, the virtual ensemble of SGLB greatly improves
the efficiency by training only a single model. How-
ever, similar to other types of SG-MCMC in Bayesian DL
[13, 14, 15], single-chain SGLB gets trapped easily on a
particular single mode of the posterior. To efficiently ex-
plore different modes of the multimodal posterior and ef-
fectively measure uncertainty in GBDT predictions with

KU is also named epistemic uncertainty and DU is also called
aleatoric uncertainty.

%See paper [12] for equations computing KU and DU in regression
tasks.



a single chain, we propose a simple remedy that places a
cyclical cosine schedule on gradient scale during training,
as illustrated in Fig.1. Specifically, the scaling factor at
iteration 7 is defined as:

T mog (7, C))+1]7 amin)’

™)
where amax > 1 is the maximum of the scaler or the
initial value of avg, C' is the user-defined cycle length, and
Qmin defines the minimum of the scaler, e.g., amin =
1 or 0.5, since decaying the gradients to arbitrarily small
could be harmful for performance. Putting together, this
amounts to sampling the tree structure and learning the
tree leaf parameters with the (re)scaled gradients: s, ~

p(slard, +1/25¢) and 67 = =@, (ard, +1/ 25 C).
Similar to Cyclical SG-MCMC [13], we define two

stages within each cycle: (1) Exploration when the com-
mod (7,C)
c

arnax
Qr = max 5 cos(

pleted portion of a cycle A(7) = is smaller
than a given threshold: A(7) < n, and (2) Sampling
when A(7) > 7, and n € (0, 1) balances the portion be-
tween exploration and sampling. We obtain one sample
from the chain at the end of each cycle, i.e., the virtual

- K K=LE) A

ensemble is built by {@( )}k:1 ¢ = {Ock-1,k =
1,...,| L]} Large gradients at the beginning of a cycle
provide enough perturbation and encourage the model
to escape from the current mode, while decreasing the
gradient scale inside one cycle makes the sampler better
characterize the density of the local mode. Moreover,
many prior works in Bayesian NNs proposed to apply a
certain form of preconditioning to compensate sampling
noises from mini-batch training [15, 14]. Tree-based mod-
els can usually digest the full-batch (full dataset D) per
iteration by leveraging modern multi-core processors
and multi-threading. Therefore, we directly use the full-
batch GB in all sampling stages, while leaving the option
of random data subsampling in exploration stages to the
users if training time is a concern.

Combining cyclical gradient scaling with SGLB, we
expect that our new Cyclical SGLB (cSGLB) algorithm
could inherit most (if not all) theoretical properties of the
original SGLB algorithm. Conceptually, with a proper
choice of max, @min and cycle length C, the sample
obtained at 7 = C' — 1 from the Markov chain fg_ gen-
erated by Algo. 1 (w/o bootstrap) can be approximately
seen as a random draw from the limiting distribution
with small bounded errors. Also, each next cycle can be
viewed as a warm restart from its previous cycle, and
thus no errors shall be accumulated into the subsequent
cycles (at sampling time 7 = Ck — 1). We left rigor-
ous analysis and proofs of our propositions for future
work. Empirically, we show in our experiments that the
cyclical gradient scaling achieves similar effects in ex-
ploring a multimodal distribution when compared with
¢SG-MCMC which places a similar cyclical schedule on

step size within the context of Bayesian DL. In fact, cS-
GLB extends the idea behind cSG-MCMC to tree-based
GBDT models. We also summarize key differences be-
tween our design of cSGLB and ¢SG-MCMC in Appendix
A.

4.2. Enhancing Sample Diversity via
Bootstrapping

Recent work [16] provided a compelling analysis that the
Bayesian posterior is not optimal under model misspeci-
fication®, where the performance of the true posterior is
dominated by an alternative non-Bayesian posterior that
explicitly encourages diversity among ensemble mem-
ber predictions. Inspired by these results, we propose a
simple strategy that promotes diversity among samples
obtained from ¢cSGLB by data bootstrapping. At the begin-
ning of each cycle, we sample randomly a Bernoulli mask
of size N, ie., v := {v[i] ~ Bernoulli(ppm)}i, €
{0,1}", and ppm € (0,1) defines the percentage of
data being used. In the following exploration stage, we
mask out gradients g, by taking an element-wise prod-
uct with v, i.e., §, © v. The mask v and the mask-out
operation are used consistently throughout the explo-
ration stage A(7) < 7, and v only gets updated until
the end of the cycle. This design amounts to learning
with a bootstrapped subsample of the data in each cy-
cle. Since the model would observe consistently less
data than the original Dy, it also amounts to posterior
tempering (p(Dn|0©)p(©))*/” with some temperature
T > 1, resulting in a warm posterior that is softer than
the Bayesian posterior. By increasing the temperature 7',
we expect to see increased density on the paths/corridors
connecting different modes of the posterior [28, 29], fur-
ther facilitating the sampler to escape from the current
local mode. By using a relatively large n € (0.8, 1), the
tempering effects would carry over into the sampling
stage. Therefore, the bootstrapping mechanism helps
improve the sample diversity from ¢cSGLB, and we name
this variant Cyclical Bootstrapped SGLB (cbSGLB).

Lastly, we summarize our proposed cSGLB (plus boot-
strap option) in Algo. 1 and highlight our modifications
on top of SGLB in blue.

5. Experiments

5.1. Experiments on Synthetic Data

We validate and qualitatively evaluate the proposed gradi-
ent scheduling and our cSGLB algorithm on two synthetic
problems: (1) a synthetic multimodal dataset in [13], and

3The function class in-use does not contain the unknown ground-
truth function.



Algorithm 1: Cyclical (Bootstrapped) SGLB

Input: dataset Dy, learning rate ¢ > 0, inverse
temperature 3 > 0, regularization v > 0,
number of iterations 7 > 0, cycle length C' > 1,
scaler limits max, min > 0, stage threshold
1 > 0, mask probability py.,, > 0, boolean
indicator bootstrap

Initialize fo (1) =0,v =1y € RY as all-ones
vector
forTin[0,1,...,7 — 1] do
if bootstrap then
if %(T’C) = 0 then
Sample v € R with
v[i] ~ Bernoulli(pem )

end
if %(T’C) > 7 then
| Setrv =1xn
end
end

Compute gradient scaler: o, =
max( @max [cos(T22d ) 4 1] apnin)
Estimate gradients §, using fg () and Dn:
9, = (g7 L(fe, (i), y:))its € RY
Sample noise ¢, ¢’ ~ N (On, In)

Sample tree structure:

Sy~ p(s}aT(f;T@V) + %C’)
Estimate leaf/parameter values:

62 = @, (ar (3,00) + /2)
Update GBDT model:

fo, ()= =e)fe () +eh™(-0i7)

end
Return: fg_(-)

(2) a multi-class Spiral dataset in [12]. Due to limited
space, we include experimental details in Appendix B.

Synthetic Multimodal Data We first demonstrate
the ability of cyclical gradient scaling for sampling from a
multimodal distribution on a 2D mixture of 25 Gaussians.
Specifically, we compare (i) the original SG-MCMC with
SGLD (denoted as SGLD) and two SGLD variants: (ii)
SGLD with Cyclical schedule on Learning Rate (denoted
as clr-SGLD) [13] and (iii) SGLD with Cyclical schedule
on Gradient scale (denoted as cg-SGLD (ours)). We re-
produced the results for SGLD and clr-SGLD in paper
[13] with code released by the authors, and built our cg-
SGLD on top of it. In addition, we experimented with
a "noisy" version of SGLD with a fixed Ir and increased
10X noise scale (denoted as NoisySGLD/N-SGLD). For
a fair comparison, each chain runs for 50k iterations

and both clr-SGLD and cg-SGLD have 30 cycles. Fig.2
shows the estimated density using different sampling
strategies. SGLD gets trapped in local modes depending
on the random initial position, and increasing the noise
scale does not solve the problem. In contrast, clr-SGLD
and cg-SGLD can explore and locate roughly 7 — 8 differ-
ent modes of the distribution, showing that our cg-SGLD
can achieve the state-of-the-art performance in exploring
multimodal distributions. Moreover, cg-SGLD has ben-
efits in implementation over clr-SGLD when combined
with SGLB. The SGLB algorithm was made available in
the CatBoost library [30], which only supports a fixed Ir.
All our proposed enhancements can be implemented with
a "user-defined loss function" available in CatBoost with-
out touching the source code, making it straightforward
to reproduce our algorithms.

Multi-Class Spiral Data After validating the efficacy
of cyclical gradient scheduling on sampling from mul-
timodal distributions, we are now ready to experiment
with ¢SGLB. Specifically, we compare the following al-
gorithms on a 3-class classification task called "Spiral" in
[12]: (i) SGLB ensemble, where we denote by ensx with
K models, (ii) SGLB virtual ensemble, simply denoted
by SGLB, and (iii) cSGLB virtual ensemble, denoted by
cSGLB (ours). We again reproduced the results in [12]
with code released by the authors, and Fig.3 shows the
estimated KU on Spiral test set. As noted in [12], we see
that knowledge uncertainty due to decision-boundary
"jitter" exists in both enszg and ¢SGLB, and the "jitter"
affects ¢cSGLB more as the estimated KU is "noisy" at the
decision boundary. Nevertheless, ¢cSGLB (with only a sin-
gle model) is significantly more efficient than enszg and
is able to greatly improve upon SGLB in capturing high
KU in regions with no training data.

5.2. Experiments on Real-World Weather
Prediction Data

Lastly, we evaluate our proposed methods on the public
Shifts Weather Prediction dataset [31]. We select the clas-
sification task where the ML model is asked to predict
the precipitation class at a particular geolocation and
timestamp, given heterogeneous tabular features derived
from weather station measurements and forecast mod-
els. The full dataset is partitioned in a canonical fashion
and contains in-domain (ID) training, development and
evaluation datasets as well as out-of-domain (OOD) de-
velopment and evaluation datasets. Importantly, the ID
data and the OOD data are separated in time and con-
sist of non-overlapping climate types (ID: Tropical, Dry,
Mild; OOD: Snow, Polar), making the Shifts dataset an
ideal testbed for gauging the robustness of ML model and
the quality of uncertainty estimation. To further facili-
tate our experimentation, we conducted the following
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Figure 2: Sampling from a 5 by 5 mixture of 25 Gaussians.
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Figure 3: Spiral dataset and estimated knowledge uncertain-
ties. Each different color in (a) represents a different class.

data preprocessing: (1) feature selection to keep only
the top 40 features by importance (out of 123 available
features), where the feature importance is determined by
a CatBoost classifier with 1K trees trained on the entire
training set; (2) dropping minority classes to keep only
the major 3 precipitation classes, i.e., class 0, 10, and 20
out of the 9 available classes from the original dataset;
(3) random data sampling to keep 200K (medium-sized)
data in the final training set. Again, the purpose of our
data preprocessing is for speeding up experimentation,
and we believe that the observations and findings in this
study are generalizable to the original full dataset. For
model building, 30 independent SGLB models (each of
1K trees) were trained and used to construct real ensem-
bles ensk for K € {3, 5,10, 30}. SGLB/cSGLB/cbSGLB
virtual ensembles were built by sampling 10 members
from a single-chain with 2K trees. Hence, ensig is 5x
more expensive in computation and memory than a vir-
tual ensemble. Additional details regarding our data and
models are included in Appendix C.

We compare various methods on their predictive per-
formance and on uncertainty quantification following

[31], and the results are summarized in Table 1. For pre-
dictive performance, we report the classification accuracy
and macro F1 using BMA on both the ID and the OOD
evaluation datasets. We can see the following effects: (1)
Virtual ensembles with a longer chain slightly outper-
form the real ensembles on the ID data. (2) Our proposed
¢SGLB and cbSGLB perform slightly worse than the rest
of methods on the OOD data. However, this usually is
not a concern in practice since the model is not trained
with data from OOD domains and would not be used to
solve the OOD prediction tasks in a practical scenario.
As long as the domain shifts can be reliably detected (via
uncertainty), proactive decisions can be made to avoid
costly mistakes due to model errors. (3) Our proposed
data bootstrapping mechanism is capable of improving
the performance on the OOD data (cbSGLB > ¢SGLB). In
addition, we include the F1-AUC metric (on the combined
ID&OOD evaluation sets) introduced in [31] to jointly
assess the predictive power and uncertainty quality. The
F1-AUC can be increased by either having a stronger pre-
dictive model or by improving the correlation between
uncertainty and error. Consistent with the findings in
[31], total uncertainty (TU) correlates more with errors
than knowledge uncertainty (KU) as shown by the F1-
AUC scores. More specifically, we see that the F1-AUC
is quite similar across the board when measured by TU,
although c¢SGLB/cbSGLB has slightly worse predictive
power on the OOD segment. When F1-AUC is measured
by KU, our ¢SGLB/cbSGLB is capable of producing KU
estimates that relate more closely to model errors than
KU from the SGLB baseline.

At last, we present the OOD detection ROC-AUC per-
formance on the evaluation data by using KU estimates.
Our ¢SGLB/cbSGLB outperforms the SGLB baseline with
a large margin on the OOD detection task, and even
achieves a comparable performance to the real ensem-
ble ens1o, which is 5x more expensive. This highlights
that our ¢SGLB/cbSGLB can produce high-fidelity KU
estimates to detect domain (or distributional) shifts with
a single model, and that our proposed cyclical gradient
scheduling is effective in exploring different modes of a
posterior. In real-world industrial applications, detecting



Metric Data ‘ enss enss ensio ensso ‘ SGLB cSGLB cbSGLB
Accuracy (%) eval-ID 65.24 £0.02  65.25 £ 0.02 65.26 £ 0.01 65.26 65.63 £ 0.01 65.93 £ 0.01 65.59 &£ 0.01
y e eval-OOD 52,51 £0.06  52.55+0.06 52.55+ 0.03 52.54 52.50 + 0.14 50.72 £+ 0.17 51.49 £+ 0.11
Macro F1 (%)} eval-ID 63.28 £0.02  63.29 + 0.02 63.30 £ 0.01 63.30 63.69 £ 0.01 64.06 £ 0.02 63.67 £ 0.01
’ val-OOD 52.36 £ 0.07 52.39 £0.06 52.38 +0.03 52.38 52.36 + 0.13 50.64 £ 0.16 51.41 £0.15
F1-AUC (%)t TU 57.18 £ 0.01 57.19 £+ 0.01 57.20 £ 0.01 57.20 57.26 + 0.01 56.82 + 0.03 56.95 + 0.04
’ KU 5294 £0.03 53.71 £ 0.03 54.33 £ 0.02 54.83 52.55 + 0.08 53.60 1 0.08 53.31 + 0.14
OOD-AUC (%)t KU ‘ 65.72 £ 0.31 68.60 £ 0.21 7115 £ 0.16 73.26 ‘ 67.32 £ 0.70 71.45 £ 0.67 71.70 £ 0.91

Table 1

Comparing predictive performance & uncertainty measures of various methods on Shifts Weather data. Mean + Std Dev
over 3 seeds. The best performance among virtual ensembles is highlighted in bold.

OOD data or domain shifts in an efficient way is often
crucial to ensure a safe deployment and operation of ML
systems. Observing consistently high uncertainty (es-
pecially KU) from model predictions indicates that the
patterns of new incoming data have deviated from the
training. This often provides a strong signal for model
refresh, ensuring that the ML system can be updated in
time to avoid errors and operate safely in its "comfort
zone" (with relatively low predictive uncertainty).

6. Conclusion

We present cyclical gradient scheduling and Cyclical
SGLB for efficiently and effectively quantifying uncer-
tainty in gradient boosting with a single model, and pro-
pose a data bootstrapping scheme to enhance diversity
in posterior samples. We show empirically that our al-
gorithms have superior performance over the state-of-
the-art SGLB, especially in quantifying knowledge un-
certainty and for OOD detection.

Accurately quantifying uncertainty in ML predictions
can yield many benefits in real-world applications. Un-
certainty directly measures the confidence in model pre-
dictions, not only improving interpretability, but also
ensuring that costly mistakes can be avoided proactively.
Consistently observing high uncertainty in predictions
on incoming data stream often provides a reliable signal
for data distributional shifts and/or model being obsolete.
Uncertainty is also a key concept in optimal control and
decision making, where it can be leveraged to experi-
ment with different actions/decisions with controllable
costs in search for the best operating point of an ML
system. We believe that our work on efficient uncer-
tainty quantification for GBDTs facilitates the adoption
of uncertainty-enabled and uncertainty-aware ML sys-
tems, and more broadly promotes ML safety and a safe
and trustworthy deployment of ML model in production.
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A. Comparison between cSGLB

and cSG-MCMC

The proposed Cyclical SGLB algorithm combines SGLB
with ¢SG-MCMC [13] to effectively explore different
modes of a highly multimodal posterior distribution. In
this section, we summarize some key differences between
our design and the original cSG-MCMC algorithm.

(1) ¢SG-MCMC is a sampling algorithm designed for
Bayesian NNs, while ¢SGLB is built for GBDT models.
In deep learning, full-batch gradient descent is usually
not feasible, and techniques have been developed to ex-
plicitly compensate mini-batch noises, such as precondi-
tioning [14]. Some also suggested applying an additional
correction step called Metropolis-Hastings [15]. Tree-
based GB models can easily scale up to large industrial
datasets and digest the full training set at each iteration.
Therefore, our cSGLB uses full-batch GB in the sampling
stage of each cycle to ensure high-quality samples being
generated. (2) cSGLB puts a cyclical schedule on gra-
dient scale while cSG-MCMC puts a schedule on step
size. In addition, the original cSG-MCMC completely re-
moved the injected Gaussian noises in the exploration
stage, and ¢cSG-MCMC reduced to regular stochastic gra-
dient descent (SGD) during the period of exploration.
Although the authors claimed that this amounts to pos-
terior temping which is commonly used in DL domain,
the implementation of ¢cSG-MCMC algorithm does not
follow closely/strictly the dynamics of SGLD during the
exploration stage. In contract, we keep the injected noise
term unchanged during the course of learning. Our de-
sign achieved similar effects compared with the step-size
scheduling on a synthetic experiment, and we also en-
sure that cSGLB follows the dynamics of SGLD (more or
less) at every iteration step. (3) Lastly, the gradient scal-
ing (instead of step-size scheduling) has implementation
benefits. The SGLB algorithm is made available in the
CatBoost library [30], which only supports a constant
step size (or learning rate). Our proposed cyclical gradi-
ent scaling (and data bootstrapping) can be implemented
easily with the "user-defined loss function" available in
the CatBoost package, without modifying a single line of
the source code.



Data # of samples % of class
Total Tropical Dry Mild Snow Polar | Class0 Class 10  Class 20
train-1D ‘ 200,000 26,786 45,357 127,857 0 0 ‘ 40.92 33.71 25.37
dev-1D 46,279 6,196 10,505 29,578 0 0 40.90 33.97 25.13
dev-OOD 46,555 0 0 0 46,555 0 38.35 35.07 26.58
eval-ID 518,587 69,245 117,981 331,361 0 0 40.98 33.71 25.30
eval-OOD | 524,048 0 0 0 479,952 44,096 33.05 35.70 31.24
Table 2

Data summary of our partitioning of the Weather Prediction dataset.

B. Synthetic Data

B.1. Synthetic Multimodal Distribution
The ground truth density of the distribution is

25

1

=1

F(z)

where 1 = {—4,-2,0,2,4}" x {—4,-2,0,2,4} and
5 {0.03 0
0 0.03
thors [13] to generate our results. Specifically, the SGLD
was trained with a decaying Ir . = 0.05(7 + 1)70‘55,
and clr-SGLD was learned with a cyclical Ir schedule
with initial value ¢g = 0.09 and exploration proportion
1 = 0.25. For our cg-SGLD, we fixed Ir ¢ = 0.01 and
Gaussian noise scale as 0.4, and set amax = 10, dmin =
1. The "noisy" version of SGLD (or NoisySGLD/N-SGLD)
was trained with a fixed Ir € = 0.02 and noise scale 5.0
(roughly 10x larger than the noise scale used in the other
methods). Each chain was trained for 50k iterations and
both clr-SGLD and cg-SGLD had 30 cycles. The results
and findings are robust to random seeds, and similar re-
sults were observed with different seeds. We refer the
interested readers to the original paper [13] for results of
SGLD and clr-SGLD in parallel (or multi-chain) settings.

] . We used the code released by the au-

B.2. Synthetic Spiral Dataset

All experiments were conducted using CatBoost [30], one
of the-state-of-the-art libraries for GBDTs. The ensemble
of SGLB (enszo) contains 20 independent (with different
random seeds) models with 1K trees each. The learning
rate is € = 0.1, tree depth is 6, and random_strength =
100 and border_count = 128. The SGLB virtual ensem-
ble and ¢SGLB virtual ensemble are trained with the
same parameters except that we increase the number
of trees to 2K and lower the Ir for ¢SGLB to ¢ = 0.05.
Thus, the virtual ensemble is 10X more efficient in com-
putation and memory than the actual SGLB ensemble.
For SGLB virtual ensemble, each 50th model from in-
terval [1000, 2000] is added to the ensemble, making

it a virtual ensemble of 20 members. For ¢SGLB vir-
tual ensemble, we set € = 0.05, cycle length C = 200,
Qmax = 10, imin = 1, making it a virtual ensemble of
2000/200 = 10 members. For cbSGLB with bootstrap-
ping, we additionally set exploration proportion 7 = 0.9
and mask probability py»,, = 0.66.

C. Real-World Shifts Data

Data Summary A detailed summary of our final par-
titioning of the Weather Prediction dataset is included in
Table 2.

Experimental Details We used default parameter set-
tings for SGLB models as suggested in the original paper
[12] for uncertainty quantification except that we set
the subsample rate to 0.8 for stochastic gradient boost-
ing. The real SGLB ensemble consists of (up to) 30 SGLB
models trained with different seeds, each of 1K trees. In
order to get more samples from a single chain, the vir-
tual ensembles of SGLB and our cSGLB/cbSGLB were
learned with a single model of 2K trees. We set learning
rate for all models to ¢ = 0.05, and tree depth to 6. For
SGLB virtual ensemble, each 100th model from interval
[1000, 2000] was added to the ensemble, making it a vir-
tual ensemble of 10 members. cSGLB and cbSGLB shared
the same parameters with the SGLB counterpart. In ad-
dition, for cSGLB/cbSGLB virtual ensemble, we set cycle
length C' = 200, amax = 10.0, amin = 1.0, making it a
virtual ensemble of 2000/200 = 10 members. For sim-
plicity, cSGLB used full-batch gradient boosting at each
iteration step. In contrast, for cbSGLB with bootstrap-
ping, we set exploration proportion 7 = 0.8, i.e., 80% of
a cycle was treated as exploration, and set mask prob-
ability ppm = 0.6 in the exploration stage. For model
and parameter selection, we only used the in-domain
(ID) development set and did not use the out-of-domain
(OOD) development set. Although this may potentially
lower our reported performance on the OOD evaluation
set, we believe that it reflects better a real-world learning
scenario where the shifted data is often unobserved and
unavailable at training time.
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